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a b s t r a c t

Extreme Learning Machine (ELM) has been proposed as a new algorithm for training single hidden layer
feed forward neural networks. The main merit of ELM lies in the fact that the input weights as well as
hidden layer bias are randomly generated and thus the output weights can be obtained analytically,
which can overcome the drawbacks incurred by gradient-based training algorithms such as local optima,
improper learning rate and low learning speed. Based on the consistency property of data, which
enforces similar samples to share similar properties, we propose a discriminative graph regularized
Extreme Learning Machine (GELM) for further enhancing its classification performance in this paper. In
the proposed GELM model, the label information of training samples are used to construct an adjacent
graph and correspondingly the graph regularization term is formulated to constrain the output weights
to learn similar outputs for samples from the same class. The proposed GELM model also has a closed
form solution as the standard ELM and thus the output weights can be obtained efficiently. Experiments
on several widely used face databases show that our proposed GELM can achieve much performance
gain over standard ELM and regularized ELM. Moreover, GELM also performs well when compared with
the state-of-the-art classification methods for face recognition.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extreme Learning Machine (ELM) is an emerging model pro-
posed by Huang [1] as a least square based learning algorithm for
single hidden layer neural networks (SLFNNs) [2–5]. In compar-
ison with traditional neural networks which usually employ back
propagation (BP) algorithm to train the connection weights, the
tedious process of iterative parameter tuning is eliminated and the
slow convergence and local minimum problems are avoided.

The consistency among ELM and SVM, least square support
vector machine (LS-SVM) and proximal SVM was well studied and
analyzed from the optimization point of view [5–7]. In [7], it was
found that ELM can provide an unified solution for generalized
SLFNNs, which include but not limit to neural network, support
vector network and regularized network. That is to say, the feature
mapping function can be any type of nonlinear piecewise function
as in conventional ELM random nodes; or an unknown function

to form a mercer's kernel as in SVMs and other kernel based
algorithms.

Recently, much effort has been made on ELM from both
theoretical and application aspects. Huang et al. showed that the
universal approximation performance of SLFNNs can be implemen-
ted in an incremental method, which may simply choose hidden
nodes at random and then adjust the output weights (I-ELM) [2]. An
enhanced method for I-ELM (referred as EI-ELM) was proposed in
[4]. I-ELM was proven to have the ability of approximating any
target function in both the real and complex domains [8]. An error
minimized ELM (EM-ELM) which can automatically determine the
number of hidden nodes in generalized SLFNNs was proposed in [9].
Zong et al. applied ELM to relevance ranking and studied it as a
learning-to-rank algorithm from the perspective of both pointwise
and pairwise [10]. The impact of randomweights between input and
hidden layers was investigated in [11]. To alleviate the effect of
outliers, robust ELM was proposed in [12]. Zhang et al. proposed a
fuzzy ELM (FELM) in which the inputs with different fuzzy matrix
can make different contributions to learn the output weights [13].
Shi et al. proposed the elastic net regularized ELM and put it to
EEG based vigilance estimation [14]. Wang et al. proposed a
parallelized ELM ensemble based on the Min-Max Modular network
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(M3-network) to meet the challenge of the so-called big data [15]. In
addition, ELM has been put into diverse applications such as speaker
recognition [16], neuroimage data classification [17], security assess-
ment [18], data privacy [19], EEG and seizure detection [20], image
quality assessment [21], image super-resolution [22], FPGA [23], face
recognition [24], and human action recognition [25].

Recently, learning with local consistency of data has drawn
much attention to improve the performance of existing machine
learning models. In this paper, based on the idea that similar
samples should share similar properties, we propose a discrimina-
tive graph regularized Extreme Learning Machine (GELM). In GELM,
the constraint imposed on output weights enforces the output of
samples from the same class to be similar. The constraint is
formulated as a regularization term being added on the objective
of basic ELM model, which also makes the output weights be solved

analytically. We conduct experiments on four popular face data-
bases to evaluate the performance of GELM. The experimental
results demonstrate that GELM can obtain much better perfor-
mance on most cases in comparison with basic ELM and state-of-
the-art models.

The remainder of this paper is organized as follows. Section 2
describes the basic extreme learning machine model as well as its
ℓ2-norm regularized version. Section 3 introduces the proposed
discriminative graph regularized ELM (GELM) including its model
formulation and optimization method. Section 4 gives the detailed
experiments to evaluate the efficiency of applying GELM to face
recognition on several widely used data sets. Conclusion is given
in Section 5.

2. Extreme Learning Machine

In this section, we review the Extreme Learning Machine algorithm
in detail as the preliminary of our work.

Extreme Learning Machine proposed by Huang et al. [1] is an
efficient and practical learning mechanism for the single layer feed
forward neural networks.

Given a training data set, L¼ fðxi; tiÞjxiARd; tiARm; i¼ 1; 2;…;Ng,
where xi ¼ ðxi1; xi2;…; xidÞT and ti ¼ ðti1; ti2;…; timÞT . An ELM with K

Fig. 1. An example to explain the distance information cannot be preserved by ‘sigmoid’ mapping.

Fig. 2. The four rows show the fourteen image samples from the ORL, Yale, Extended Yale B and CMU PIE databases, respectively.

Table 1
Statistics of the four face databases.

Database #samples # classes # samples/subject dimension

ORL 400 40 10 32�32
Yale 165 15 11 32�32
Extended Yale B 2414 38 �64 32�32
CMU PIE 11,544 68 �170 32�32
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hidden nodes and activation function g is modeled as

∑
K

j ¼ 1
βjgjðxiÞ ¼ ∑

K

j ¼ 1
βjgðwj � xiþbjÞ ¼ oi; i¼ 1;…;N; ð1Þ

wherewj ¼ ðwj1;wj2;…;wjdÞ is the input weight vector connecting the
jth hidden node with input nodes. βj ¼ ðβj1;βj2;…;βjmÞT is the weight
vector connecting the jth hidden node with the output nodes, bj is the
bias of the jth hidden node, and oi ¼ ðoi1; oi2;…; oimÞT is the network
output corresponding to sample xi. Eq. (1) can be rewritten in matrix
form as

βTH ¼ T ; ð2Þ
where

H¼

gðw1 � x1þb1Þ … gðw1 � xNþb1Þ
gðw2 � x1þb2Þ … gðw2 � xNþb2Þ

⋮ ⋮ ⋮
gðwK � x1þbK Þ … gðwK � xNþbK Þ

2
66664

3
77775
K�N

ð3Þ

β¼

βT
1

βT
2

⋮
βT
K

2
666664

3
777775
K�m

and T ¼ ½t1; t2;…; tN�m�N : ð4Þ

So the output weight of Eq. (2) can be estimated analytically by

~β ¼ arg min
β

‖βTH�T‖22 ¼H†T ; ð5Þ

where H† is the Moore-Penrose generalized inverse of H. If H is
nonsingular, Eq. (5) can be written as

~β ¼ ðHHT Þ�1HTT : ð6Þ
In order to improve the stability and generalization ability of

the traditional ELM, Huang et al. proposed the equality con-
strained optimization-based ELM [7]. In this method, the solution
of ELM can be expressed as

~β ¼ HHT þ I
C

� ��1

HTT ; ð7Þ

where C is a constant and I is the identity matrix. Let λ¼ 1=C, Eq. (7)
can be rewritten as

~β ¼ HHT þλI
� ��1

HTT : ð8Þ

The solution in Eq. (8) can be obtained by solving the following
optimization problem:

min
β

‖βTH�T‖22þλ‖β‖22; ð9Þ

where ‖β‖22 ¼∑K
j ¼ 1‖βj‖22 is regarded as the regularization term

and ‖βj‖22 denotes the ℓ2-norm of the vector βj. Moreover,
λ denotes the regularization parameter to balance the influence
of error term and the model complexity. This is a general method
to make the least square regression solution stable, which is called
‘ridge regression’ in statistics.

As a whole, training a single layer feed forward neural net-
works based on ELM algorithm can be summarized in Algorithm 1.
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Fig. 3. Comparing GELM with conventional ELM and regularized ELM on ORL database.
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Algorithm 1. Conventional Extreme Learning Machine.

Input: training set N ¼ fðxi; tiÞjxiARd; tiARm; i¼ 1;2;…;Ng,
activation function g, number of hidden nodes K and
regularization parameter λ;

Output: Output weight matrix β;
Randomly assign input weights wj and biases bj; j¼ 1;…;K;
Calculate the hidden layer output matrix H;

Calculate the output weight matrix ~β according to Eq. (5) or
Eq. (7).

3. Discriminative graph regularized ELM

3.1. Motivation of discriminative graph regularization

The motivation of discriminative graph regularized ELM lies in
two folds:

� The Local Consistency property can be used as side information
for improving the performance of learning models. Recently, various
researchers have considered the case when data is drawn from
sampling a probability distribution that has support on or near to a
submanifold of the ambient space. The local consistency assump-
tion usually means that nearby points (neighbors) should share

similar properties, which emphasizes the importance of local
geometrical structure in data set. Based on local consistency, many
graph embedding (regularization) enhanced models were pro-
posed by constructing a nearest neighbor graph based on some
‘distance’ measurement including local consistency Gaussian Mix-
ture Model (LCGMM) [26,27], graph regularized Non-negative
Matrix Factorization (GNMF) [28], and graph regularized Sparse
Coding [29]. Thus our method can be viewed as one type of
manifold learning, which aims at preserving the local structure
during feature learning or classification. In other words, local
consistency property can make the learned mapping function in
ELM varies smoothly along the geodesics of the data manifold.

�The distance information among samples are destroyed by non-
linear mapping in conventional ELM. The activation functions used in
neural networks are usually nonlinear like the ‘sigmoid’ function
and ‘gaussian’ function. The nonlinear mapping enhances the
feature extraction performance of neural network while destroy-
ing the local consistency contained in the data set. Fig. 1 shows an
example to explain this phenomenon based on ‘sigmoid’ mapping.
The distance between x1 and x2 is larger than the distance
between x3 and x4 in the original data space. However, the
distance between h1 and h2 is smaller than the distance between
h3 and h4 in the hidden layer space. Therefore, the local consis-
tency in unsupervised version based on distance information
cannot be employed directly to construct the nearest neighbor
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Fig. 4. Comparing GELM with conventional ELM and regularized ELM on Yale database.
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graph here. As an alternate, we use the label information of the
training samples to construct the adjacent matrix instead of the
distance information.

3.2. The proposed GELM model

Suppose we have a data set with c classes and N samples in
total. The tth class has Nt samples, N1þN2þ⋯þNc ¼N. Similar to
the discriminative analysis, we define the adjacent matrix W as
follows:

Wij ¼
1=Nt if both hi and hj belong to the tth class
0 otherwise

�
ð10Þ

where hi ¼ g1ðxiÞ;…; gK ðxiÞ
� �T and hj ¼ g1ðxjÞ;…; gK ðxjÞ

� �T are hid-
den layer representations for two input samples xi and xj,
respectively. Suppose a diagonal matrix D is defined, in which
each of the entries is the column (or row, since W is symmetric)
sums of W, Dii ¼∑jWij. We can compute the graph Laplacian
L¼D�W [30].

Let yi and yj be two vectors for hi and hj being mapped by
output weight matrix β, respectively. Based on the idea that yi and
yj should be similar to each other when hi and hj are from the
same class, we need to minimize the following objective function:

min∑i;j‖yi�yj‖22Wij ¼ TrðYLYT Þ; ð11Þ
where Y ¼ βTH in Extreme Learning Machine setting.

By incorporating the graph regularization term into conven-
tional ELM model, we can formulate the objective function of
graph regularized Extreme Learning Machine as follows:

min
β

‖βTH�T‖22þλ1TrðβTHLHTβÞþλ2‖β‖22; ð12Þ

where TrðβTHLHTβÞ is the graph regularization term, ‖β‖2 is the
ℓ2-norm regularization term, and λ1 and λ2 are regularization
parameters to balance the impact of these two terms.

Set F9‖βTH�T‖22þλ1TrðβTHLHTβÞþλ2‖β‖22 and we cab obtain
β by setting the differentiate of the objective function F with
respect to β as zero as follows:

∂F
∂β

¼ ∂
∂β

Tr½ðβTH�TÞT ðβTH�TÞ�þλ1TrðβTHLHTβÞþλ2‖β‖22

¼ ∂
∂β

TrðHTββTH�HTβT�TTβTHþTTTÞþTrðβTHLHTβÞþλ2‖β‖22

¼ ∂
∂β

TrðHTββTH�2HTβTÞþTrðβTHLHTβÞþλ2‖β‖22

¼ ð2HHTβ�2HTT Þþ2λ1HLHTβþ2λ2β90: ð13Þ
As a result, we have

β¼ ðHHT þλ1HLHT þλ2IÞ�1HTT : ð14Þ
The algorithm description of our proposed graph regularized

Extreme Learning Machine is summarized in Algorithm 2.
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Fig. 5. Comparing GELM with conventional ELM and regularized ELM on Extended Yale B database.
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Algorithm 2. Graph Regularized Extreme Learning Machine.

Input: training set N ¼ fðxi; tiÞjxiARd; tiARm; i¼ 1;2;…;Ng,
activation function g, number of hidden nodes K and
regularization parameter λ1 and λ2;

Output: Output Weight matrix β;
Randomly assign input weights wj and biases bj; j¼ 1;…;K;
Calculate the hidden layer output matrix H;
Calculate the Laplacian matrix L;
Calculate the output weight matrix β according to Eq. (14).

4. Experimental studies

In this section, we evaluate the performance of our proposed
graph regularized ELM model for face recognition. For all the
experiments below, the activation function of the hidden layer is
the ‘sigmoid’ function. The face recognition task is handled as a
multi-class classification problem. We experiment GELM on face
recognition from two aspects: (1) comparing the proposed ELM
model with the conventional ELM and regularized ELM; (2) compar-
ing the proposed GELM model with the state-of-the-art classification
algorithms for face recognition. For reproducing the experimental
results described in this work, the source code will be available from
http://bcmi.sjtu.edu.cn/ pengyong/papers/GELM.zip.

4.1. Experiment 1: Comparison with ELMs

Four publicly available face databases, ORL, Yale, extended Yale
B and CMU PIE face databases, are used in this paper. The
properties of these four data sets are briefly described below.

� ORL Database.1 There are 40 subjects and each subject has
10 different face images in ORL database. For some subjects, the
images were taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial
details (glasses/no glasses). All the images were taken against a
dark homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement).

� Yale Database.2 It contains 165 gray scale images in GIF format of
15 individuals. There are 11 images per subject, one per different
facial expression or configuration: center-light, w/glasses, happy,
left-light, w/no glasses, normal, right-light, sad, sleepy, surprised,
and wink.

� Extended Yale Database. It includes the Yale face database B [31]
and the extended Yale face database [32]. The Yale face database
B contains 5760 single light source images of 10 subjects each
seen under 576 viewing conditions (9 poses�64 illumination
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Fig. 6. Comparing GELM with conventional ELM and regularized ELM on CMU PIE database.

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
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conditions). For every subject in a particular pose, an image with
ambient (background) illumination was also captured. The
extended Yale face database B contains 16,128 images of

28 human subjects under nine poses and 64 illumination
conditions. The data format of this database is the same as the
Yale face database B. For simplicity, a subset called Extended Yale
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face database B was collected from these two databases, which
contains 2414 face images of 38 subjects.

� CMU PIE Database. It contains 41,368 face images of 68 subjects,
each subject under 13 different poses, 43 different illumination
conditions and with 4 different expressions. We choose the five
near frontal poses (C05, C07, C09, C27, C29) and use all 11,544
images under different illuminations and expressions where
each person has 170 images except for a few bad images.

Fig. 2 shows some samples from these four face data sets, in
which two subjects are randomly chosen from each database and
each subject has 7 sample images. All the face images used in our
experiments are manually aligned, cropped and resized to 32�32,
with 256 gray levels per pixel. For the vector-based approaches,
each face image is represented as a 1024-dimensional vector. The
important statistics of these four databases are summarized in
Table 1.

In this experiment, we compare our proposed GELMmodel with
conventional ELM and ℓ2-norm regularized ELM. For ORL and Yale
databases, we randomly select l¼ f2;3;4;5g samples per subject for
training and the rest for testing. For Extended Yale B and CMU PIE
databases, we set l¼ f5;10;20;30g and l¼ f5;10;20g, respectively.
This partition procedure is repeated 50 times to give a better
estimation of recognition accuracy. Before classification, samples
are projected to N�1 (N is the number of training samples)
dimensional PCA subspace for these three models. The specific
parameters setting for these three different ELM models will be
described in Section 4.4.

Table 2
The face recognition results obtained by three different ELM models on ORL, Yale,
Extended Yale B and CMU PIE databases (mean7std-dev)%.

Algorithms ORL

2 Train 3 Train 4 Train 5 Train

ELM 78.3972.87 86.3672.25 90.3571.89 93.2271.48
RELM 81.3872.41 88.1171.92 92.0271.76 94.4171.56
GELM 84.1772.57 90.7471.91 94.2971.59 96.3471.13

Algorithms Yale

2 Train 3 Train 4 Train 5 Train

ELM 57.8774.51 68.8573.63 74.5574.64 78.5673.38
RELM 57.9174.23 68.9073.98 75.1274.53 79.9673.19
GELM 60.3174.18 71.3373.83 77.7974.31 82.3673.43

Algorithms Extended Yale B

5 Train 10 Train 20 Train 30 Train

ELM 76.4271.59 87.4771.08 93.1670.74 95.6270.73
RELM 76.4471.65 88.2371.14 95.4270.74 97.7970.51
GELM 79.0071.66 89.7570.98 95.9970.63 98.0970.49

Algorithms CMU PIE

5 Train 10 Train 20 Train –

ELM 69.1871.24 78.7870.73 88.3070.48 –

RELM 73.9271.20 83.8770.81 91.9870.48 –

GELM 77.7771.11 87.5070.64 93.4770.35 –
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Fig. 8. Statistical results obtained by three different ELM models on ORL, Yale, Extended Yale B and CMU PIE databases.
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Figs. 3–6 show the recognition results on the ORL, Yale, Extended
Yale B and CMU PIE databases, respectively. It can be easily found that
the graph regularized ELM achieves consistently better performance
on all the databases than conventional ELM and regularized ELM. The
main reason is that our proposed GELM simultaneously takes the
classification error term and discriminative graph regularization term
into consideration. Our experimental results demonstrate that the
discriminative graph regularization term imposed on the output
weights of ELM is effective for learning the consistency in the
databases. The learned output weights can obtain the ability of
mapping the samples in the same class to similar outputs. This
smoothness property has been proved to be useful by manifold
learning for discriminative tasks.

The conventional ELM is essentially a discriminative least square
regression like classifier. The only difference between ELM classifier
and least square regression classifier is that ELM nonlinearly maps the
data from the original space to hidden layer space. Therefore, both of
these two models may encounter the singular problemwhen calculat-
ing the inverse of normal equation. To deal with the singular problem,
an ℓ2-norm is usually incorporated. From our experimental results, we
can observe that the regularized ELM outperforms the standard ELM
because it is more stable in computing the inverse of normal equation
after adding an ℓ2-norm regularization.

From Figs. 3 to 6, we can observe that all ELM variants perform
more stable on the other databases than Yale database. Here, the
‘stability’ means the variations of accuracies over 50 different
splitings instead of the accuracy itself. For example, seen from
these Figures, for ORL data set (5 training samples per subject), all
ELM variants have accuracies mainly located in range 0.92–0.98;
while for Yale data set (5 training samples per subject), the range
is 0.74–0.88. For Extended Yale B and PIE data sets, the range

intervals are much smaller. This variation is caused by two aspects:
(1) the differences among these data sets, e.g., the nature of Yale is
more complicated than that of ORL and there are more variations
in Yale in terms of the facial expressions and the lighting
illuminations; therefore, selecting different face images of each
subject as training samples affect the accuracy a lot; (2) the
number of classes in Yale is smaller than the remaining three
data sets.

To support the second factor, we perform experiments on the
ORL and Extended Yale B data sets by selecting the first 15 subjects
and all the subject. The variations of ELM, RELM and GELM across
50 different splitings are shown in Fig. 7. We can find out that ELM
variants get more stable accuracies for different splitings of
training and test data when all the subjects are included.

Table 2 reports the mean accuracy and standard deviation over
these 50 different partitions for each data set with different number
of training samples per subject. It can be concluded that our GELM
achieves the best performance as well as smallest variance.

For better visualizing the average performance of these three
different ELM models, histograms including the accuracy as well as
standard deviation are shown in Fig. 8.

4.2. Computing complexity analysis

Obviously, ELM obtains β based on Eq. (6) which computes the
inverse of a K� K matrix HHT (Here K is the number of hidden
nodes). As in most cases, the number of hidden nodes K can be
much smaller than the number of training samples N: K{N, and
thus the computational cost reduces dramatically in comparison
with LS-SVM and PSVM which needs to compute the inverse of a
N � N matrix [7]. Similarly, the ℓ2-norm regularized ELM and our
proposed GELM have similar complexity as conventional ELM,
which is based on computing the inverse of K�K matrices
(HHT þ I=C and HHT þλ1HLHT þλ2I, respectively). Therefore, all of
three ELMs have OðK3Þ complexity.

For quantitatively evaluating the time consuming for GELM, we
compare GELM with conventional ELM and ℓ2-norm regularized
ELM on ORL and Yale data sets. The platform information is: Intel
(R) Core(TM) i7-3770 CPU@3.40 GHz 16.0 GB, Windows 7 systems,
Matlab 2013a. Fig. 9 shows the time elapsed of three ELM models
on ORL and Yale data sets, respectively. For Extended Yale B and
CMU PIE data sets, they have the similar results.
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Fig. 9. Comparison of time elapsed of three ELM models on ORL and Yale data sets, respectively.

Table 3
The face recognition results of different classifiers on the Extended Yale B database.

Algorithms #Dim¼84 (%) #Dim¼150 (%) #Dim¼300 (%)

NN 85.8 90.0 91.6
LRC 94.5 95.1 95.9
SVM 94.9 96.4 97.0
SRC 95.5 96.8 97.9
CRC_RLS 95.0 96.3 97.9
GELM 96.49 98.33 98.91

nThe accuracies of the first five algorithms are from [35].
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4.3. Experiment 2: Comparison with the state-of-the-art
classification algorithms

For further showing the efficiency of proposed graph regular-
ized ELM, we compare GELM with the state-of-the-art classifica-
tion methods used in face recognition, which are Nearest Neighbor
Classifier (NN), Linear Regression Classifier (LRC) [33], Support
Vector Machine (SVM), Sparse Representation based Classification
(SRC) [34], Collaborative Representation based Regularized Least
Square (CRC_RLS) [35]. The l1_ls [36] package is used to solve the
ℓ1-norm regularized minimization problem in SRC for its accuracy
and efficiency. The respective parameters are set identically to the
original papers. The number of hidden nodes are 10� numDim
for GELM and the other related parameters setting is shown in
Section 4.4.

For fair comparison, we use the same experimental paradigm
as [35] on Extended Yale B and AR face databases.

� Extended Yale B Database: The Extended Yale B with 2414
frontal face images of 38 subjects are cropped and normalized
to size 54�48 in this experiment. The database is randomly
split into two halves. One half, which contains 32 images for
each subject for training and the other half was used for testing.
Table 3 shows the recognition rates versus feature dimension
by NN, LRC, SVM, SRC, CRC_RLS and GELM. It can be seen that
GELM performs better than all the other methods in three
dimensions setting. When comparing with the very competi-
tive SRC and CRC_RLS methods, GELM still can obtain 1%–2%
accuracy improvement.

� AR Database: A subset (with only illumination and expression
changes) that contains 50 male subjects and 50 female subjects
was chosen from the AR data set [37] in this experiment. For
each subject, the seven images from Session 1 were used for
training, with the other seven images from Session 2 for testing.
The images were cropped to 60�43. Fig. 10 shows the sample
images from the AR database. The comparison of competing
methods is given in Table 4. Generally, GELM can obtain the best
accuracies in comparison with SRC and CRC_RLS.

These two experiments show that our proposed GELM can be
used as an effective classifier in face recognition applications.

4.4. Parameters sensitivity analysis

There are two hyper-parameters in regularized ELM: the number
of hidden nodes and the ℓ2-norm regularization parameter C. And

there are three hyper-parameters for our proposed GELM: the
number of hidden nodes, the parameters λ1 for graph regularization
and λ2 for ℓ2-norm regularization. According to [7], the performance
of ELM is not very sensitive to the number of hidden nodes (which is
an open problem in ELM research). Therefore, we empirically set this
parameter a near optimal value as 10 times the dimension of input
data in all our experiments. For example, the number of hidden
nodes will be 300 if the dimension of input data is 30.

We firstly give the parameter sensitivity analysis for regular-
ized ELM. Fixing the number of hidden nodes as 10�numDim, we
experiment regularized ELM on these ORL, Yale, Extended Yale B
and CMU PIE databases for analyzing the sensitivity to C. Fig. 11
shows the experimental results of regularized ELM to parameter
C for each database with different number of training samples per
subject. The vertical line shown in cyan in each subfigure of Fig. 10
gives the value for RELM used in previous experiments. Experi-
mental results have shown that RELM performs well in both
accuracy and stability using the given value though there is some
randomness in ELM training (the input weights as well as the bias
of hidden layer are randomly generated).

Similarly, we experiment our proposed GELM on CMU PIE
database with different combinations of parameters λ1 and λ2
while fixing the number of hidden nodes as 10�numDim. Fig. 12
shows the experimental results of GELM with different number of
training samples per subject. As we can see, for each setting of training
and testing data, there is a large flat area near the optimal value on the
landscape. This means GELM is very stable with respect to the
combination of parameters λ1 and λ2. For example, GELM achieves
consistently good performance for λ1 ¼ f23;24;…;210g and
λ2 ¼ f2�4;2�3;…;20g with l¼5 and we can select parameter combi-
nation ðλ1; λ2Þ from these candidate values. This sensitivity analysis
means GELM encourages large λ1 values on PIE data set, which further
shows the importance of label consistency property reflected by the
discriminative graph regularization term.

4.5. Decision boundary of GELM

The discriminative graph regularization term enforces the
samples from the same class to have similar outputs. This
will make the learned output weight matrix β have good
clustering property. The similar techniques have been employed
in many literatures including the manifold regularized discri-
minative NMF [38], spectral regression linear discriminative
analysis [39] to make the same-class samples share similar
properties.

In this subsection we give the decision boundary analysis of
regularized ELM (RELM) and the discriminative graph regularized
ELM (GELM) on banana data set [40], which was used in [7]. We
randomly select 400 samples as training set (here we do not enforce
each class to have equal number of training samples) and the rest
4900 samples as test set. We empirically set the number of hidden
units as 1000 for both RELM and GELM. The parameter C in RELM is
searched from the range f2�25;2�24;…;224;225g. The parameters λ1
and λ2 are searched from the range f2�25;2�24;…;224;225g and
f2�10;2�9;…;29;210g, respectively. Fifty trials are conducted for
this problem, and we do not reshuffle the training and test data at
each trial of simulation. The average testing accuracy and corre-
sponding standard deviation for RELM and GELM are respectively
89:6270:15% and 89:7870:05% (using the sigmoid activation

Table 4
The face recognition results of different classifiers on the AR database.

Algorithms #Dim¼54 (%) #Dim¼120 (%) #Dim¼300 (%)

NN 68.0 70.1 71.3
LRC 71.0 75.4 76.0
SVM 69.4 74.5 75.4
SRC 83.3 89.5 93.3
CRC_RLS 80.5 90.0 93.7
GELM 84.41 90.27 93.85

nThe accuracies of the first five algorithms are from [35].

Fig. 10. The fourteen image samples from AR database.
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Fig. 12. Parameters sensitivity analysis of GELM on CMU PIE database.
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function). The corresponding decision boundaries obtained by
RELM and GELM using the best tuned parameters are shown in
Fig. 13(a) and (c). We can see that there exist some differences in

the upper-right and bottom-right areas. However, it is not clear
which is better than the other. Thus, we retrain RELM and GELM on
1000 randomly selected samples and the boundaries are shown in
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Fig. 13(b) and (d) respectively. We can find that Fig. 13(c) is more
similar to Fig. 13(b) and (d). Based on the idea that boundaries
trained on 1000 samples are more faithful to the ideal one than that
trained on 400 samples, we think the differences from Fig. 13(a)–
(c) is beneficial.

The process for tuning parameters is shown in Fig. 14. The
optimal C for RELM is 218 and the parameter combination of GELM
is ðλ1; λ2Þ ¼ ð217;2�8Þ. The boundaries above are obtained under
such parameter settings.

5. Conclusions

In this paper, we have proposed a discriminative graph reg-
ularized Extreme Learning Machine, termed as GELM, which takes
the consistency property of data into consideration. We indicated
that the widely used distance based consistency learning methods
are no longer applicable in ELM, because the distance information
among data points are not preserved after nonlinear mapping.
Following the idea that the output weights of ELM should generate
similar output for samples from the same class, we introduced a
discriminative graph regularization term which encourages label
consistency into ELM training. Our experimental results have
demonstrated that our proposed GELM model possesses excellent
performance in face recognition in comparison with conventional
ELM, regularized ELM and several state-of-the-art classification
methods.
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