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Abstract—Slow eye movement (SEM) regarded as a sign of
onset of sleep is very significant for detecting driver fatigue,
but its characteristics and detection algorithm have been rarely
involved in the study of driver fatigue detection. In this study,
some new features were extracted based on wavelet singularity
analysis and statistics to detect SEMs. Six subjects participated in
this simulated driving experiment, and for each subject, a more
than 2 hours electro-oculogram (EOG) session was recorded.
Each session was divided into SEM epochs and non-SEM epochs
according to the common judgments made by the two of three
experts by the visual recognition criteria of SEMs. Regarding
the problem of detecting SEMs as an imbalance classification
problem, and through the under-sampling and over-sampling
methods a 2s horizontal electro-oculogram (HEO) signal could
finally be recognized as the category of SEMs or non-SEMs with
the classifiers SVM, GELM, and KNN respectively. Results prove
that the proposed features was a little better than the wavelet
energy features, and through the combination of the wavelet
energy features and the new features based on wavelet singularity
analysis and statistics, the classification results were improved
obviously.

I. INTRODUCTION

Slow eye movement (SEM) has been proved to be a reliable
indicator of sleep onset, and was studied in a number of
various kinds of sleep related researches [1, 2, 5, 7]. Because
SEM appears during the wake-sleep transition, so it is very
significant to study SEM in a real driving condition to avoid
traffic accidents.

Blinks, saccades and fixation are the main ways of eye
movements in wakefulness of human. The relationship be-
tween EOG and driver fatigue has been studied long time ago.
However, little attention is being given to the characteristics
of SEM about fatigue driving, and the specific description of
SEM, such as what is the eye state (open or closed?) when it
occurs, is insufficiency. Our experiments found that SEM could
happen in the case of frequent continuous long blinks because
of feeling sleepy and most happened during the period with
eyes closed when people were in a state of severe drowsiness
and could not control the trend of drooping eyelids.

For overlong eye lid closures (more than 3 seconds), there
is no method to detect them. The conventional detection
method for EOG is only according to the waveform in vertical
electro-oculogram (VEO), but it can not distinguish it from an
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upward glance followed by a downward glance [8, 9]. And in
the condition of serious squint, the waveform caused by eyes
closing and the following waveform caused by eyes opening
in VEO are not obvious and very difficult to recognize. For
the video detection method, it can not distinguish the driver’s
sleepy state from brief eye closure due to other reasons [10].
When the driver is awake and close his/her eyes, the SEMs
will not appear, but when the driver is very sleepy and closes
eyes at this movement, the SEM will appear in HEO [11, 12].
However, at this movement, the waveform of SEM in the HEO
is very clear and easy to recognize. So detecting SEMs in HEO
is very significant for judging the driver’s current fatigue state.

To detect driver fatigue, algorithms for automatic recog-
nizing SEMs have been rarely reported to our best knowledge.
In sleep research field, there exist some methods, but these
methods were are not satisfactory. In 1999, a linear regression
method was used for the detection of SEM, and it was reported
that the cycle length of SEM was shorter at stage wake than
at sleep stages 1 and 2 [6]. In 2006, Elisa Magosso developed
a wavelet based method, which was under the assumption
that energy distribution was modified during SEM epochs
according to the observation of experimental data [3]. SEMs
could be detected through a discriminate function, which was
defined as the ratio of specific energy combinations at lower
frequencies with respect to both lower and higher frequency
components. In [5], it simply judged SEMs or non-SEMs by
the amplitude threshold and the mean velocity threshold in a
simulated driving task.

In essence, the previous work used the wavelet energy
features and statistics features to detect SEMs, but seldom
involved in the machine learning methods, in this study, new
features based on wavelet singularity analysis and statistics
such as entropy were proposed, and machine learning methods
are introduced. For the classification, Support vector machines
(SVMs) have been extensively used in widespread applications
and were proved to have good generalization ability. The
discriminative graph regularized Extreme Learning Machine
(GELM) also is used to improve the performance based on the
idea that similar samples should share similar properties and
were proved to achieve much performance gain over standard
ELM [13]. Therefore, by using these classifiers, our proposed
features and the existing wavelet energy features are evaluated
respectively. Experiments results found the performance of
the new proposed features was slightly better than wavelet
energy features. And through the combination of new features
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and wavelet energy features, the classification results can be
improved obviously. This paper is organized as follows: In Sec-
tion 2, the new features for recognizing SEMs are proposed,
which are based on wavelet singularity analysis and statistics.
And the overall processing procedure for classification using
SVM, GELM and KNN is presented. Section 3 introduces
the materials of the simulated driving experiments and gives
a detail description of the characteristics of SEMs. Section
4 presents the experiments results and discussion. Section 5
concludes this work.

II. COMPUTER ANALYSIS PROCEDURE

The horizontal electro-oculogram (HEO) signal is calcu-
lated as the difference between the two convectional channels
near the outer canthi of eyes. As can be seen in Fig. 1, one
HEO signal session is divided into pieces of window data of
length t (such as t=2 seconds) with a sliding step of length s, s
and t could be set by user. For each window data, new features
are defined and extracted based on wavelet transformation
and other statistical parameters. By training classifiers, each
window data will be classified as the category of SEMs or
non-SEMs.

Fig. 1. The chart of computer analysis procedure

The labels of SEMs epochs and non-SEM epochs in HEO
need to be marked manually. Eye movements were recognized
as SEMs by visual experts if they meet the following criteri-
a [3]: (1) slow sinusoidal excursion (0.2-0.6Hz) lasting more
than one second; (2) amplitude between 20 and 200uV; (3)
binocular synchrony with opposed-phase deflections in the two
channels; (4) onsets of the right and left eye movement occur
within 300ms of one another; (5) absence of artifacts; These
criteria are commonly adopted for visual recognition of slow
eye movements, which can be seen in Fig. 2 The rest HEO
epochs which did not meet these criteria were labeled as non-
SEMs. Then, the SEMs epochs and non-SEM epochs were
divided into many 2s window data to form the original data
samples.

A. New features

In this section, the features based on wavelet singularity
analysis and some new statistics features are proposed.

1) wavelet tranformation: The wavelet is a smooth and
quickly vanishing oscillating function with good localization
in both frequency and time [4]. A wavelet family ψa,b (t)
is the set of elementary functions generated by dilations and
translations of a unique admissible mother wavelet ψ(t):

ψa,b (t) =
1√
|a|
ψ

(
t− b
a

)
(1)
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Fig. 2. A SEM example: Hl: the electrode near the outer canthus of left eye;
Hr: the electrode near the outer canthus of right eye; HEO: The minus of Hl
and Hr.

where a, b ∈ R, a ̸=0, a, b are the scale and translation
parameters, respectively, and t is the time. If the parameters
(a, b) are continuous value, the transform is called continuous
wavelet transform. Otherwise, if the parameters are discrete
such as a = aj0, b = kb0a

j
0, that will be called the Discrete

Wavelet Transform (DWT) basis as follows:

ψj,k(t) = a
−j/2
0 ψ

(
a−jt− kb0

)
, j, k ∈ z (2)

If ψi,k constitute the orthogonal wavelet basis of L(R), for
a arbitrary signal sample f(t), the following equation exists:

fw(t) =
∑
j

∑
k

Cj(k)ψj,k(t) (3)

where Cj(k) = ⟨fw(t), ψj,k(t)⟩
2) Features based on wavelet singularity analysis: In dig-

ital signal processing, singularity detection of time series
has important meaning, because these singularities contain
the important information about the instantaneous change of
signal [14, 15, 17]. Wavelet transform has a strong ability
in detecting singularity and has been widely used. Because
the eye movement is mostly a momentary behavior, and when
saccades or blinks happen, the signal waveform will present
some mutation points. However, the waveforms of SEMs are
relatively smooth, without obvious mutation points. So, the
continuous wavelet transform method for singularity analysis
was chosen to identify SEMs in HEO.

ψ(t) =

(
2√
3
π−1/4

)(
1− t2

)
e−t

2/2 (4)

Mexican hat wavelet, as a commonly used wavelet base,
its function (Eq. (4)) is proportional to the second derivative
function of Gaussian probability density function, and has even
symmetry structure, as can be seen in Fig. 3. If this function
with even symmetry structure is used to do the convolution
with an abrupt change point with local even symmetry, the
convolution result will be local even symmetry. Otherwise, the
result will be local odd symmetry.

Actually, continuous wavelet transform of the signal with
Mexican hat mother wavelet is equal to making convolution
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Fig. 3. Mexican Hat Wavelet.
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Fig. 4. Continuous wavelet transform of eye saccade activities based on
Mexican hat mother wavelet.

between the signal and Mexican hat wavelet with the scaled
and translated variables. For Mexican hat mother wavelet func-
tion (Eq. (4)), if a is its scaled variable, and b is its translated
variable (like in Eq. (1)), as the change of the scale a, the
corresponding maximum and minimum in continuous wavelet
transform curve of original signal have a little difference.
Along with the increase of the scale a, the local maximum and
minimum points on the continuous wavelet transform curve
become farther from the starting and ending points of saccade
in HEO. So, according to the testing on training set, the scale
a was set to 8 for continuous wavelet transformation.

In Fig. 4, the black curve is the original signal containing
saccade activities and the red curve is the continuous wavelet
transformation of the original signal. The green stars in the red
curve represent the maximums and the blue stars represent
the minimums, and in the black curve the corresponding
green stars and blue stars represent the starting points of
saccade activities or the ending points of saccade activities.
In Fig. 4, for a saccade activity si, which begins at the point
startS and ends with the point endS, and in the red curve
if the corresponding maximum point of startS is above the
threshold and the the corresponding minimum point of endS is
below the minus threshold, this saccade activity si is selected
to form the whole saccade activities S=[s1, s2,...sn]. The
corresponding length sequence for the S is L=[l1,l2,..ln].

We first calculated the difference of each saccade si in
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Fig. 5. Continuous wavelet transform of slow eye movements (SEMs) based
on Mexican hat mother wavelet.

S, then calculated the absolute value of the maximum of this
difference as mi and the absolute value of the mean of this dif-
ference as ei, so the corresponding vector M=[m1,m2,...,mn]
and E=[e1,e2,...,en] are formed; The maximum in M was
defined as Mf , the mean of the E was defined as Ef and
Pf was defined as E ∗ LT ; And the variance Vf of the
corresponding continuous wavelet transformation of this HEO
is calculated. So, the features based on wavelet singularity
analysis are:

F1 = [Mf , Ef , Pf , Vf ] (5)

If there are no green stars and blue stars outside the range
[threshold,−threshold] like in Fig. 5, then the values of
corresponding features in Eq. (5) were all set to zero .

3) Features based on statistics: For each window data of 2s
HEO, the following statistical features were extracted: a) The
mean A1, the variance A2 and the entropy A3 of the amplitude
of signal. b) The mean D1, the variance D2 and the entropy D3

of the difference of signal. c) The absolute value of the differ-
ence between the maximum and the minimum of the amplitude
of signal, denoted by M3. Entropy is a thermodynamic quantity
describing the amount of disorder in the system. It is used
as a measure of the degree of order/disorder of signal, so it
can provide useful information about the underlying dynamical
process associated with the signal. In Fig. 6, the histogram of
the signal amplitude and the entropy is calculated according to
the amplitude probability distribution. The more uniform the
distribution of the amplitude, the greater its entropy value. So
the features based on statistics is:

F2 = [A1, A2, A3, D1, D2, D3,M3] (6)

The new features proposed in this study is defined as follows:

FDF = [F1, F2] (7)

4) Features based on wavelet energy : Magosso et.al. [3]
used the wavelet energy to detect SEMs in sleep related
research. These wavelet energy features also were used in
our study to evaluate their performance. When frequency
information is needed instead of the scales [14].

Fa =
Fc
δa

(8)
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Fig. 6. The histogram of amplitude and the entropy

where Fa is the pseudo-frequency corresponding to scale a
in Hz, a the scale, δ the sampling period, and Fc is the
center frequency or dominant frequency of a wavelet in Hz,
defined as the frequency with the highest amplitude in the
Fourier transform of the wavelet function. The Daubechies
order 4 wavelet with orthogonal basis is chosen because of
its similarity to SEM waveform [3]. Because the recorded
HEO signal has been filter below 40Hz, so Table. I presents
some frequency bands corresponding to different levels of
decomposition for Daubechies order 4 wavelet with a re-
sample frequency of 500 Hz. Since the family ψi,k is an

TABLE I. FREQUENCY CORRESPONDING TO DIFFERENT LEVELS OF
DECOMPOSITION.

Decomposed signal Frequency range(Hz)
P10 0-0.3488
D10 0.3488-0.6975
D9 0.6975-1.3951
D8 1.3951-5.5804
D7 5.5804-11.1607
D6 11.1607-22.3214
D5 22.3214-44.6429

orthogonal basis for L(R), the concept of energy is linked with
the usual notions derived from the Fourier theory. Then, the
wavelet coefficients are given by CDi(k) = ⟨fw(t), ψi,k(t)⟩.
The energy at each resolution level j =5,6, ... ,10 will be the
energy of the detail signal Di and the approximation signal
P10.

EDj =
∑
k

|CDj (k)|2, j = 5, 6, ...10

EP10 =
∑
k

|CP10(k)|2
(9)

Therefore, wavelet energy feature vector can be expressed as:

FWE = [EP10 , ED10 , ED9 , ..., ED5 ] (10)

B. Classifiers

1) Support vector machine: Support vector machine is a
classic and popular machine learning method for classification.
The problem of training SVM is usually to solve its dual
problem, and the decision function is:

sgn(wTϕ(x) + b) = sgn(
l∑
i=1

yiaiK(xi, x) + b) (11)

Here, LIBSVM package was used and radial basis function
(RBF) was selected. The range of the penalty factor C and
the parameter γ of RBF were set to [0,1024] and [0.1,2],
respectively. All of the points of (C,γ) were tried to find the
best training result.

2) Graph regularized extreme learning machine: Graph
regularized extreme Learning Machine (GELM) is based the
idea that similar samples should share similar properties and
through adding a graph regularization term on the objective of
conventional ELM to ensure the output of samples from the
same class should be similar [13]. The standard ELM with K
hidden nodes with activation function g(x) can be modeled as
following:

K∑
j=1

βjgj(xi) =

K∑
j=1

βjg(wj · xi + bj)

= ti, i = 1, · · · , N

(12)

where xi = (xi1, xi2, · · · , xid)T and ti = (ti1, ti2, · · ·, xim)T

form the training data L = {(xi, ti)|xi ∈ Rd, ti ∈ Rm}. The
above N equations can be written as a matrix formulation as
follows:

Hβ = T (13)

So the output weight of ELM can be determined by Eq. (14),
in which H† is the Moore-Penrose generalized inverse of H .

β∗ = argmin
β
||Hβ − T ||22 = H†T (14)

Suppose that yi and yj are the output vectors for hi
and hj mapped by output weight matrix β, hi =
(g1(xi), · · · , gK(xi))

T and hj = (g1(xj), · · · , gK(xj))
T . The

goal of GELM is to ensure that if two inputs xi, xj are from
the same class, their outputs should be similar to each other.
So we want to minimize the following objective function with
the adjacent W:

min
∑
i,j

||yi − yj ||22Wij = Tr(Y LY T ) (15)

where Y = Hβ, and adjacent W is defined as follows:

Wij =

{
1/Nt, if both hi and hj belong to the tth class
0, otherwise;

(16)
By incorporating Eq. (15) and another regularization term into
conventional ELM model, the objective function of GELM is:

min
β
||Hβ − T ||22 + λ1Tr(HβLβ

THT ) + λ2||β||22 (17)
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By setting the differentiate of above objective function with
respect to β as zero, we have

β = (HHT + λ1HLH
T + λ2I)

−1HT (18)

Eq. (18) makes the output weight matrix calculated directly.

III. MATERIAL

A. Experiment

1) Subjects: Six normal students (4 male and 2 female,
aged 22±3) were recruited from Shanghai Jiao Tong Univer-
sity. Because the appearing of SEM was known to commonly
occur in the beginning of sleep, and to ensure that the time
epochs of SEM in every experiment were many enough, the
students who had good regular sleeping habits were selected
and the starting time of every experiment was one hour before
their afternoon nap time about from 12:30 pm to 14:30 pm.

Fig. 7. Driving simulation environment

2) Procedure: The driving simulator used in the experi-
ment (Fig. 7), had a four-lane national highway with road sighs
and scenarios. Prior to the beginning of the experiment, the
subject was required to do a ‘warm-up and training’ session
lasting 10 min to be familiar with the vehicle controls. In
this simulated scene, subjects as drivers were required to keep
alertness all time as soon as possible and trying to suppress
his/her sleepiness to avoid any traffic accidents. Each driving
simulator experiment lasted for more than two hours.

3) Data recording: EOG were recorded by the NeuroScan
system at a sampling rate 1000Hz, and a bandpass filtering
between 0 and 40 Hz was done to remove irrelevant noise
signals. The electrodes placement was the same as the con-
ventional ones in EOG experiments analysis [3]. A camera
was set to monitor the subject’s face to clearly recognize the
opening or closing state of eyes. The subject’s face image
from the camera and the real-time displaying of EOG signal in
SCAN software were displayed at the same computer screen
at the same time. And through the computer screen recording
software, both together were recorded into the same video file.
So with this video file, we could determine the eye state when
SEM occurred. Because the waveform of VOR (Vestibulo-
ocular reflex) is very similar to the SEM, so to avoid the
error identification of SEM, subjects were instructed to keep
their head motionless on the seat during the driving simulator
experiment.

B. SEMs characteristics

SEMs are considered as reliable signs that sleep onset peri-
od has been entered, usually appear during the transition from
wakefulness to sleep [2, 16]. According to our experiments,
the following characteristics were verified:

1) SEMs most occur with eyes closed: Through looking
back at the recorded video files, in which both the eye state
(open or closed) and the EOG signal could be observed at
the same moment, the conclusion of this check was that
SEMs almost completely occurred when eyes closed and few
occurred during the period of continuous frequent overlong
blinks. Marzano et.al. mentioned that ‘slow ocular activity
(SEM) could be a valid indicator of alertness only when eyes
are closed and people are already falling asleep’ [16]. Even
though SEM happened with eyes closed, but it is still useful
in driving fatigue detection.

Fig. 8 gives an example of long eyes closures with SEM
appearing when the driver is very sleepy, while when the
driver is awake but closes eyes due to other reasons the SEM
will not appear. For overlong eyelid closures, there are no
good methods to detect it. The conventional detection method
is only according to the waveform in VEO, but it can not
distinguish from an upward glance followed by a downward
glance (Fig. 8) [8, 9]. And in the condition of serious squint,
the waveform caused by eyes closing and then the following
waveform caused by eyes opening in VEO were not obvious.
However, at this movement, the waveform of SEM in the HEO
was very clear and easy to recognize. So detecting SEMs in
HEO was very significant to detect driver’s fatigue and can
distinguish from the driver’s state with eyes closed but not
sleepy.
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close eyes

Fig. 8. SEMs during a overlong eyelid closure when sleepy

When the driver is awake with eyes opening, fast eye
movement and fixation are the main eye movements and there
also exist more complicated eye movements which are caused
by eye tracking the activities of objects.

2) Relatively loose experiment restrictions: Though the
subjects were required to restrain drowsiness as far as possible,
due to the simulated driving condition was much looser than
real driving condition, the long time dozes with eyes closed
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(most in the range of 4-10s, and few in 10-13s, and very
few in 13-20s) were permissible and conducive to investigate
the characteristics of EOG signals, because these long time
epochs with eye closed (when SEM occurred) usually were not
allowed to happen and would be big dangerous occurrences in
real-world driving.

IV. RESULTS

For bio-signal, individual variation usually exists, and the
skin impedance value and the different skull structure will
cause some signals’ amplitude differences in different subjects.
Therefore, training and testing were done within the individual
in this study.

In section III, we mentioned that the restriction of sim-
ulated driving experiments is relatively loose and allow the
subjects have dozes with some long times. But the whole time
length of SEMs was still very shorter than the whole time
length of non-SEMs, and the ratio between the two could be as
high as 300:1 (non-SEMs:SEMs) (Table II). This is a problem
of samples imbalance. To deal with imbalance problem, we use
the two main schemes [7]: 1) Under-sampling the large class
until it matches the size of the small class. 2) Over-sampling
the small class until it contains as many samples as the other
class.

TABLE II. THE RATIO BETWEEN THE SEMS AND NON-SEMS FOR SIX
SUBJECTS’ SESSIONS

Session SEMs(sec) non-SEMs(sec) Ratio
1 451.4 6771 15:1
2 23.6 7209 305:1
3 182.7 7124 39:1
4 30.9 7201 233:1
5 449.4 7190 16:1
6 213.2 7038 33:1

For the under-sampling method, all SEM epochs and
non-SEM epochs were divided into many 2s window data
samples with a sliding step (s=0.3s). And after that if the
number of SEMs with 2s time length was N , and the number
of non-SEMs was M , so the first N/2 SEMs were put into
training set. Because M was far larger than N , so the random
selected N /2 non-SEMs were also put into training set. Then
the rest N /2 SEMs and the random selected N /2 non-SEMs
from the rest after the previous selection were put into testing
set. Through this training and testing of 10 times, the mean
performance of features was obtained by three classifiers
respectively. To evaluate the performance of the features and
classifiers, the following indicators were used to measure it.

Agreement=(TP + TN )/total number of samples∗100%

Sensitivity=TP/(TP + FN)∗100%;

Selectivity=TP/(TP + FP )∗100%;

where, TN is the number of negative samples correctly
classified, FP is the number of negative samples incorrectly
classified as positive, FN is the number of positive samples

incorrectly classified as negative and TP is the number of
positive samples correctly classified. In the following tables,
WE represents wavelet energy features (FWE), DF new defined
features (FDF ) and BOTH means the combination of them.
From Table III, we can find the overall performance of our

TABLE III. THE AGREEMENT OF THREE CLASSIFIERS OVER SIX
SUBJECTS FOR THE UNDER-SAMPLING METHOD

Feature Classifier 1 2 3 4 5 6
SVM 80.2 80.1 87.8 81.1 85.9 86.5

WE GELM 79.8 78.9 87.6 79.2 85.5 84.7
KNN 74.9 69.1 83.6 70.0 78.7 82.9
SVM 88.2 79.5 90.7 80.4 91.9 90.6

DF GELM 87.8 81.4 89.5 81.3 91.5 89.9
KNN 78.5 66.7 78.5 68.6 82.2 77.5
SVM 90.6 89.9 92.2 90.8 92.6 91.2

BOTH GELM 91.9 90.0 91.8 90.9 92.6 90.8
KNN 79.0 81.2 80.3 81.4 85.2 80.2

new defined features is better than the only wavelet energy
features, and by combination of this two features, the agree-
ment value can be improved significantly. The next two tables
(Table IV and Table V) give the corresponding sensitivity and
the selectivity results of all subjects respectively. In general,
the sensitivity results are a little sensitive to the kind of features
and classifiers compared to the selectivity results.

TABLE IV. THE SENSITIVITY RESULTS FOR THE UNDER-SAMPLING
METHOD

Feature Classifer 1 2 3 4 5 6
SVM 76.2 82.3 91.4 83.3 86.5 90.9

WE GELM 74.4 82.9 90.1 83.9 88.2 90.8
KNN 61.5 52.1 77.3 57.1 72.2 78.6
SVM 89.5 78.5 93.9 75.5 92.7 92.8

DF GELM 89.8 78.8 95.3 76.1 92.7 93.6
KNN 67.2 50.1 69.5 58.5 73.1 72.4
SVM 91.3 80.2 96.8 82.8 92.3 97.0

BOTH GELM 91.8 82.6 96.7 84.5 92.5 97.1
KNN 71.9 60.2 71.6 62.2 78.23 70.9

TABLE V. THE SELECTIVITY RESULTS FOR THE UNDER-SAMPLING
METHOD

Feature Classifer 1 2 3 4 5 6
SVM 82.9 79.8 85.4 79.2 85.7 86.3

WE GELM 83.5 76.8 81.8 78.2 84.2 82.8
KNN 83.9 78.7 88.6 76.1 83.3 88.6
SVM 82.9 88.2 88.3 88.1 91.4 89.2

DF GELM 83.4 85.1 85.2 86.4 91.8 91.1
KNN 83.2 77.5 85.0 78.5 89.6 86.9
SVM 88.8 90.0 88.7 90.0 93.0 88.7

BOTH GELM 88.6 86.3 86.2 87.3 92.8 86.2
KNN 89.7 83.6 87.0 83.6 91.2 85.0

For the over-sampling method, the sliding step s was used
to over-sampling the class of SEMs until it contained as many
samples as the non-SEMs. The operation for this was that if
the ratio between the non-SEMs and SEMs was m:1, then the
time length of the sliding step was set to 2s/m, which was
the window time length divided by m. But the sliding step
was only for the SEMs epochs not for non-SEMs epoches.
Therefore, the number of SEMs was almost equal to the
number of non-SEMs, and half of them respectively were put
into training set and the rest of them into testing set. In the
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TABLE VI. THE AGREEMENT RESULTS FOR OVER-SAMPING METHOD

Feature Classifier 1 2 3 4 5 6
SVM 99.98 100 100 100 97.16 100

WE GELM 99.99 100 100 100 99.67 100
KNN 99.98 100 100 100 96.91 100
SVM 99.96 100 100 100 99.91 100

DF GELM 100 100 100 100 99.95 100
KNN 99.95 100 100 100 99.91 100
SVM 99.98 100 100 100 99.96 100

BOTH GELM 99.99 100 100 100 99.97 100
KNN 99.98 100 100 100 99.91 100

Table VI we can see, by over-sampling the SEMs epoches, the
agreements of all subjects could become very high, compared
to the under-sampling method. The reason for this results may
be, on the one hand, to reach this size of non-SEMs the number
of training samples was dramatically expanded , and on the
other hand, by the very tiny time length of sliding step (such
as 2s/305.5 = 0.0065s), more similar SEMs were generated
and thus easy to recognize. Another reason might be partly
that the database was simple and small.

However, for the VOR, which is SEM-like eye movement,
the algorithm still can not distinguish and the experiments
limited the generation of VOR in order to determine the eye
closed state when SEM occurred.

V. CONCLUSIONS

The occurrence of slow eye movement means that the
driver is about to enter the initial stage of sleep, so it is
extremely dangerous and in urgent need of detecting it. This
study discusses the characteristics of slow eye movement in
the driving simulation experiments and proposed new features
based on wavelet singularity analysis and statistics to improve
the detection effect of SEMs. Experiments results indicate
new defined features are a little better than the wavelet
energy, and the combination of wavelet energy features and
new defended features can obtain better classification results
than each single kind of features. In the real-world driving
environment, there are more complicated eye movements such
as VOR and smooth pursuit, which will bring difficulties for
detecting SEMs. Therefore, that will be further studied for
SEM recognition in our future work.
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