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a b s t r a c t

Recently, emotion classification from EEG data has attracted much attention with the rapid development
of dry electrode techniques, machine learning algorithms, and various real-world applications of brain–
computer interface for normal people. Until now, however, researchers had little understanding of the
details of relationship between different emotional states and various EEG features. To improve the
accuracy of EEG-based emotion classification and visualize the changes of emotional states with time,
this paper systematically compares three kinds of existing EEG features for emotion classification,
introduces an efficient feature smoothing method for removing the noise unrelated to emotion task, and
proposes a simple approach to tracking the trajectory of emotion changes with manifold learning.
To examine the effectiveness of these methods introduced in this paper, we design a movie induction
experiment that spontaneously leads subjects to real emotional states and collect an EEG data set of six
subjects. From experimental results on our EEG data set, we found that (a) power spectrum feature is
superior to other two kinds of features; (b) a linear dynamic system based feature smoothing method can
significantly improve emotion classification accuracy; and (c) the trajectory of emotion changes can be
visualized by reducing subject-independent features with manifold learning.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Emotion plays an important role in human–human commu-
nication and interaction. The ability to recognize the emotional
states of people surrounding us is an important part of natural
communication. Considering the explosion of machines in our
commonness, emotion interaction between humans and machines
has been one of the most important issues in advanced human–
machine interaction and brain–computer interface today [1].
To approach the affective human–machine interaction, one of
the most important prerequisites is to develop a reliable emotion
recognition system, which can guarantee acceptable recognition
accuracy, robustness against any artifacts, and adaptability to
practical applications.

Numerous studies on engineering approaches to automatic
emotion recognition have been performed in the past few decades.
They can be categorized into three main approaches. The first kind

of approaches focuses on the analysis of facial expressions or
speech [2–4]. These audio-visual based techniques allow noncon-
tact detection of emotion, so they do not give the subject any
discomfort. However, these techniques might be more prone to
deception, and the parameters easily vary in different situations.
The second kind of approaches focuses on periphery physiological
signals. Various studies show that peripheral physiological signals
changing in different emotional states can be observed on changes
of autonomic nervous system in the periphery, such as electro-
cardiogram (ECG), skin conductance (SC), respiration, and pulse
[5–7]. In comparison with audio-visual based methods, the
responses of peripheral physiological signals tend to provide more
detailed and complex information as an indicator for estimating
emotional states.

The third kind of approaches focuses on brain signals captured
from central nervous system such as electroencephalograph (EEG),
electrocorticography (ECoG), and functional magnetic resonance
imaging (fMRI). Among these brain signals, EEG signals have been
proven to provide informative characteristics in responses to the
emotional states [8–10]. Since Davidson et al. [11] suggested that
frontal brain electrical activity was associated with the experience
of positive and negative emotions, the studies of associations
between EEG asymmetry and emotions have been received much
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attention [12–14]. Besides the EEG asymmetry for the study of
emotion, event-related potentials indexing a relatively small
proportion of mean EEG activity were also been used to study
the association with EEG and emotion [15–17]. However, these
approaches still suffer from two problems. The first one is that the
existing approaches need to make an average of EEG features. This
makes them need longer time windows to recognize the emotion
state based on EEG signals. The other one is that only the relatively
small percentage of EEG activity that can be captured. These
limitations make the existing methods inappropriate or insuffi-
cient for assessing emotion states for real-world applications.

With the rapid development of dry electrode, digital signal
processing, machine learning, and various real-world applications
of brain–computer interface for normal people, more and more
researchers focused on EEG-based emotion recognition in recent
years, and various approaches have been developed. However,
there still exist some limitations on traditional EEG-based emotion
recognition framework. One of the major limitations is that almost
all existing approaches do not consider the characteristics of EEG
and emotion. As EEG is an unsteady voltage signal, the feature
extracted from EEG usually changes dramatically, whereas emo-
tion states change gradually. This leads to bigger differences
among EEG features, even with the same emotion state in adjacent
time. Moreover, existing studies can only predict the labels of
emotion samples, but could not reflect the trend of emotion
changes. To overcome these shortcomings, in this paper, we
introduce a feature smoothing method and an approach to track-
ing the trajectory of emotion changes. To validate the effectiveness
of the proposed methods, we compare three kinds of EEG
emotion-specific features, and evaluate the performance of classi-
fication of two emotion states from EEG data of six subjects.

The rest of this paper is structured as follows. In Section 2, we
give a brief overview of related work on emotion models, effect of
movie in emotion induction, and various methods for EEG-based
emotion classification. Section 3 gives the motivation and rationale
for our experimental setting of emotion induction. A systematic
description of feature extraction, feature smoothing, feature
dimensionality reduction, classification, and trajectory of emotion
changes is given in Section 4. In Section 5, we present experi-
mental results that we achieved, and conclusions and feature work
are presented at the end.

2. Related work

2.1. Models of emotions

As all people express their emotions differently, it is not an easy
task to judge and model human emotions. Researchers often use
two different methods to model emotions. One approach is to
organize emotion as a set of diverse discrete emotions. In this
model, there is a set of emotions which are more basic than others,
and these basic emotions can be seen as prototypes from which
other emotions are derived. The problem with this method is that
there is still little agreement among scientists about how many
and which emotions are basic until now. Different theorists
consider different emotions to be basic. For example, Weiner
thought only happiness and sadness to be basic [18], whereas
Kemper suggested fear, anger, depression and satisfaction to be
basic [19]. Another way is to use multiple dimensions or scales to
categorize emotions. The two dimensional model of emotion
is described by Davidson et al. [20]. According to this model,
emotions are specified by their position in the two-dimensional
space as shown in Fig. 1, which is spanned by two axes of valence
in horizontal axis and arousal in vertical axis. Valence represents
the quality of an emotion ranging from unpleasant to pleasant.

Arousal refers to the quantitative activation level ranging from
calm to excited. The different emotional labels can be plotted at
various positions on a 2D plane spanned by these two axes.
In addition to the 2D model, some researchers have subsumed
these associated action tendencies in a 3D emotion model, which
includes arousal, valence, and dominance. Here, dominance refers
to the degree to which the person feels unrestricted or in control
of a situation ranging from weak to strong [21].

2.2. Movie and emotion

Many different materials have been used to elicit emotions in
the laboratory such as facial expressions [22], slides [23], texts
[24], music [25], and movies [26]. Among these materials, movies
have the desirable properties of being readily standardized, invol-
ving no deception and being dynamic rather than static. The
properties of dynamic visual and audio stimuli make movies seem
to be one of the most effective ways to elicit emotions.

The development of using movies as emotions elicitors has
paralleled with wider maturation of emotion science. For much
of the past half-century, movies have been selected to elicit a
diffuse state of anxiety or stress [27]. Recently, there has been
increasing interest in studying more differentiated emotional
states. Researchers working within dimensional studies tried to
elicit specific emotional states, such as valence and intensity [28],
while researchers advocating a discrete emotion model tried to
elicit specific target emotions. Philippot [29] reported on a movie
set, which included two clips for each of the target emotional
states such as happiness, fear, disgust, anger, sadness, and neutral.
Hewig et al. [30] developed a set of 20 movie clips that could be
used to induce six emotional states, namely angry, disgust, fear,
sadness, amusement and neutral. Gross et al. [31] found a set of 16
movie clips that reliably elicit each of eight emotions, namely
amusement, anger, contentment, disgust, fear, neutral, sadness,
and surprise.

2.3. EEG and emotion

Since brain emotional system is a substrate for emotion related
processes, EEG can reveal important information on their func-
tioning. The studies of associations between EEG activity and
emotions have been received much attention [32–34]. A number
of these studies have focused on the question of asymmetrical
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Fig. 1. Two-dimensional emotion model.
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activation of the cerebral hemisphere. Davidson et al. [35] detected
that greater relative left frontal EEG activity is related to positive
related emotion, while greater relative right frontal EEG activity is
related to negative, withdrawal-related emotion. Likewise, in an
EEG study about brain asymmetries during reward and punish-
ment, Henriques et al. [36] found a pattern of greater relative right
frontal EEG activity in depressed adults. In an experiment
where emotions were induced with visual and auditory stimuli,
Baumgartner et al. [37] showed that EEG activity over the left
hemisphere increases in happy conditions compared to negative
emotional conditions. Besides the research of asymmetrical acti-
vation of the cerebral hemisphere, event-related potentials were
also been used to study the association with EEG and emotion.
Vanderploeg et al. [38] reported that the presentations of the
photos with emotional facial expressions elicited more negative
amplitudes during 230 7420 ms (with peak at about 340 ms)
after the stimulus onset than did neutrally rated stimuli. Wataru
et al. [39] reported that the visual presentations of the faces with
emotion (both fear and happiness) elicited a larger N270 over the
posterior temporal areas, covering a broad range of posterior
visual areas. Carretie et al. [40] found that P200, an attention-
related component, showed higher amplitudes and shorter laten-
cies in response to negative stimuli than in response to positive
stimuli.

Since EEG not only indicates emotional states, but also reflects
other cognitive activity of the brain. The choice of independent
variables to discriminate emotions from the range of EEG and
electrode locations is not very self-evident, thus recently research-
ers tried to use more complex methods to find the correlation
between the emotional changes and EEG signals. Chanel et al. [41]
proposed an emotion recognition system that uses EEG to classify
two emotional states. Their research achieved a classification
accuracy of 72% for naive Bayes and 70% for Fisher discriminant
analysis. Li et al. [42] used EEG signals to recognize emotion in

response to emotional pictures. Their study achieved a recognition
rate of 93.5% for two emotional states. Zhang et al. [43] reported
an average accuracy of 73.0% by using EEG features to categorize
subject's status into two emotional states. Murugappan et al. [44]
showed an emotion recognition approach using different set
of EEG channels with a maximum accuracy of 83.26% for five
emotional states. Petrantonakis et al. [45] demonstrated a user-
independent emotion recognition system. For six emotion cate-
gories, a recognition rate of 83.33% was achieved.

3. Materials

3.1. Stimulus material and presentation

To stimulate subject's emotions, we used a set of movie clips
that was mainly extracted from Oscar films as elicitors. As shown
in Table 1, the movie clips set includes six clips for each of two
target emotional states: positive and negative emotions. The
selection criteria for movie clips were as follows: (a) the length
of the scene should be relatively short; (b) the scene is to be
understood without explanation; and (c) the scene should elicit
single desired target emotion of subjects. To evaluate whether the
movie clips excite specified emotional states or not, we carried out
an investigation using questionnaires from twenty-six subjects
who did not take part in the experiment to verify the effectiveness
of these elicitors before the experiment.

3.2. Participants

Six right-handed health volunteers (three males and three
females), 18–25 years of age (mean¼22.1 and SD¼1.25), participated
in the study. All subjects had no personal history of neurological or

Table 1
Description of the movie clips.

Number Film title Target emotion Company Year

1 King Kong Negative Big Primate Pictures, etc. 2005
2 Titanic Negative Twentieth Century Fox, etc. 1997
3 Schindler's List Negative Universal Pictures, etc. 1993
4 Silent Hill Negative Silent Hill DCP Inc., etc. 2006
5 The Day After Tomorrow Negative Centropolis Entertainment, etc. 2004
6 The Silence of the Lambs Negative Orion Pictures Corporation, etc. 1991
7 The Sound of Music Positive Robert Wise Productions, etc. 1965
8 High School Musical Positive First Street Films, etc. 2006
9 Sister Act Positive Touchstone Pictures 1992
10 Nature Time Lapse I Positive Mockmoon 2009
11 Nature Time Lapse II Positive Mockmoon 2009
12 Nature Time Lapse III Positive Mockmoon 2009

Hint of start Movie clip Self-assessmen Rest

5 seconds 4 minutes 45 seconds 15 seconds

Session1 Session2 Session3 Session12

Fig. 2. The process of experiment.
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psychiatric illness and had normal or corrected-normal vision. All of
the subjects were informed the scope and design of the study.

3.3. Task

In order to get quality data, the subjects were instructed to
keep their eyes open and view each movie clip for its entire
duration in the experiment. The process of our experiment is
depicted in Fig. 2. Movie clips inducing different emotional states
were presented in a random order. Each movie clip was presented
for 3–5 min, preceded by 5 s of blank screen as the hint of start. At
the end of each clip, the subjects were asked to assign valence,
arousal and dominance ratings and rate the specific emotions they
had experienced during movie viewing. The rating procedure
lasted about 45 s. An inter-trial interval (15 s) of blank screen
lapsed between movie presentations for emotion recovery.

Valence, arousal and dominance ratings were obtained using
the self-assessment manikin (SAM) shown in Fig. 3 [46]. The given
self-reported emotional states were used to verify EEG-based
emotion classification. In this paper, we only chose the sessions
whose dominance ratings were equal to or larger than 3. The
reason was that if the dominance rating was smaller than 3, we
assumed that this session did not successfully arouse a certain
emotion of the subject. Furthermore, we only cared about two
kinds of emotional states, namely positive and negative emotions.
If the valence rating was smaller than 5, then this session belonged
to the class of negative emotion, else it belonged to the class of
positive emotion.

3.4. EEG recording

A 128-channel electrical signal imaging system (ESI-128, Neu-
roScan Labs), SCAN 4.2 software, and a modified 64-channel
QuickCap with embedded Ag/AgCl electrodes were used to record
EEG data. Each subject was fitted with a 62-channel electrode cap,
whose electrodes were arranged according to the extended inter-
national 10–20 system. The ground electrode was attached to the
center of the forehead, and the reference electrode was located
at the vertex of the head. The impedance was kept below 5 k Ω.

The EEG data were recorded with 16-bit quantization level at
the sampling rate of 1000 Hz. Electrooculogram (EOG) was also
recorded, and later used to identify blink artifacts from the
recorded EEG data.

4. Methods

The EEG data we got from the experiments were analyzed
through several procedures, including signal preprocessing, fea-
ture extraction, feature smoothing, feature dimensionality reduc-
tion, emotional state classification and trajectory of emotion
changes, as shown in Fig. 4.

4.1. Signal preprocessing

First, the EEG signals were down-sampled to a sampling rate of
200 Hz to reduce the burden of computation. Second, the time
waves of the EEG data were visually checked. The recordings
seriously contaminated by electromyogram (EMG) and electroo-
culogram were removed manually. Third, each channel of the EEG
data was divided into same-length epochs without overlapping
using time-windows. Finally, all features discussed below were
computed on each epoch of the EEG data.

Fig. 3. The self-assessment manikin.

EEG Feature
extraction

Feature
smoothing

Signal
preprocesing

Classification

Trajectory of 
 emotion changes

Feature 
dimensionality 

reduction

Fig. 4. The flowchart of emotional state classification from EEG data.
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4.2. Feature extraction

The main task of feature extraction is to derive the salient
features which can map the EEG data into consequent emotional
states. For a comparison study, we investigated three kinds of
emotion-specific features, namely power spectrum, wavelet and
nonlinear dynamical analysis.

4.2.1. Power spectrum feature
Power spectrum can be analyzed to characterize the perturba-

tions in the oscillatory dynamics of ongoing EEG [47,48]. First, each
epoch of the EEG data was processed with Hanning window.
Second, windowed epochs were extended by zero padding for a
fast Fourier transform (FFT). Finally, EEG power spectrums were log-
transformed after being extracted in different bands such as delta
rhythm (0.5–4 Hz), theta rhythm (4-8 Hz), alpha rhythm (8–13 Hz),
beta rhythm (13–30 Hz) and gamma rhythm (30–50 Hz). Besides
power spectrum of all electrodes, the power spectrum of differential
asymmetry was also chosen as EEG power spectrum features.
Throughout the whole brain, there were 27 asymmetry indices
derived from 27 symmetric electrode pairs, namely FP1–FP2, AF3–
AF4, F1–F2, F3–F4, F5–F6, F7–F8, FC1–FC2, FC3–FC4, FC5–FC6,
FT7–FT8, C1–C2, C3–C4, C5–C6, T7–T8, CP1–CP2, CP3–CP4, CP5–
CP6, TP7–TP8, P1–P2, P3–P4, P5–P6, P7–P8, PO3–PO4, PO5–PO6,
PO7–PO8, CB1–CB2, O1–O2. The power spectrum of differential
asymmetry was calculated by power spectrum subtraction (e.g.
power spectrum of C3 minus power spectrum of C4).

4.2.2. Wavelet feature
Wavelet feature is the typical time–frequency domain feature

that was used for EEG signal analysis [49]. In this study, the
Daubechies wavelet of order four was used to analyze the EEG
data. This wavelet function was chosen due to its near optimal
time–frequency location properties [50]. The wavelet transform
performs a time–frequency decomposition of the signal, i.e. at each
resolution level and each time position. The wavelet function is
correlated with the shape of the waveform at that position. This
correlation, known as a wavelet coefficient, measures how much
of the wavelet at that resolution level and position is included in
the EEG waveform.

Table 2 presents that after a five octave wavelet decomposition,
the coefficients were obtained with a sampling frequency of 200
Hz. It can be seen that the components of these decompositions:
A5 decomposition is nearly within the delta range (0.5–4 Hz), D5
decomposition is nearly within the theta range (4–8 Hz), D4
decomposition is nearly within the alpha range (8–13 Hz), D3
decomposition is nearly within the beta range (13–30 Hz), and D2
decomposition is nearly within the gamma range (30–50 Hz).

Since the coefficients from each resolution level j correspond to
different frequency bands, the energy Ej for each frequency range
in each time window can be computed as the corresponding
squared coefficients. Total energy Etotal of the signal in each time
window was calculated as the sum of energies of all resolution

levels. Thereafter, the relative wavelet energy Pj ¼ Ej=Etotal was
computed as the ratio between the energy of each level. Then, the
wavelet entropy We can be defined as

We ¼ ∑
n

i ¼ 1
Pj ln Pj ð1Þ

The wavelet coefficient energy Ej and the wavelet entropy We were
chosen as the time–frequency domain features in this study.

4.2.3. Nonlinear dynamical feature
The importance of the biological time-series analysis, which

exhibits typically complex dynamics, has been recognized in
the area of non-linear analysis [51]. Several features of these
approaches have been proposed to detect the hidden important
dynamical properties of the physiological phenomenon. In this
paper, we studied the EEG signals using three different kinds of
nonlinear dynamical features, namely approximate entropy, hurst
exponent and fractal dimension.

Approximate entropy is a family of statistics and is claimed to
be a non-linear quantification of the regularity of a signal [52,53].
Approximate entropy takes into account the temporal order of
points in a time sequence and is therefore a preferred measure of
randomness or regularity. The first step in computing approximate
entropy of a time series xi, i¼ 1;…;n, is to construct the state
vectors in the embedding space:

yi ¼ fxi; xiþ1; xiþ2;…; xðiþm�1Þg;1r irn�mþ1 ð2Þ
where m is the embedding dimension. Second, we define

Cm
i ðrÞ ¼

1
n�mþ1

∑
n�mþ1

j ¼ 1
θðr�dðyi; yjÞÞ ð3Þ

where θðyÞ (θðyÞ ¼ 1 for y40, θðyÞ ¼ 0, otherwise) is the standard
heavyside function, r is the vector comparison distance, and
dðyi; yjÞ is a distance measure defined by

dðyi; yjÞ ¼ max
k ¼ 1;2;…;m

ðjyðiþk�1Þ �yðjþk�1ÞjÞ ð4Þ

Third, we define ϕmðrÞ as

ϕmðrÞ ¼ 1
n�mþ1

∑
n�mþ1

i ¼ 1
ln Cm

i ðrÞ ð5Þ

Finally, for fixed m, r, and n, approximate entropy Ae can be
expressed as

Aeðm; r;nÞ ¼ ϕmðrÞ�ϕmþ1ðrÞ ð6Þ
Hurst exponent is the measure of the smoothness of a fractal

time series based on the asymptotic behavior of the rescaled range
of process [54]. In time series analysis, hurst exponent is used by
Kannathal et al. for characterizing the nonstationary behavior of
the EEG episodes [55,56]. Assuming a time series xi; i¼ 1;…;n, the
mean value is defined as

m¼ 1
n

∑
n

i ¼ 1
xi ð7Þ

The deviation from the mean m for the first k data points is
defined as

Wt ¼ ∑
t

j ¼ 1
xj�tm; t ¼ 1;2;…;n ð8Þ

and then the difference between the maximum value and mini-
mum value of the deviation corresponding to n is acquired by

RðnÞ ¼maxð0;W1;…;WnÞ�minð0;W1;…;WnÞ ð9Þ
If S(n) denotes the standard deviation of the time series
xi; i¼ 1;…;n, the rescaled range RðnÞ=SðnÞ is the average over all
the partial time series of length n. The hurst exponent H can be

Table 2
Frequencies corresponding to different levels of
decomposition for Daubechies wavelet of order
four with a sampling frequency of 200 Hz.

Decomposed signal Frequency range (Hz)

D1 50–100
D2 25–50
D3 12.5–25
D4 6.25–12.5
D5 3.125–6.25
A5 0–3.125
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estimated by fitting to the data using the power law:

E
RðnÞ
SðnÞ

� �
¼ CnH ð10Þ

where E½RðnÞ=SðnÞ� is the expected value of RðnÞ=SðnÞ.
The term ‘fractal’ was first introduced by Mandelbrot [57]. The

concept of fractal dimension that refers to a non-integer or
fractional dimension originates from fractal geometry. This feature
has been used in the analysis of EEG to identify and distinguish
specific states of physiological function. Many algorithms are
available to determine the fractal dimension of the waveform. In
this work, we used the Katz algorithm [58]. We chose to use this
method because it was widespread in EEG literature [59]. The
fractal dimension Fd of a planar is defined as follows:

Fd ¼
lnðnÞ
lnðdÞ ð11Þ

where n is the total length of the EEG time series and d is the
Euclidean distance between the first point in the series and the
point that provides the furthest distance with respect to the first
point. The fractal dimension compares the actual number of units
required to reproduce a pattern of the same spatial extent. Fractal
dimension computed in this faction depends upon the measure-
ment units used. To resolve this problem, Katz proposed a normal-
ization as follows:

Fd ¼
lnðn=aÞ
lnðd=aÞ ¼

lnðkÞ
lnðkÞþ lnðd=nÞ ð12Þ

where a is the average number of steps in the series and k is n
divided by a.

4.3. Feature smoothing

Although emotional states usually change gradually, features
extracted directly from EEG data always have strong fluctuations
and contain some information unrelated to the emotion task.
Therefore, we should smooth the features to minimize the pre-
sence of artifacts in the EEG features. As emotional states are time-
dependent, the features extracted from EEG components are also
time-dependent. Thus, we could represent a state space model in
the form of linear dynamical system (LDS) to filter out the above
influences [60].

Let yt , t ¼ 1;…;n; refer to the observation feature sequence,
each of which is m dimension, yt ¼ ðyt1; yt2;…; ytmÞT (usually
mon), and xt represent the latent state feature sequence. The
LDS approach is described by

xtþ1 ¼ Axtþwt ; wt �N ð0;ΓÞ ð13Þ

ytþ1 ¼ Cxtþet ; et �N ð0;ΣÞ ð14Þ
where AARm�m is the transition probability matrix and CARm�m

is the emission probability matrix. The output yt is a linear
function of the state xt which evolves through first-order Markov
chain. Both state and output noise, wt and et , are zero-mean
normally distributed random variables with covariance matrices Γ
and Σ, respectively.

The initial latent state is assumed to be distributed as
y1 �N ðμ0;V0Þ. Only the output of the system is observed, the
state and all the noise variables are hidden. Given the observation
sequence, the parameters {A;C;Γ;Σ; μ0;V0} can be learned by the
expectation maximization (EM) method. The procedure iterates
an E-step – Kalman smoothing recursion that fixes the current
parameters and computes posterior probabilities over the hidden
states given the observations, and an M-step that maximizes the
expected log likelihood of the parameters using the posterior
distribution computed in E-step. The comparison of features

before and after smoothing by using the LDS approach is shown
in Fig. 5. It can be seen that there is a general trend in feature
before smoothing by using the LDS approach, but disordered in
details. On the contrary, the details are smoothed after using the
LDS approach, and the noise irrelevant to emotion is mostly
removed.

4.4. Feature dimensionality reduction

Feature dimensionality reduction is an important step in EEG
data analysis. It can not only improve learning efficiency, but also
improve prediction performance. In this paper, feature dimension-
ality reduction was carried out with three well known dimension-
ality reduction methods, namely principal component analysis
(PCA), linear discriminant analysis (LDA), and correlation-based
feature selector (CFS).

4.4.1. Principal component analysis
Principal component analysis is a well-established method for

feature extraction and dimensionality reduction. The main idea of
principal component analysis is to represent data in a space that
best expresses the variation in a sum-squared error sense. Given
an m dimension EEG feature set X, where X is an m� n matrix and
n denotes the number of samples. First, the m dimensional mean
vector μ and m�m covariance matrix Σ are computed for the full
feature set. Second, the eigenvectors and eigenvalues are com-
puted, and sorted according to decreasing eigenvalue. Call these
eigenvectors e1 with eigenvalue λ1, e2 with eigenvalue λ2, and so
on. Subsequently, the largest k eigenvectors are chosen, and an
m� k matrix A whose columns consist of the k eigenvectors is
generated. Finally, the given data can be preprocessed as follows:

xpca ¼ AT ðx�μÞ ð15Þ
It can be shown that this representation minimizes a squared error
criterion [61].

4.4.2. Linear discriminant analysis
Linear discriminant analysis is a traditional solution to the

linear dimension reduction problem, which is based on the
maximization of the between-class scatter over the within-class
scatter. Give an EEG feature set fxi; yig, where xiARm is the feature
sample and yiAf�1;1g is the class label. A direction αARd in
the predictor space in which the classes are separated as much
as possible is searched. This problem can be expressed as the
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Fig. 5. Comparison of the power spectrum features of frequency domain before
and after using the LDS method for feature smoothing. The features were obtained
from channel P8 at alpha band in session 8 of subject 1.
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following criterion:

max
α

αTBα
αTWα

ð16Þ

where B is the between-class covariance matrix and W is the
within-class covariance matrix. Give any direction αARm, if the
data is projected onto α, then the numerator of Eq. (16) is the
marginal between-class variance and the denominator, the mar-
ginal within-class variance. The optimal solution of this problem is
the first eigenvector of W�1B. Given the first ðm�1Þ discriminant
directions, the m-th direction can be obtained by

arg max
α

αTBα
αTWα

subject to αTWαj 8 jom: ð17Þ

The optimal discriminant directions are the extracted features,
which are the most important features for classification.

4.4.3. Correlation-based feature selector
Correlation-based feature selector is a kind of supervised

dimensionality reduction method. Each feature gets a score pre-
senting its correlation with emotion by this method. The most
emotion-relevant features can be found by ranking these scores.

Let EEG feature set be denoted by m� n matrix X, where m is
the dimension of features and n is the number of samples, then
X¼ fx1; x2;…; xng. Let rTi denote the random variable correspond-
ing to the i-th component of x, i¼ 1;2;…;m, and y denote the label
set of samples. The emotion-relevant score of each feature can be
computed as follows:

Rriy ¼
Criyffiffiffiffiffiffiffiffiffiffiffi
Cri Cy

p : ð18Þ

where C represents covariance and R denotes the correlation
coefficient. The absolute value of correlation coefficient can be
regarded as emotion-relevant score. Ranking these scores in a
descending order, the top-ranked features are considered as the
most emotion-relevant features.

4.5. Classification

To assess the association between EEG and emotional states,
the classification into the predefined emotional classes was
achieved by using support vector machine (SVM) classifiers [62].
Basically, SVM is to construct a separating hyperplane between
two classes, the positive and negative examples, in such a way that
the distance from each of the two classes to the hyperplane is
maximized. Consider the problem of separating the set of training
vectors belonging to two separate classes G¼ fðxi; yiÞ; i¼ 1;2;…;ng,
here xiARm is the i-th input vector and yiAf�1;1g is the binary
target. The equation of the hyperplane separating two different
classes is given by the following equation:

yðxÞ ¼wTφðxÞþb¼ 0 ð19Þ
where φ : Rm-Rr is the feature map mapping the input space to a
high feature space, in which the data points become linearly
separable. All operations in learning and testing modes are done
in SVM using the so-called kernel functions. The kernel is defined
as kðxi; xjÞ ¼φT ðxiÞ � φðxjÞ.

The problem of learning SVM, formulated as the task of
separating learning vector xi into two classes of the destination
values either yi¼1 or yi ¼ �1 with maximal separation margin, is
reduced to the dual maximization problem of the function Q ðαÞ
defined as follows:

Q ðαÞ ¼ ∑
n

i ¼ 1
αi�

1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
αiαjyiyjkðxi; xjÞ ð20Þ

with the constraints

∑
n

i ¼ 1
αiyi ¼ 0 0rαirC ð21Þ

where C is a user-defined constant. It is a regulation parameter and
determines the balance between the complexity of the network,
characterized by the weight vectorw and the error of classification
of data.

4.6. Trajectory of emotion changes

In the above analysis, we mainly focus on the emotion
classification, but emotion usually changes step by step. Thus, we
use manifold learning to find the trajectory of emotion changes.

In this paper, the Isomap method is chosen for its global charac-
teristics. Isomap seeks to preserve the intrinsic geometry of the
nonlinear data by utilizing the geodesic manifold distances between
the data points [63]. The algorithm can be divided into three steps.
(a) Construction of global neighborhood graph. For each point, find its
k nearest neighbors using the predefined conditions. Construct a
neighborhood graph by connecting each point to its k neighbors, with
the distance of the points in the original spaces as the edge weights.
(b) Computation of shortest paths. Estimate the shortest paths di;j
between each pair of points i, j as geodesic distance. The shortest
paths were computed by Dijkstra method with the global neighbor-
hood graph. (c) Construction of embedding. After calculation of the
shortest paths, the data can be represented with a matrix D¼ fd2i;jg,
expressing the geodesic distance of each pair of points on the
manifold. Applying classical multidimensional scaling (MDS) to this
matrix constructs an embedding of the data that best preserves the
manifold's estimated intrinsic geometry. Assume that

K¼ �1
2 ðI�eeT ÞDðI�eeT Þ; ð22Þ

with e¼ 1=nð1;1;…;1ÞT . The largest k eigenvalues of K are
λ1; λ2;…; λk and the respective eigenvectors are u1;u2;…;uk. Assume
U¼ ðu1;u2;…;ukÞ, then the embedding result is

F¼ diagð
ffiffiffiffiffi
λ1

p
;

ffiffiffiffiffi
λ2

p
;…;

ffiffiffiffiffi
λk

p
ÞUT : ð23Þ

The selected features we got from feature dimensionality
reduction were input to the Isomap model and output with one
dimension. This one dimension curve is the trajectory of emotion
changes.

5. Experimental results and discussions

In order to perform a more reliable classification process, we
constructed a training set and a test set for each subject. The
training set was formed by the former four sessions of EEG data for
each emotional state. The test set was formed by the last two
sessions of EEG data for each emotional state. The number of
feature dimension equals the product of the number of features
obtained for each trial of the EEG signal and the number of scalp
electrodes.

5.1. Time windows

To find the most suitable time window length, we compared
the classification performance using power spectrum across all
EEG frequency bands with four different length time windows of
0.5 s, 1 s, 1.5 s, and 2 s. The linear SVM classifier was applied to
these four kinds of features. The classification results are presented
in Table 3. It can be seen that the average classification accuracy of
1 s EEG epoches is better than those of others. Hence, 1 s was
chosen as the time window length in the remaining paper. In this

X.-W. Wang et al. / Neurocomputing 129 (2014) 94–106100



case, the numbers of training data and test data are 1800 and 700,
respectively.

5.2. Effect of feature smoothing

To validate the effect of feature smoothing, we compared the
classification results of power spectrum across different EEG
frequency bands with or without LDS smoothing. The linear SVM
was chosen as classifier. Table 4 shows the classification perfor-
mance obtained by SVM classifiers. It can be seen that almost all
the classification accuracies are improved, which are significant
improvement compared to the case when LDS smoothing is not
employed. This result indicates that using the feature smoothing
technique can effectively improve classification performance.

5.3. Choosing SVM kernels

One of our motivation is to search the best performance of
classification of emotional states. In this study, the SVM classifier
was used for classification. To find the best kernel of SVM, the
performance of three different kinds of kernels, namely linear,
polynomial and RBF, was compared in our experiments. The
parameters of SVM were determined by 10-fold cross validation
method. For linear SVM, we estimated the classification accuracy
using different cost parameters C: CAf2�4;2�3;…;29;210g. For
polynomial SVM, we studied the validation accuracy using differ-
ent combinations of the cost parameter C and polynomial degree
of d: CAf2�4;2�3;…;29;210g and dAf1;2;…;14;15g. For RBF
SVM, we used the different combinations of the cost parameter

C and kernel parameter γ: CAf2�4;2�3;…;29;210g and γAf2�10;

2�9;…;23;24g. The code of SVMs was from LibSVM [64]. The
experiments were performed on a computer with 8 GB RAM and
2.83 GHz CPU. Table 5 presents the classification performance of
power spectrum across all frequency bands using SVM with linear,
polynomial and RBF kernels.

From Table 5, several important observations can be drawn.
Firstly, it can be observed that the classification performance of
power spectrum across all frequency bands is better than those
based on individual frequency bands under the same conditions.
Secondly, it is found that the classification performance of alpha,
beta and gamma bands is obviously better than those of delta
and theta bands. This result partly reflects that high frequency
bands play a more important role in emotion activities than low
frequency bands [65,66]. Finally, the average classification perfor-
mance of SVM with linear kernel outperforms SVM with poly-
nomial kernel and RBF kernel. The average classification accuracy
of power spectrum across all frequency bands using SVM with
linear kernel is 87.53%. This definitely proves the robustness of the
linear SVM over the polynomial and RBF SVM for these data sets,
so that SVM with linear kernel was chosen as the basic classifier in
the remaining paper.

Table 4
Classification accuracies of power spectrum across all frequency bands with or
without LDS smoothing.

Subject Feature smoothing Delta Theta Alpha Beta Gamma All

1 Without LDS 59.43 61.31 83.82 79.28 88.55 91.62
With LDS 68.23 66.21 92.38 82.83 100 99.63

2 Without LDS 47.88 77.69 84.83 87.92 68.63 77.87
With LDS 57.58 87.09 86.30 72.86 73.65 81.95

3 Without LDS 82.37 62.52 74.92 78.26 82.57 84.89
With LDS 91.30 77.74 84.06 85.82 91.20 87.16

4 Without LDS 41.73 63.82 61.29 89.01 79.42 87.14
With LDS 38.80 74.28 65.63 100 88.47 91.13

5 Without LDS 43.47 67.79 81.71 64.20 60.31 68.55
With LDS 45.81 74.19 90.48 77.42 62.26 82.90

6 Without LDS 66.21 77.32 86.82 76.37 78.22 87.23
With LDS 71.24 84.65 94.35 82.71 89.82 82.39

Average Without LDS 56.85 68.40 78.89 79.17 76.28 82.88
With LDS 62.16 77.36 85.53 83.61 84.23 87.53

Here, ‘All’ means the combination of five EEG power spectrum features.

Table 5
Classification accuracies of power spectrum across different frequency bands using
SVMs with different kernels.

Subject Kernel
function

Delta Theta Alpha Beta Gamma All

1 Linear 68.23 66.21 92.38 82.83 100 99.63
Poly 66.30 73.65 78.51 68.60 97.70 99.36
RBF 69.51 75.67 80.72 84.02 100 91.55

2 Linear 57.58 87.09 86.30 72.86 73.65 81.95
Poly 63.37 77.34 70.22 92.09 86.17 84.59
RBF 70.09 90.91 87.62 76.68 73.12 74.70

3 Linear 91.30 77.74 84.06 85.82 91.20 87.16
Poly 86.44 83.13 97.21 92.13 89.75 75.47
RBF 89.86 80.12 83.33 85.71 83.23 74.02

4 Linear 38.80 74.28 65.63 100 88.47 91.13
Poly 52.55 68.96 21.06 73.84 82.71 76.05
RBF 47.45 49.45 49.45 74.50 73.61 49.67

5 Linear 45.81 74.19 90.48 77.42 62.26 82.90
Poly 68.06 78.06 87.10 67.26 74.03 68.39
RBF 50.32 78.23 90.97 58.87 68.87 67.26

6 Linear 71.24 84.65 94.35 82.71 89.82 82.39
Poly 70.76 72.54 76.09 86.11 92.41 88.69
RBF 66.24 85.30 90.95 79.32 79.00 77.38

Average Linear 62.16 77.36 85.53 83.61 84.23 87.53
Poly 67.91 75.61 71.70 80.01 87.13 82.09
RBF 65.58 76.61 80.51 76.52 79.64 72.43

Here, ‘All’ means the combination of five EEG power spectrum features.

Table 6
Classification accuracies of power spectrum of differential asymmetry features.

Subject Delta Theta Alpha Beta Gamma All

1 71.62 57.76 67.13 75.85 87.42 86.41
2 52.04 47.83 65.35 96.44 84.85 93.67
3 65.42 74.22 53.44 63.73 66.21 66.62
4 41.02 40.80 72.06 100.00 99.33 100.00
5 54.19 48.06 64.68 34.52 66.77 63.71
6 57.51 71.41 79.16 87.88 93.21 93.86

Average 50.30 53.34 63.64 74.74 81.30 82.38

Here, ‘All’ means the combination of five EEG frequency domain features.

Table 3
Classification accuracies of power spectrum across all EEG frequency bands with
different length time windows.

Subject 0.5 s (%) 1 s (%) 1.5 s (%) 2 s (%)

1 96.28 99.63 91.72 85.64
2 80.99 81.95 70.55 77.04
3 91.26 87.16 77.95 70.45
4 89.38 91.13 100 83.11
5 82.05 82.90 83.78 80.26
6 84.10 82.39 78.64 77.60

Average 87.34 87.53 83.77 79.07
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5.4. Comparison of power spectrum with other features

To find the best emotion-specific features of EEG, other kinds
of features were also applied in this study. Table 6 shows the
classification performance of the power spectrum of differential
asymmetry features. It can be found that the classification perfor-
mance of the combination of all power spectrum of differential
asymmetry features is better than those based on individual
frequency band features under the same conditions. The average
accuracy with the combination of all power spectrum of differ-
ential asymmetry features is 82.38% using SVM. Table 7 shows the
classification performance of the wavelet features. As we can see,
the average classification performance of wavelet entropy across
all frequency bands is better than other wavelet features.
A maximum classification accuracy of 78.41% is obtained using
the wavelet entropy across all frequency bands. Table 8 shows the
classification performance using nonlinear dynamical features.
From Table 8, it can be found that the hurst exponent feature
gives a maximum average classification accuracy of 71.38% over
other nonlinear dynamical features.

From the above analysis, though the classification performance
exists some individual differences among subjects, the average
classification performance confirms that power spectrum across
all frequency bands is the most robust feature among all of the
three kinds of features discussed above.

5.5. Comparison of feature dimensionality reduction methods

One of the purposes of our study is to find the relationship
between EEG data and emotional states. Moreover, we want to
find the general subject-independent features related to emotion.
Thus, feature dimensionality reduction was important in our
study. Because the best performance was obtained using the
power spectrum across all frequencies, three kinds of dimension-
ality reduction methods, namely PCA, LDA and CFS, were applied
to this type of feature for further data analysis.

Fig. 6 illustrates the classification accuracy of using the PCA
approach. The horizontal axis denotes the number of principle
components used for classification, and the vertical axis denotes
the classification accuracy. It is shown that when the feature
dimension reaches a certain number, the classification accuracy
becomes almost stable. Obviously this number is much smaller
than the dimension of the original features.

The classification performance of the LDA method is shown in
Fig. 7. For most subjects, when the feature dimension reaches a
certain number, the classification accuracy becomes almost stable.
This number is much smaller than the dimension of the original
features. However, there exist greater individual differences in
performance among the six subjects.

The classification performance of the CFS approach is shown in
Fig. 8. When the dimension of features reaches about 100, the

Table 7
Classification accuracies of wavelet features across different frequency bands using
linear SVM.

Subject A5 D5 D4 D3 D2 All Wavelet entropy

1 64.46 49.12 52.61 72.36 71.90 71.81 72.64
2 33.86 87.61 87.87 70.48 63.21 67.85 64.30
3 83.54 32.61 76.71 81.06 66.87 82.37 80.12
4 41.02 57.43 50.55 80.48 83.81 76.50 97.11
5 57.10 60.32 56.61 65.65 49.03 65.00 65.81
6 33.60 95.15 77.22 91.60 88.85 99.35 90.47

Average 52.26 63.70 66.93 76.94 70.61 77.14 78.41

Here, ‘All’ means the combination of wavelet coefficient energy across all EEG
frequency bands.

Table 8
Classification accuracies of nonlinear dynamical feature using linear SVM.

Subject Approximate entropy Hurst exponent Fractal dimension

1 51.33 68.68 85.22
2 69.96 88.27 66.93
3 77.32 66.77 55.48
4 50.55 38.80 74.28
5 70.81 68.06 54.83
6 70.76 97.74 87.07

Average 65.12 71.38 70.63

Fig. 6. The process of PCA.

Fig. 7. The process of LDA.

Fig. 8. The process of CFS.
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accuracy of classification becomes almost stable, and the average
accuracy is about 85.25%. Obviously this number is much smaller
than the dimension of the original features. Considering the
characteristics of CFS, we could confirm that not all the brain
areas and EEG frequency bands were related with emotion. This
observation provides the possibility to find subject-independent
features among subjects.

To compare these three different methods for feature dimen-
sionality reduction, the average classification accuracies of these
methods are computed and shown in Fig. 9. It can be seen that the
best average accuracy of 91.77% is obtained by the LDA method
when the number of feature dimensions is reduced to 30, whereas
the average performance of the PCA method is a bit better and
more stable. The merit of PCA is that the extracted features have
the minimum correlation along the principal axes, but PCA cannot
be used to find the emotion-specific features. In contrast, the
features selected by CFS were directly computed from features.
Therefore, the emotion-related brain areas and frequency bands
could be found by CFS.

5.6. Subject-independent features

In order to confirm the existence of subject-independent
features, we tried to find the relationship between feature dimen-
sion and the electrode amount. First we calculated the average
correlation coefficients of all subjects and ranked the coefficients
in descending order. Then we reduced progressively the number of
features with ascending coefficients, and computed the number of

electrodes needed. The result is shown in Fig. 10. When feature
dimension reaches a certain number, the number of electrode
decreases quickly with the reduction of feature dimension. Thus,
we could assume that the subject-independent features related
with emotion centralized distributed on head regions.

Here the CFS method was used to find these subject-
independent features. The features were incorporated progres-
sively with average correlation coefficients in descending order.
The classification performance of subject-independent features is
shown in Fig. 11. Compared with Fig. 8, the classification perfor-
mance is degraded. As shown in Fig. 12, the average accuracy with
the top 100 subject-independent features is 84.90%. The classifica-
tion accuracies of most subjects become stable after the dimension
reaches about 40 and the average accuracy is 83.55%. The dis-
tribution of the top 50 subject-independent features is shown in
Fig. 13. None of the top 50 features are in the delta band and few
were in the theta band. This suggests that delta and theta bands
have little relationship with emotion. The selected subject-
independent features were mainly in the right occipital lobe and
parietal lobe for the alpha band, the parietal lobe and temporal
lobe for beta band, and the left frontal lobe and right temporal
lobe for gamma band. This finding is nearly consistent with the
studies of other researchers [67–70].

5.7. Trajectory of emotion changes

In order to find the trajectory of emotion changes during the
experiment, we put the selected 50 subject-independent features
into the manifold model and reduced the features into one
dimension using the Isomap method. The trajectory of emotion
changes is shown in Fig. 14. The dashed (red) line represents the

Fig. 9. The average results of three different dimension reduction methods for
power spectrum across all EEG frequency bands.
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Fig. 10. The relationship between feature dimension and the number of electrodes.

Fig. 11. The classification performance of subject-independent features.

Fig. 12. The average classification performance of subject-independent features.
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emotional states labels, where positive emotion is labeled as þ1
and negative emotion is labeled as �1. The solid (blue) line
indicates the values of Isomap estimation. It can be seen that the
changes of the trajectory obtained by Isomap are almost consistent
with the change of emotional states.

In summary, power spectrum across all frequency bands extracted
from EEG signals performs well on distinguishing positive and nega-
tive emotional states. The emotion-specific feature is mainly related
to high frequency band rather than low frequency band. The subject-
independent feature is mainly on right occipital lobe and parietal lobe
in alpha band, the parietal lobe and temporal lobe in beta band, left
frontal lobe and right temporal lobe in gamma band.

6. Conclusions

In this paper, we have investigated the characteristics of EEG
features for emotion classification and technique for tracking the
trajectory of emotion changes. A series of experiments of using

movie clips are designed to arouse emotion of subjects and an EEG
data set of six subjects is collected. Three kinds of features, namely
power spectrum, wavelet and nonlinear dynamical analysis, are
extracted to assess the association between the EEG data and
emotional states. All of these features are smoothed by the LDS
method to remove the noise unrelated with emotion. The results
of emotion classification by SVM classifiers show that the LDS
method can improve classification accuracy significantly. Experi-
mental results demonstrate that power spectrum across all fre-
quency bands is the most robust feature among all three kinds of
features discussed above, and high frequency bands play a more
important role in emotion activities than low frequency bands.

Furthermore, three dimensionality reduction methods, namely
PCA, LDA and CFS, are adopted and further compared on the
feature set. The best average classification accuracy of 91.77% is
obtained by using the LDA method when the number of feature
dimensions is reduced to 30. The top 50 subject-independent
features most relevant to emotion are selected by the CFS method.
Through these subject-independent features, we found that the
emotion associated EEG is mainly produced in the right occipital
lobe and parietal lobe for the alpha band, the parietal lobe and
temporal lobe for beta band, and the left frontal lobe and right
temporal lobe for gamma band. The trajectory of emotion changes
is drawn by a manifold learning model. This provides a promising
way of implementing visualization of subject's emotional state in
real time.

The future development of this research will be focused on
increasing the number of subjects and the number of experiments
for each of the subjects, and extracting subject-independent features
that can eliminate the inter-subjective variability. We also would like
to explore multi-modal analysis for emotion classification.
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