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Investigating Critical Frequency Bands and Channels
for EEG-Based Emotion Recognition with Deep
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Abstract—To investigate critical frequency bands and channels,
this paper introduces deep belief networks (DBNs) to constructing
EEG-based emotion recognition models for three emotions: posi-
tive, neutral and negative. We develop an EEG dataset acquired
from 15 subjects. Each subject performs the experiments twice at
the interval of a few days. DBNs are trained with differential en-
tropy features extracted frommultichannel EEGdata.We examine
the weights of the trained DBNs and investigate the critical fre-
quency bands and channels. Four different profiles of 4, 6, 9, and 12
channels are selected. The recognition accuracies of these four pro-
files are relatively stable with the best accuracy of 86.65%, which
is even better than that of the original 62 channels. The critical
frequency bands and channels determined by using the weights of
trained DBNs are consistent with the existing observations. In ad-
dition, our experiment results show that neural signatures associ-
ated with different emotions do exist and they share commonality
across sessions and individuals. We compare the performance of
deep models with shallow models. The average accuracies of DBN,
SVM, LR, and KNN are 86.08%, 83.99%, 82.70%, and 72.60%,
respectively.

Index Terms—Affective computing, deep belief networks, EEG,
emotion recognition.

I. INTRODUCTION

E MOTION research is an interdisciplinary field that en-
compasses research in computer science, psychology,

neuroscience, and cognitive science. For neuroscience, re-
searchers aim to find out the neural circuits and brain mech-
anisms of emotion processing. For psychology, there exist
many basic theories of emotion from different researchers and
it is important to build up computational models of emotion.
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For computer science, we focus on developing practical ap-
plications such as estimation of task workload [1] and driving
fatigue detection [2].
In multimedia context analysis, for example, there is a large

sematic gap between the high-level cognition in the human brain
and the low-level features in raw digit data. As the emerging big
data of social media, it is difficult to tag the contents reliably, es-
pecially for affective factors, which are hard to describe across
different cultures and language backgrounds. So it is necessary
to build an emotion model to automatically recognize the affec-
tive tags implicitly [3]. The field of Affective Computing (AC)
aspires to narrow the communicative gap between the highly
emotional human and the emotionally challenged computer by
developing computational systems that recognize and respond
to human emotions [4]. The detection and modeling of human
emotions are the primary studies of affective computing using
pattern recognition and machine learning techniques. Although
affective computing has achieved rapid development in recent
years, there are still many open problems to be solved [5], [6].
Among various approaches to emotion recognition, the

method based on electroencephalography (EEG) signals is more
reliable because of its high accuracy and objective evaluation
in comparison with other external appearance clues like facial
expression and gesture [7]. To deeply understand the brain
response under different emotional states can fundamentally
advance the computational models for emotion recognition.
Various psychophysiology studies have demonstrated the cor-
relations between human emotions and EEG signals [8]–[10].
Moreover, with the quick development of wearable devices
and dry electrode techniques [11]–[14], it is now possible to
implement EEG-based emotion recognition from laboratories
to real-world applications, such as driving fatigue detection and
mental state monitoring [15]–[19].
However, EEG signals have low signal-to-noise ratio (SNR)

and are often mixed with much noise when collected. The more
challenge problem is that, unlike image or speech signals, EEG
signals are temporal asymmetry and nonstationary [20]. So to
analyze EEG signals is a hard task. Traditional manual feature
extraction and feature selection for EEG are crucial to affective
modeling and require specified domain knowledge. The popular
feature selection methods for EEG signal analysis are principal
component analysis (PCA) and Fisher projection. In general,
the cost of these traditional feature selection methods increases
quadratically with respect to the number of features considered
[21]. What’s more, these methods cannot preserve the original
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domain information such as channels and frequency bands that
are very important for understanding brain response. Recent de-
veloping deep learning techniques in machine learning commu-
nity allow automatic feature extraction and feature selection and
can eliminate the limitation of handcrafted features [5]. Deep
learning allows automatically feature selection at the same time
with training classification models by bypassing the computa-
tional cost in feature selection phase.
In the past few years, researchers focused on finding the

critical frequency bands and channels for EEG-based emotion
recognition with different methods. Li and Lu [22] proposed a
frequency band searching method to choose an optimal band for
emotion recognition and their results showed that the gamma
band (roughly 30-100 Hz) is suitable for EEG-based emotion
classification with emotional still images as stimuli. It is also
interesting that what would be good positions to place elec-
trodes for emotion recognition when using only few electrodes.
Bos [23] chose the following montage: mastoid for
arousal recognition, for valence recognition, and left
mastoid as ground. Her results indicated that and are the
most suitable electrode positions to detect emotional valence.
Combining the existing results, Valenzi [24] obtained a pool
of eight electrodes: , , , , , , , and
and achieved an average classification rate of 87.5% with these
eight electrodes. However, how to select the critical channels
and frequency bands and how to evaluate selected pools of
electrodes have not been fully investigated yet.
Since 2006, deep learning has emerged in machine com-

munity [25] and has generated a great impact in signal and
information processing. Many deep architecture models are
proposed such as deep auto-encoder [26], convolution neural
network [27], [28] and deep belief network [29]. Deep ar-
chitecture models achieve successful results and outperform
shallow models (e.g. MLP, SVMs, CRFs) in many challenge
tasks, especially in speech and image domains [29]–[31].
Recently deep learning methods are also successfully applied
to physiological signal processing such as EEG, electromyo-
gram (EMG), electrocardiogram (ECG), and skin resistance
(SC), and achieve comparable results in comparison with other
conventional methods [5], [32]–[34].
In this paper, we focus on investigating critical frequency

bands and critical channels for efficient EEG-based emotion
recognition. Here, we introduce deep learning methodologies to
deal with these two problems. First, to shed light on the relation-
ship between emotional states and change of EEG signals, we
devise a protocol that subjects are asked to elicit their own emo-
tions when watching three types of emotional movies (positive,
neutral and negative). After that, we extract efficient features
called differential entropy [35], [36] from multichannel EEG
data, and then we train deep belief networks with differential
entropy features as inputs. By analyzing the weight distribu-
tions learned from the trained deep belief networks, we choose
different setups for frequency bands and channels and compare
the performance of different feature subsets. We also compare
the deep learning methods with feature-based shallow models
like , logistic regression and SVM, in order to explore the
advantages of deep learning and the feasibility of applying un-
supervised feature learning to EEG-based emotion recognition.

The main contributions of this paper can be described as the
following aspects. First, considering the feature learning and
feature selection properties of deep neural networks, we intro-
duce deep learning methodologies to emotion recognition based
on multichannel EEG data. By analyzing the weight distribu-
tions learned from the trained deep belief networks, we inves-
tigate different electrode set reductions and define the optimal
electrode placement which outperforms original full channels
with less computational cost and more feasibility in real world
applications. And we show the superior performance of deep
models over shallow models like , logistic regression and
SVM. The experiment results also indicate that the differential
entropy features extracted from EEG data possess accurate and
stable information for emotion recognition. We find that neural
signatures associated with positive, neutral and negative emo-
tions in channels and frequency bands do exist.
The layout of the paper is as follows. In Section II, we give a

brief overview of related research on emotion recognition using
EEG, as well as the use of deep learning methodologies for
physiological signals. A systematic description of signal anal-
ysis methods and classification procedure for feature extraction
and construction of deep belief networks is given in Section III.
Section IV gives the motivation and rationale for our emotion
experimental setting. A detailed description of all the materials
and protocol we used is presented. In Section V, the detailed
parameters for different classifiers are given and we systemat-
ically compare the performance of deep belief networks with
other shallow models. Then we investigate different electrode
set reductions and neural signatures associated with different
emotions according to the weight distributions obtained from
the trained deep neural networks. In Section VI, we discuss the
problems in emotion recognition studies. Finally, in Section VII,
we present conclusions.

II. RELATED WORK

With the fast development of wearable devices and dry elec-
trode techniques [11]–[14], it enables us to record and analyze
the brain activity in natural settings. This development is leading
to a new trend that integrates brain-computer interfaces (BCIs)
with emotional factors. Emotional brain-computer interfaces are
closed-loop affective computing systems, which build interac-
tive environments [37]. Fig. 1 shows the emotional brain-com-
puter interface cycle. Emotional brain-computer interfaces con-
sist of the following six main phases. First, users are exposed
to designed or real-world stimuli according to the protocol. The
brain activities are recorded as EEG simultaneously. Then the
raw data will be preprocessed to remove noise and artifacts.
Some relevant features will be extracted and a classifier will be
trained based on the extracted features. After identifying user
current emotional states, a feedback can be implemented to re-
spond to the users.
One of the goals of affective neuroscience is to examine

whether patterns of brain activities for specific emotions exist,
and whether these patterns are to some extent common across
individuals. Various studies have examined the neural corre-
lates of emotions. Davidson et al. [38], [39] showed that frontal
EEG asymmetry is related to approach and withdrawal emo-
tions, with approach tendencies reflected in left frontal activity
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Fig. 1. Emotional brain-computer interface cycle.

and withdrawal tendencies reflected in relative right-frontal ac-
tivity. Sammler et al. [8] investigated the EEG correlates of the
processing of pleasant and unpleasant music. They found that
pleasant music is associated with an increase of frontal midline
theta power. Knyazev et al. [9] proposed gender differences in
implicit and explicit processing of emotional facial expressions
with the event-related theta synchronization. Mathersul et al.
[10] investigated the relationships among nonclinical depres-
sion/anxiety and lateralized frontal/parietotemporal activity
on the basis of both negative mood and alpha EEG. Their
findings supported predictions for frontal but not posterior
regions. Wang et al. [40] indicated that for positive and nega-
tive emotions, the subject-independent features are mainly on
right occipital lobe and parietal lobe in alpha band, the parietal
lobe and temporal lobe in beta band, and left frontal lobe and
right temporal lobe in gamma band. Martini et al. [41] found
that an increase in P300 and late positive potential and an
increase in gamma activity during viewing unpleasant pictures
as compared to neutral ones. They suggested that the full elab-
oration of unpleasant stimuli requires a tight interhemispheric
communication between temporal and frontal regions, which
is realized by means of phase synchronization at about 40 Hz.
However, most of the existing experiments on passive BCI use
a very controlled approach with time locked stimuli using ERP
analysis, especially in psychology. This ideal experimental
setting limits the range of real-world conditions and hard to be
generalized to natural settings in a real environment.
Various studies in affective computing community try to

build computational models to estimate emotional states using
machine learning techniques. Lin et al. [42] applied machine
learning algorithms to categorize EEG signals according to
subject self-reported emotional states during music listening.
They obtained an average classification accuracy of 82.29%
for four emotions (joy, anger, sadness, and pleasure) across
26 subjects. Soleymani et al. [3] proposed a user-independent
emotion recognition method using EEG, pupillary response
and gaze distance, which achieved the best classification
accuracies of 68.5% for three labels of valence and 76.4%
for three labels of arousal using a modality fusion across 24
participants. Hadjidimitriou et al. [43] employed three time-fre-
quency distributions (spectrogram, Hilbert-Huang spectrum,
and Zhao-Atlas-Marks transform) as features to classify ratings
of liking and familiarity. They also investigated the time course
of music-induced affect responses and the role of familiarity.

Li and Lu [22] proposed a frequency band searching method
to choose an optimal band, into which the recorded EEG
signal is filtered. They used common spatial patterns (CSP)
and linear-SVM to classify two emotions (happiness and
sadness). Their experimental results indicated that the gamma
band (roughly 30-100 Hz) is suitable for EEG-based emotion
classification. Wang et al. [40] systematically compared three
kinds of EEG features (power spectrum feature, wavelet feature
and nonlinear dynamical feature) for emotion classification.
They proposed an approach to track the trajectory of emotion
changes with manifold learning.
Recently, deep learning methods are applied to processing

physiological signals such as EEG, EMG, ECG, and SC. Mar-
tinez et al. [5] trained an efficient deep convolution neural net-
work to classify four cognitive states (relaxation, anxiety, ex-
citement and fun) using skin conductance and blood volume
pulse signals. They indicated that the proposed deep learning ap-
proach can outperform traditional feature extraction and selec-
tion methods and yield a more accurate affective model. Martin
et al. [44] applied deep belief nets and hidden Markov model
to detect sleep stage using multimodal clinical sleep datasets.
Their results of using raw data with a deep model were compa-
rable to handmade feature approach. To address two challenges
of small sample problem and irrelevant channels, Li et al. [34]
proposed a DBN based model for affective state recognition
from EEG signals and compared it with five baselines with im-
provement of 11.5% to 24.4%. Zheng et al. [33] trained a deep
belief network with differential entropy features extracted from
multichannel EEG as input and achieved the best classification
accuracy of 87.62% for two emotional categories in comparison
with the state-of-the-art methods. In our previous work [32], we
proposed a deep belief network based method to select the crit-
ical channels and frequency bands for three emotions (positive,
neutral and negative). The experimental results showed that the
selected channels and frequency bands could achieve compa-
rable accuracies in comparison with that of the total features. In
this paper, we extend our previous work to multichannel EEG
processing and further investigate the weight distributions of
trained deep neural networks, which reflects crucial neural sig-
natures for emotion recognition.
The problem of electrode set reduction is commonly studied

to reduce the computational complexity and ignore the irrel-
ative noise. The optimal electrodes placement is usually de-
fined according to some statistical factors like correlation co-
efficient, F-score and accuracy rate. Some studies shared the
same pool of electrodes for restrict of commercial EEG device
like Emotiv1. In [42], Lin et al. identified 30 subject-indepen-
dent features that were most relevant to emotional processing
across subjects according to F-score criterion and explored the
feasibility of using fewer electrodes to characterize the EEG dy-
namics during music listening. The identified features were pri-
marily derived from electrodes placed near the frontal and the
parietal lobes. Valenzi et al. [24] selected a set of eight elec-
trodes: , , , , , , , and , and achieved
a promising result of 87.5% for four emotions. A similar study is
proposed by Li et al. [34], which applied a DBN basedmodel for

1http://emotiv.com/
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affective states recognition from EEG signals to deal with two
problems: small number of samples and noisy channels. They
proposed a DBN-based channels selection method. Their inter-
esting observation is that data in irrelevant channels randomly
update the parameters in the DBN model, and data in critical
channels update the parameters in the DBN model according to
the related patterns. However, they did not explore the perfor-
mance of these critical channels. In this paper, we proposed a
novel electrode selection method through the weight distribu-
tions obtained from the trained deep neural networks instead of
statistical parameters and show its superior performance over
original full pool of electrodes.
Although various approaches have been proposed for

EEG-based emotion recognition, most of the experimental
results cannot be compared directly for different setups of
experiments. There is still a lack of publicly available emo-
tional EEG datasets. To the best of our knowledge, the popular
publicly available emotional EEG datasets are MAHNOB HCI
[3] and DEAP [45]. The first one includes EEG, physiological
signals, eye gaze, audio, and facial expressions of 30 people
when watching 20 emotional videos. The subjects self-reported
their felt emotions using arousal, valence, dominance, and pre-
dictability as well as emotional keywords. The DEAP dataset
includes the EEG and peripheral physiological signals of 32
participants when watching 40 one-minute music videos. It also
contains participants’ rate of each video in terms of the levels
of arousal, valence, like/dislike, dominance, and familiarity.
For reproducing the results in this paper and enhancing the
cooperation in related research fields, the dataset used in this
study is freely available to the academic community2.

III. METHODS

A. Preprocessing
According to the response of the subjects, only the experi-

ment epochs when the target emotions were elicitedwere chosen
for further analysis. The raw EEG data was downsampled to
200 Hz sampling rate. The EEG signals were visually checked
and the recordings seriously contaminated by EMG and EOG
were removed manually. EOG was also recorded in the experi-
ments, and later used to identify blink artifacts from the recorded
EEG data. In order to filter the noise and remove the artifacts, the
EEG data was processed with a bandpass filter between 0.3 to
50 Hz. After performing the preprocessing, we extracted the
EEG segments corresponding to the duration of each movie.
Each channel of the EEG data was divided into the same-length
epochs of 1s without overlapping. There were about 3300 clean
epochs for one experiment. Features were further computed on
each epoch of the EEG data. All signal processing was per-
formed in the Matlab software.

B. Feature Extraction
An efficient feature called differential entropy (DE) [35], [36]

extends the idea of Shannon entropy and is used to measure the
complexity of a continuous random variable [46]. Since EEG
data has the higher low frequency energy over high frequency

2http://bcmi.sjtu.edu.cn/seed/index.html

energy, DE has the balance ability of discriminating EEG pat-
tern between low and high frequency energy, which was first in-
troduced to EEG-based emotion recognition by Duan et al.[36].
The original calculation formula of differential entropy is de-

fined as

(1)

If a random variable obeys the Gaussian distribution ,
the differential entropy can simply be calculated by the fol-
lowing formulation:

(2)

It has been proven that, for a fixed length EEG segment, dif-
ferential entropy is equivalent to the logarithm energy spec-
trum in a certain frequency band [35]. So differential entropy
can be calculated in five frequency bands (delta: 1-3 Hz, theta:
4-7 Hz, alpha: 8-13 Hz, beta: 14-30 Hz, gamma: 31-50 Hz) with
time complexity , where is the number of elec-
trodes, and is the size of samples.
For a specified EEG sequence, we used a 256-point

Short-Time Fourier Transform with a nonoverlapped Hanning
window of 1s to extract five frequency bands of EEG signals.
Then we calculated differential entropy for each frequency
band. Since each frequency band signal has 62 channels, we
extracted differential entropy features with 310 dimensions for
a sample.
As the previous studies suggested [38], [47], the asymmet-

rical brain activity (lateralization in left-right direction and
caudality in frontal-posterior direction) seems to be effective
in the emotion processing. So we also computed differential
asymmetry (DASM) and rational asymmetry (RASM) features
[36] as the differences and ratios between the DE features of
27 pairs of hemispheric asymmetry electrodes ( , , ,

, , , , , , , , , , , ,
, , , , , , , , , , ,

and of the left hemisphere, and , , , , ,
, , , , , , , , , , , ,
, , , , , , , , , and

of the right hemisphere). DASM and RASM are, respectively,
defined as

(3)

and

(4)

where and represent the pairs of electrodes on the
left and right hemisphere. We define DCAU features as the dif-
ferences between DE features of 23 pairs of frontal-posterior
electrodes ( - , - , - , - ,

- , - , - , - , -
, - , - , - , - , - , - ,
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Fig. 2. (a) A RBM contains the hidden layer neurons connected to the visible layer neurons with weights W. (b) A DBN using supervised fine-tuning of all layers
with backpropagation. (c) The graphical depiction of unrolled DBN using unsupervised fine-tuning of all layers with backpropagation.

- , - , - , - , - , - ,
- , and - ). DCAU is defined as

(5)

where and represent the pairs of frontal-pos-
terior electrodes.
For comparison, we also extracted conventional power spec-

tral density (PSD) as baseline. The dimensions of PSD, DE,
DASM, RASM, and DCAU features are 310, 310, 135, 135,
and 115, respectively. We applied the linear dynamic system
(LDS) approach to further filter out irrelative components and
take temporal dynamics of emotional states into account [48].

C. Classification with Deep Belief Networks

Deep Belief Network is a probabilistic generative model with
deep architecture, which characterizes the input data distribu-
tion using hidden variables [25], [29]. Each layer of the DBN
consists of a restricted Boltzmann machine (RBM) with visible
units and hidden units, as shown in Fig. 2(a). There are no vis-
ible-visible connections and no hidden-hidden connections. The
visible and hidden units have a bias vector, and , respectively.
A DBN is constructed by stacking a predefined number of

RBMs on top of each other, where the output from a lower-level
RBM is the input to a higher-level RBM, as shown in Fig. 2(b).
An efficient greedy layer-wise algorithm is used to pre-train
each layer of networks.
In an RBM, the joint distribution over the visible

units and hidden units , given the model parameters , is
defined in terms of an energy function as

(6)

where is a normalization factor,
and the marginal probability that the model assigns to a visible
vector is

(7)

For a Gaussian (visible)-Bernoulli (hidden) RBM, the energy
function is defined as

(8)
where is the symmetric interaction term between visible unit

and hidden unit , and are the bias term, and and
are the numbers of visible and hidden units. The conditional

probabilities can be efficiently calculated as

(9)

(10)

where , and takes real values and
follows a Gaussian distribution with mean and
variance one.
Taking the gradient of the log likelihood , we can

derive the update rule for adjusting RBM weights as

(11)

where is the expectation observed in the training
set and is the same expectation under the distri-
bution defined by the model. But is intractable
to compute so the contrastive divergence approximation to the
gradient is used, where is replaced by running the
Gibbs sampler initialized at the data for one full step. Sometimes
momentum in weight update is used for preventing getting stuck
in local minima and regularization prevents the weights from
getting too large [49].
In this paper, training is performed in three steps: 1)

unsupervised pretraining of each layer; 2) unsupervised
fine-tuning of all layers with backpropagation; and 3) su-
pervised fine-tuning of all layers with backpropagation. For
unsupervised fine-tuning, RBMs are unrolled to form a
directed encoder and decoder network that can be fine-tuning
with backpropagation [25], [49]. Fig. 2(c) shows the graphical
depiction of unrolled DBN. The goal of training this deep
autoencoder is to learn the weights and biases between each
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TABLE I
DETAILS OF FILM CLIPS USED IN OUR EMOTION EXPERIMENT

layer such that the reconstruction and the input are as close
to each other as possible. For supervised fine-tuning, a label
layer is added to the top of pretrained DBN and the weights are
updated through error backpropagation.

IV. EXPERIMENTS

A. Stimuli
It is important to design efficient and reliable emotion elicita-

tion stimuli for emotion experiments. Nowadays, there are var-
ious kinds of stimuli used in emotion research like image, music,
metal imagery, and films. Compared to other stimuli, emotional
films have several advantages. The existing studies have already
evaluated the reliability and efficiency of film clips to elicitation
[50], [51]. Emotional films contain both scene and audio, which
can expose subjects to more real-life scenarios and elicit strong
subjective and physiological changes. So in our experiment, we
chose some emotional movie clips to help subjects elicit their
own emotions. There are totally fifteen clips in one experiment
and each of them lasts for about 4min. There are three categories
of emotions (positive, neutral, and negative) evaluated in this
paper and each emotion has five corresponding emotional clips.
All the movie clips were carefully chosen as stimuli to help elicit
subjects’ right emotions from a preliminary study. Since all of
the subjects are native Chinese, we selected the emotional clips
from Chinese films. The details of the film clips used in this
study are listed in Table I.

B. Subjects
Fifteen subjects (7 males and 8 females; MEAN: 23.27, STD:

2.37) with self-reported normal or corrected-to-normal vision
and normal hearing participated in the experiments. All partici-
pants were right-handed and were students from Shanghai Jiao
Tong University. We selected the subjects using the Eysenck
Personality Questionnaire (EPQ). The EPQ is a questionnaire
to assess the personality traits of a person devised by Eysenck
et al.[52]. They initially conceptualized personality as three bi-
ologically based independent dimensions of temperament mea-
sured on a continuum: Extraversion/Introversion, Neuroticism/
Stability and Psychoticism/Socialisation. It seems that not every
subject can elicit specific emotions immediately, even with the
stimuli. The subjects who are extraverted and have stable moods
tend to elicit the right emotions throughout the emotion experi-
ments. So from the feedback of the EPQ questionnaires, we se-
lected these subjects to participate in the emotion experiments.

Fig. 3. The experiment scene.

In advance, the subjects were informed about the procedure.
The subjects were instructed to sit comfortably, watch the forth-
coming movie clips attentively, and refrain as much as possible
from overt movements. Fig. 3 shows the experiment scene. The
subjects got paid for their participation in the experiments. Each
subject participated in the experiment twice at an interval of one
week or longer.

C. Protocol

We performed the experiments in a quiet environment in the
morning or early in the afternoon. EEG was recorded using an
ESI NeuroScan System at a sampling rate of 1000 Hz from
62-channel electrode cap according to the international 10-20
system. The layout of EEG electrodes on the cap is shown in
Fig. 4. To remove eye-movement artifacts, we recorded the elec-
trooculogram. The frontal face videos were also recorded from
the camera mounted in front of the subjects. There are totally
fifteen sessions in one experiment. There is a 5s hint before
each clip, 45s for self-assessment and 15s for rest after each
clip in one session. For self-assessment, the questions are fol-
lowing Philippot [53]: 1) what they had actually felt in response
to viewing the film clip; 2) have they watched this movie before;
3) have they understood the film clip. Fig. 5 shows the detailed
protocol.

V. EXPERIMENT RESULTS

A. Neural Patterns

After extracting differential entropy features from five fre-
quency bands (Delta, Theta, Alpha, Beta, and Gamma), we
further investigate the neural patterns associated with different
emotions. The DE feature map of one experiment is shown in
Fig. 6. We find that there exist specific neural patterns in high
frequency bands for positive, neutral and negative emotions
through time-frequency analysis. For positive emotion, it shows
that energy of beta and gamma frequency bands increases
whereas neutral and negative emotions have lower energy of
beta and gamma frequency bands. While the neural patterns of
neutral and negative emotions have similar patterns in beta and
gamma bands, neutral emotions have higher energy of alpha
oscillations. These findings provide fundamental evidences for
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Fig. 4. The EEG cap layout for 62 electrodes.

Fig. 5. Protocol of the EEG experiment.

Fig. 6. The DE feature map in one experiment, where the time frames are on
the horizontal axis, and the DE features are on the vertical axis.

understanding the mechanism of emotion processing in the
brain.
The observed frequencies have been divided into specific

groups, as specific frequency ranges are more prominent in
certain states of mind. Previous neuroscience studies [54], [55]
have shown that EEG alpha bands reflect attentional processing
and beta bands reflect emotional and cognitive processing in
the brain. Li and Lu [22] also showed that gamma bands of
EEG are suitable for emotion classification with emotional

TABLE II
THE DETAILS OF PARAMETERS USED IN DIFFERENT CLASSIFIERS

images as stimuli. Our findings are consistent with the existing
results. When participants watch neutral stimuli, they tend to be
more relaxed and less attentional, which evoke alpha responses.
And when processing positive emotion, the energy of beta and
gamma response enhance.

B. Classifier Training

In this paper, we systematically compare the classification
performance of four classifiers, nearest neighbor ( ), lo-
gistic regression (LR), support vector machine (SVM), and deep
belief networks (DBNs) for EEG-based emotion recognition.
These classifiers use the DE features aforementioned as inputs.
In the emotion experiments, we collect the EEG data from fif-
teen subjects and each subject has done the experiments twice
at intervals of about one week. There are totally 30 experiments
evaluated here. The training data and the test data are from dif-
ferent sessions of the same experiment. The training data con-
tains nine sessions of data while the test data contains other six
sessions of data from the same experiment.
Table II shows the details of parameters used in different clas-

sifiers. For , we use for baseline in comparison with
other classifiers. For LR, we employ -regularized LR and we
tune the regularization parameter in [1.5:10] with a step of 0.5.
We also use SVM to classify the emotional states for each EEG
segment. The basic idea of SVM is to project input data onto
a higher dimensional feature space via a kernel transfer func-
tion, which is easier to be separated than that in the original
feature space. We use LIBSVM software [56] to implement the
SVM classifier and employ linear kernel. We search the param-
eter space with a step of one for to find the optimal
value.
For deep neural networks, we construct a DBN with two

hidden layers. We search the optimal numbers of neurons in the
first and the second hidden layers with step of 50 in the ranges
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TABLE III
THE MEAN ACCURACIES AND STANDARD DEVIATIONS (%) OF SVM AND DNN FOR DIFFERENT KINDS OF FEATURES

of [200:500] and [150:500], respectively. We set the unsuper-
vised learning rate and supervised learning rate as 0.5 and 0.6,
respectively, in the experiment. We also use momentum in the
weight update to prevent getting stuck in local minima. Before
putting the DE features into DBN, the values of these features
are scaled between 0 and 1 by subtracting the mean, divided
by the standard deviation and finally adding 0.5. We implement
DBN with the DBNToolbox Matlab code [44] in this study.

C. Classification Performance
The mean accuracies (standard deviations) of DBN and SVM

with the DE features from different frequency bands in thirty
experiments of fifteen subjects are shown in Table III. It should
be noted that ‘Total’ in Table III represents the direct concate-
nation of five frequency bands of EEG data in this paper. First,
we compare the performance of the DE feature on different fre-
quency bands (Delta, Theta, Alpha, Beta, and Gamma). As we
can see from Table III, Gamma and Beta frequency bands per-
form better than other frequency bands. These results confirm
that beta and gamma oscillation of brain activity are more re-
lated with emotion processing than other frequency oscillations,
which is consistent with our above findings in time-frequency
analysis.
We also compare the performance of different features. From

the results, we can see that the DE features from total frequency
bands achieve the best classification accuracy of 86.08% and
lowest standard deviation of 8.34% for DBN. For SVM, we can
make a similar conclusion that the DE features from the total fre-
quency bands perform the best. These results show the superior
performance of the DE features in comparison with other kinds
of features. While the asymmetric features (DASM, RASM and
DCAU) have much fewer dimensions than the PSD and DE fea-
tures, they can achieve comparable accuracies, which prove that
the asymmetrical brain activity (lateralization in left-right direc-
tion and caudality in frontal-posterior direction) is meaningful
in emotion processing.
One of the essential questions for EEG-based emotion recog-

nition is whether it is reliable and robust to recognize emotion
in different time for each subject. In order to find a solution to

this problem, each subject was asked to participate in the ex-
periment twice at intervals of 1 wk or longer. And we eval-
uate our models with different EEG data acquired at different
time slots. From the results, we come to the conclusion that
our models can achieve similar prediction accuracies for each
subject’s twice experiments, despite manifest differences be-
tween people’s psychology and slight difference of conductance
for different experiments. These results also show the potential
strength of the proposed method to identify emotion in different
time.
Using the DE features from five frequency bands as inputs,

the means and standard deviations of accuracies of ,
LR, SVM, and DBN are 72.60%/13.16%, 82.70%/10.38%,
83.9%/9.72%, 86.08%/8.34%, respectively. The best accu-
racy of all-frequency-band features is achieved with DBN,
followed by SVM, LR, and last . The results show that
the DBN models outperform over other models with higher
mean accuracy and lower standard deviations. The DBN model
achieves 2.09% higher accuracy and 1.38% lower standard
deviation than SVM. While the accuracies vary between dif-
ferent subjects, DBN outperforms other conventional methods
for most subjects according to the results of total frequency
bands. There are many factors that may affect the classification
accuracies between the subjects, including subjects’ education
background, sociability and their true evoked emotional state
when participating in the experiments.
The confusion matrix of different classifiers on one experi-

ment for one subject is shown in Fig. 7, which shows the details
of strength and weakness of different classifiers. Each row of
the confusion matrix represents the target class and each column
represents the predicted class that a classifier outputs. The ele-
ment is the percentage of samples in class that was clas-
sified as class . From the results in Fig. 7, we can see that in
general, positive emotion can be recognized with high accura-
cies, while negative emotion is most difficult to recognize. For

, LR and SVM, they confuse negative emotion with neu-
tral and positive emotion, and cannot classify negative emo-
tion very well. However, DBN can significantly improve the
classification accuracies for negative emotion. SVM performs
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Fig. 7. The confusion matrix of different classifiers on one experiment for one
subject. Here the number inside the figures denotes the recognition accuracy in
percentage. (a) KNN. (b) LR. (c) SVM. (d) DBN.

slightly better than LR and can predict more negative emotion
samples accurately. These results show that the deep learning
method using DBN has an ability to perform feature selection
task to filter out the unrelated features and achieves a better clas-
sification accuracy. Feature extraction and feature selection are
crucial in the process of emotion modeling. The efficiency of
DBN can combine feature extraction and feature selection when
doing unsupervised and supervised learning.We will further an-
alyze the powerful representations learned from deep belief net-
works and how it can select the critical channels and critical
frequency bands through weight distributions learned from the
deep models in the next session.
The aforementioned experimental results show that DBN

methods obtain higher accuracy and lower standard deviation
than SVM, LR, and . The reliability of classification
performance achieved suggests that such neural signatures
associated with positive, neutral and negative emotions do
exist. The classification accuracies indicate the possibility of a
neural architecture for emotions, and provide modest support
for a biologically basic view.

D. Electrode Reduction

In the earlier discussions, we propose the critical frequency
bands for emotion recognition through time frequency analysis.
Another problem is how to determine critical brain areas as-
sociated with emotion recognition. According to our previous
work [57], electrode set reduction can not only reduce the com-
putational complexity, but also filter out irrelative noise. Since
some EEG channels are irrelevant to emotion recognition [57],
these irrelevant channels need more computational cost, intro-
duce noise to emotion recognition, and degrade the performance
of trained models. Various studies focus on this problem and
try to find the optimal electrodes placement in different tasks.
The optimal electrode placement is usually defined according
to some statistical factors like correlation coefficient, F-score

Fig. 8. The mean absolute weight distribution of the trained DBNs learned with
the features of direct concatenation of five frequency bands of EEG data.

and accuracy rate in the literature [24], [40], [42]. Some studies
share the same pool of electrodes for restrict of commercial EEG
device [19], [58].
In this study, we first collect signals of multichannel EEG as

many as 62 channels. Then we find the critical channels and fre-
quency bands through analyzing the weight distributions of the
trained deep belief networks. Li et al. pointed that the EEG data
from irrelevant channels are irrelevant to emotion recognition
tasks, and the weights of these channels tend to be distributed
randomly [34]. According to the rules of knowledge representa-
tion, if a particular feature is important, there should be a larger
number of neurons involved in representing it in the network
[59]. Following this knowledge representing rule in neural net-
work, we assume that the weights of critical channels tend to be
updated to certain high values, which can represent how impor-
tant they are for emotion recognition models. Here, we choose
four different setups of electrodes placements and compare their
performance with that of full 62 electrodes.
The efficiency of DBN can combine feature extraction and

feature selection when doing unsupervised and supervised
learning. Fig. 8 shows the mean absolute weight distribution
of the trained DBNs in the first layers, where the features are
direct concatenation of five frequency bands of EEG data. From
Fig. 8, we can see that the high peaks are mostly located at beta
and gamma bands. Since the larger weights of corresponding
dimensions of inputs contribute more to the output of the
neurons in neural networks, this phenomena indicates that the
feature components of beta and gamma bands contain more
important discriminative information for the tasks learned by
the neural networks. In other words, the critical frequency
bands for emotion recognition are beta and gamma bands. This
observation is consistent with our previous finding [22], [32],
[33].
To clearly explore the critical channels selected by the trained

DBNs, we further project the mean weight distribution to the
brain scalp. Fig. 9 depicts the weight distribution of different
brain regions in five frequency bands. These results show that
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Fig. 9. The weight distribution of different brain regions in five frequency
bands.

the neural signatures and patterns associated with positive, neu-
tral and negative emotions do exist. The lateral temporal and
prefrontal brain areas activate more than other brain areas in
beta and gamma frequency bands.
There is often an interference of facial muscular activities

in the EEG signals. Muscle artifacts can affect the patterns of
EEG signals. Soleymani et al. [60] thought that the correlation
between the EEG features and continuous valence was caused
by a combination of the effect from the facial expression and
brain activities in their study. However, we think that the to-
pographs in Fig. 9 are not due to muscle artifact, but rather brain
activity with the following reasons: 1) the significant EMG ac-
tivities often happens in higher frequency bands (up to 350 Hz),
while the raw EEG signals are preprocessed with a bandpass
filter between 0.3 to 50 Hz and the recordings seriously con-
taminated by EMG are removed manually in our study; 2) the
subjects are not asked to show their facial expressions explic-
itly, but rather stay still throughout the experiments; 3) the find-
ings of these neural patterns are consistent with previous emo-
tion studies with EEG [22], [42], [54], [57], [61]. Therefore, we
think that the neural patterns shown in Fig. 9 come from the
brain activities.
Next, we examine whether the activation patterns underlying

positive, neutral and negative emotions could be reduced to a
small pool of channels and the performance could be enhanced
significantly. We design four different profiles of electrode
placements according to the features of high peaks in the weight
distribution and asymmetric properties in emotion processing.
Fig. 10 shows the four different profiles evaluated in this paper:
(a) four channels: , , and ; (b) six channels:

, , , , and ; (c) nine channels: ,
, , , , , , and ; (d) 12

channels: , , , , , , , , ,
, and . The electrodes of profiles (a), (b), and

(d) are located in the lateral temporal areas and profile (c) adds
three extra prefrontal electrodes.
We extract the PSD, DE, DASM, RASM, and DCAU features

of these four profiles and compare their performance with that
of full 62 channels. Since the selected pools of electrode sets are

Fig. 10. Four different profiles of selected electrode placements according to
the features of high peaks in the weight distribution and asymmetric properties
in emotion processing: (a) 4 channels: , , and ; (b) 6 channels:

, , , , and ; (c) 9 channels: , , , ,
, , , and ; (d) 12 channels: , , , , , ,
, , , , and .

reduced to comparably low dimensions as input and these crit-
ical channels are selected by deep neural networks after training,
it is better to evaluate the performance of these critical channels
for emotion recognition models with SVM, which has no ex-
plicit feature selection properties. Table IV shows the mean ac-
curacies and standard deviations (%) of SVM for different pro-
files of electrode sets. For the 4 channels profile, we can see
that it can achieve comparably high and stable accuracies of
82.88%/10.92% with the DE features of total frequency bands.
With only these four electrodes, our model can achieve the best
mean accuracy of 82.88%, which is just slight lower than the ac-
curacy of 83.99% for the full 62 electrodes. What’s more, these
four electrodes are located at the lateral temporal area, which
are easy to mount in real world scenarios. These results sug-
gest the possibility of developing a wearable EEG device for
implementing emotion recognition systems for real-world ap-
plications.
The best mean accuracies and standard deviations of the 4

channels, the 6 channels, the 9 channels and the 12 channels
are 82.88%/10.92%, 85.03%/9.63%, 84.02%/10.34%, 86.65%/
8.62%, respectively, while the best mean accuracy and stan-
dard deviation of the full 62 channels are 83.99%/9.72%. For
all profiles, the DE features attain the best performance among
the existing EEG features. These results confirm the conclusion
that the DE features are more suitable for EEG-based emotion
recognition. Compared to the six channels, the nine channels
profile adds extra three frontal electrodes FP1, FPZ, and FP2,
which attains slight about 1 percentage lower than six channels
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TABLE IV
THE MEAN ACCURACIES AND STANDARD DEVIATIONS (%) OF SVM FOR DIFFERENT PROFILES OF ELECTRODES SETS. (A) 4 CHANNELS; (B) 6 CHANNELS;

(C) 9 CHANNELS; (D) 12 CHANNELS

profile. However, it can attain higher accuracies for some in-
dividuals and highest accuracies in beta and gamma bands in
comparison with other electrodes reduction. These results indi-
cate that the discriminative information of the frontal electrodes
is mostly from the beta and gamma oscillations and the patterns
of these three frontal electrodes from total frequency bands may
not be stable for training models. The profiles of the six chan-
nels, the nine channels, and the 12 channels with SVMs achieve
better performance than the 62 channels.Moreover, the 12 chan-
nels profile with SVM attains the highest accuracies and lowest
standard deviations (86.65%/8.62%), even better than the orig-
inal full 62 channels with SVM (83.99%/9.72%) and deep belief
networks (86.08%/8.34%). From these results, we can see that
reducing the electrodes by selecting the critical channels can
not only save computational cost, but also significantly improve
the performance and robustness of emotion recognition models,
which are very meaningful for developing wearable devices for
brain-computer interfaces with adapting to human emotions in
real world applications.
It should be noted that although the 12 channels profile with

SVM attains the higher mean accuracies (86.65%) than the orig-
inal full 62 channels with SVM (83.99%), the rest 50 channels
are not ‘uninformative’ for the emotion recognition task. In this

study, we aim to select the minimum pools of electrode sets with
comparable performance from DBNs. The neighboring elec-
trodes of the critical electrodes contain redundant discriminative
information for emotion recognition, which will be removed
from the optimum electrode sets. Moreover, due to the structural
and functional differences of the brain across subjects, it may
contain different optimum electrode sets for different subjects.
Some electrodes contribute a lot for the performance of some
subjects, but not for another group of subjects. Here, we aim
to explore the critical channels across subjects with the mean
weight values learned from DBNs.

VI. DISCUSSION

Despite significant progress of affective computing achieved
in recent years, the topic of emotion recognition is still very
challenging, due to the fuzzy boundaries of emotion. This paper
introduces deep learning to the construction of reliable models
of emotion built on brain activity. One of the challenges for
affective computing is how to reliably label and evaluate the
true evoked emotion. Since reliable labeled data is expensive,
it is necessary and important to learn features from unlabeled
data, especially for EEG data. Given that DBNs can also learn
models in an unsupervised way, the large amounts of unlabeled
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EEG data may also be conducive to the semi-supervised DBN
training paradigm and allow it to learn more sophisticated
models than other traditional supervised learners. Our experi-
mental results show that DBNs can obtain higher classification
performance and lower standard deviation in comparison with
other shallow models, including , LR and SVM. These
findings demonstrate the potential of deep learning for affective
modeling, as both manual feature extraction and automatic
feature selection could be ultimately bypassed.
The experiment results indicate that beta and gamma bands

of EEG data are more related to emotion recognition, which is
consistent with the observations in literature. That is, higher
frequency brain activities reflect emotional and cognitive
processes [54]. We further select critical channels through the
weight values learned from DBNs and propose the minimum
pools of electrode sets for emotion recognition. Our new
approach is different from the existing work. In our studies,
we propose a novel critical channels and frequency bands
selection method through the weight distributions learned by
deep belief networks. Moreover, we examine the performance
of different profiles of selected critical channels and propose
optimal electrode placements for three categories of emotions.
These selected critical channels can achieve relatively stable
performance across all the experiments of different subjects,
even better than those with the original full 62 channels.
We use a DBN model to show that specific emotional states

can be identified with brain activities. The weights learned by
DBNs suggest that neural signatures associated with positive,
neutral and negative emotions do exist and they share com-
monality across individuals. These neural signatures are reli-
ably activated across sessions and across individuals. The reli-
able results inform our understanding of critical channels and
frequency oscillations in emotional processes and suggest the
potential to infer person’s emotional reaction to stimuli on the
basis of neural activation.
There are also some limitations in this study. DBN training

is an important consideration when applying it to practical ap-
plications. But with optimization improvements and using ad-
vanced, computing times for training RBM and DBN will cer-
tainly decrease. The class of emotions considered here is re-
stricted to just three, i.e., positive, neutral and negative emo-
tions. In the future work, we will apply the proposed method to
data sets with a larger category of emotions.

VII. CONCLUSION

We have applied the DBN models to construction of EEG-
based emotion recognition models for three categories of emo-
tions (positive, neutral and negative). The 62-channel EEG sig-
nals are recorded from 15 subjects while they are watching emo-
tional film clips with totally 30 experiments. After training the
DBNmodels with the DE features frommultichannel EEG data,
we have proposed a DBN-based method to select meaningful
critical channels and frequency bands through the weight distri-
butions of the trained DBNs and have designed different profiles
of electrode sets. The experimental results show that the pools
of electrode sets we selected can achieve relatively stable per-
formance across all the experiments of different subjects. The

best mean accuracies and standard deviations of the four chan-
nels, the six channels, the nine channels and the 12 channels
are 82.88%/10.92%, 85.03%/9.63%, 84.02%/10.34%, 86.65%/
8.62%, respectively. The profile of the 12 channels with SVM
obtains the highest accuracy and lowest standard deviation (86.
65%/8.62%) among different pools of electrodes, even better
than those of the original full 62 channels with SVM (83.99%/
9.72%) and deep belief networks (86.08%/8.34%).
The experimental results also show that the DBN models ob-

tain higher accuracy and lower standard deviation than those of
shallow models like , LR and SVM approaches. The relia-
bility of classification performance suggests that specific emo-
tional states can be identified with brain activities. The weights
learned by DBNs suggests that neural signatures associated with
positive, neutral and negative emotions do exist and they share
commonality across individuals.
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