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ABSTRACT

Chen et al. proposed a non-negative local coordinate factor-
ization algorithm for feature extraction (NLCF) [1], which
incorporated the local coordinate constraint into non-negative
matrix factorization (NMF). However, NLCF is actually a un-
supervised method without making use of prior information
of problems in hand. In this paper, we propose a novel graph
regularized non-negative local coordinate factorization with
pairwise constraints algorithm (PCGNLCF) for image repre-
sentation. PCGNLCF incorporates pairwise constraints and
graph Laplacian into NLCF. More specifically, we expect that
data points having pairwise must-link constraints will have
the similar coordinates as much as possible, while data points
with pairwise cannot-link constraints will have distinct coor-
dinates as much as possible. Experimental results show the
effectiveness of our proposed method in comparison to the
state-of-the-art algorithms on several real-world applications.

Index Terms— Non-negative, Local Coordinate Coding,
Pairwise Constraint, Semi-supervised Learning, Clustering,
Sparse Learning

1. INTRODUCTION

Non-negative matrix factorization (NMF) [2] is a useful
method for feature extraction, which has been widely ap-
plied in computer vision, pattern recognition and data min-
ing. NMF requires that all elements of the decomposed ma-
trix factors are non-negative. These non-negative constraints
lead to parts-based representations of the objects. Recently,
researchers have pointed out that sparse and parts-based rep-
resentations can be more robust than non-sparse, global rep-
resentations [1, 3]. However, NMF does not always obtain
sparse representations [1].

To address this problem, Chen et al. recently proposed a
non-negative local coordinate factorization (NLCF) algorithm
[1], which added a local coordinate constraint into NMF ob-
jective function. NLCF forces the learned basis vectors to be
close to the original data points as much as possible, so that
it can naturally leads to sparse representations for the data,

because each data point will be represented by a linear com-
bination of only a few nearby basis vectors [1]. However,
NLCF can not guarantee that data points with the same class
label will have the similar coordinates as much as possible,
while data points possessing different class labels will have
distinct coordinates as much as possible.

Many machine learning researchers have pointed out that
when a small amount of labeled data is used in conjunction
with unlabeled data, the performances of learning algorithms
can be greatly improved [4, 5, 6]. In order to enhance the per-
formance of NMF, label information has been incorporated
into NMF [7, 8]. In this paper, we incorporate pairwise con-
straints into NLCF to improve its performance.

2. RELATED WORK

Given a set of data points X = [x1,x2, · · · ,xn] ∈ Rm×n,
xj , j = 1, · · · , n, is an m-dimensional non-negative vector,
denoting the j-th data point. NMF aims to factorize X into the
product of two non-negative matrices U and V. The product
of U and V is a good approximation to the original matrix X
by minimizing the following objective function:

J = ‖X−UV‖2 (1)

where ‖.‖ is the matrix Frobenius norm, i.e., the squared sum
of all the entries in the matrix. The dimensions of the fac-
torized matrices U and V are m × k and k × n, respectively.
Usually, k is chosen such that k � min{m, n}. Each column
of the decomposed matrix U can be regarded as an anchor
point [1]. The j-th column vector of the matrix V contains
the coefficients of a linear combination of the anchor points,

Before introduction of NLCF algorithm, we first intro-
duce the concept of coordinate coding [9].

Definition: A coordinate coding is a pair (γ,C), where
C ⊂ Rd is a set of anchor points, and γ is a map of x ∈
Rd to [γv(x)]v∈C ∈ R|C|. It induces the following physical
approximation of x in Rd : γ(x) =

∑
v∈C γv(x)v.

In order to enhance the sparseness of NMF, Chen et al. in-
corporated the local coordinate constraint into NMF and pro-



posed NLCF [1]. The objective function of NLCF is defined
as follows:

J =

n∑
i=1

(‖xi −Uvi‖2 + µ

k∑
c=1

|vci|‖uc − xi‖2) (2)

where xi denotes the i-th column of X, vi is the i-th column
of V, uc is the c-th column of U, vci is the coordinate of
xi with respect to uc. The second term in (2) is the local
coordinate factorization regularization. The columns of the
basis matrix U can be regarded as a set of anchor points, and
each data point can be represented by a linear combination
of the anchor points. The coordinates of the data points with
respect to the anchor points are represented by the columns
of V. The local coordinate factorization regularization forces
each data point to be represented by only few anchor points
so as to obtain sparse coding [1].

3. NON-NEGATIVE LOCAL COORDINATE
FACTORIZATION WITH PAIRWISE CONSTRAINTS

3.1. The Objective Function

In order to improve the performance of NLCF, we incorpo-
rates pairwise constraints and graph Laplacian into NLCF,
we expect that data points with pairwise must-link constraints
should have the similar coordinates, while data points hav-
ing pairwise cannot-link constraints should have distinct co-
ordinates. Pairwise constraints can be user specified or gen-
erated among the randomly selected labeled points from the
database. For simplicity, we exploit the ground-truth data la-
bels to generated the pairwise constraints. When we have
same labeled points in the database, we can obtain the spe-
cific pairwise constraints information among them. More
specifically, if any two labeled points have the same class
label, we generate a must-link constraint for them. If any
two labeled points share different class labels, a cannot-link
constraint is generated for them. Then we can construct a
must-link pairwise constraint symmetric matrix M = [mpj ]
(p, j = 1, 2, · · · , n) and a cannot-link pairwise constraint
symmetric matrix C = [cpj ] (p, j = 1, 2, · · · , n) as follows:

mpj =

{
1 if xp,xj(p 6= j) have the same class label
0 otherwise

(3)

cpj =

{
1 if xp,xj(p 6= j) have different class labels
0 otherwise

(4)

With the pairwise constraints, our PCGNLCF algorithm

aims to minimize the following objective function:

J =

m∑
i=1

n∑
j=1

(xij −
k∑
c=1

uicvcj)
2 + λ

m∑
i=1

n∑
j=1

k∑
c=1

[|vcj | (5)

(uic − xij)2] + α
1

2

k∑
c=1

n∑
q=1

n∑
j=1

wjq(vcj − vcq)2 +

β

n∑
j=1

(
∑

p:mpj=1

k∑
c=1

k∑
h=1,h 6=c

vcjvhp +
∑

p:cpj=1

k∑
c=1

vcjvcp)

wjq =


exp(− ||xj−xq||2

σ2 ) if xq ∈ Np(xj)
or xj ∈ Np(xq) and j 6= q

0 otherwise

(6)

The Eq. (5) can be rewritten in matrix form using an aux-
iliary matrix A ∈ Rk×k, A is defined as:

A =


0 1 ... 1
1 0 ... 1
. . .
. . .
. . .
1 1 ... 0


A is a symmetric matrix, the diagonal elements of A are all
0, and other elements are all 1.

J = ||X−UV||2 + λtr[(S− 2UTX + Z)VT ] (7)
+αtr(VLVT ) + β[tr(AVMVT ) + tr(VCVT )]

where Z = (z, · · · , z)T is a k × n matrix, and z =
diag(XTX) ∈ Rn. S = (s, · · · , s) is a k × n matrix, and
s = diag(UTU) ∈ Rk [1].

In Eq.(5), Np(xq) denotes the set of the p nearest neigh-
bors of the data point xq . uic ≥ 0 and vcj ≥ 0, i =
1, 2, · · · ,m; q, p, j = 1, 2, · · · , n; c = 1, 2, · · · , k. The first
term in (5) corresponds to the cost function of NMF, it de-
notes the squared sum of the Euclidean distance between X
and UV. The second term is the local coordinate constraint
regularization, which forces each data point to be represented
by only few anchor points and leads to sparse representations
for the data. The third term is graph Laplacian regulariza-
tion which is used to capture the local structure of the data.
The fourth term is the cost function for violation of the pair-
wise constraints. We now analyze how the two components
of pairwise constraints work with Eq.(5):

Suppose xj has the largest coordinate vcj with respect
to the anchor point uc in the j-th column of V. If xp has
a must-link constraint with xj (mpj = 1), then xp should
also have the largest coordinate vcp with respect to the an-
chor point uc in the p-th column of V. In this case, the
product of vcj and vcp is the biggest than any other prod-
uct of vcj and vhp (h = 1, ..., k;h 6= c) in the j-th col-
umn and the p-th column of V. Therefore, vcp should be



maximized in the p-th column of V, this is imposed by min-
imizing

∑n
j=1(

∑
p:mpj=1

∑k
c=1

∑k
h=1,h6=c vcjvhp), when it

is minimized, vhp(h = 1, ..., k;h 6= c) will be as smaller
as possible, while vcp will be getting bigger as much as pos-
sible. Eventually, xp will have the largest coordinate vcp in
the p-th column of V. When xj and xp have a cannot-link
constraint (cpj = 1), they should have distinct coordinates.
That is, the j-th column and the p-th column of V are as or-
thogonal as possible. This can be imposed by minimizing∑n
j=1(

∑
p:cpj=1

∑k
c=1 vcjvcp).

The trade-off these terms is governed by the positive pa-
rameters λ, α, β, which specify the relative importance of the
sparseness, local geometrical structure and the violation of the
pairwise constraints.

3.2. The Algorithm

The objective function J of PCGNLCF in Eq. (7) is not con-
vex in both two matrices variables U and V. Therefore, it is
unrealistic to find the global minima of J. In the following,
we introduce an iterative updating algorithm based on the La-
grangian Multiplier method which can obtain a local optimum
of J.

Let φic and ψcj be the Lagrange multiplier for constraint
uic ≥ 0 and vcj ≥ 0, respectively, and Φ = [φic], Ψ = [ψcj ].
the Lagrange function L is

L = J + tr(ΦUT ) + tr(ΨVT ) (8)

Let the derivatives of L with respect to V and U vanish,
we have:

∂L
∂V

= −2(1 + λ)(UTX) + 2(UTUV) + λ(S + Z) (9)

+2α(VD)− 2α(VW) + β(AVM + VC) + Ψ = 0

∂L
∂U

= −2(1 + λ)(XVT ) + 2λ(UH) + 2(UVVT ) (10)

+Φ = 0

where H ∈ Rk×k. H is a diagonal matrix with its en-
tries defined as hcc =

∑n
j=1 vcj . Using the KKT conditions

ψcjvcj = 0 and φicuic = 0, we get the following equations
for vcj and uic:

vcj ←− vcj
2(1 + λ)(UTX)cj + 2α(VW)cj

f(U,V)
(11)

f(U,V) = 2(UTUV)cj + λ(S + Z)cj + 2α(VD)cj (12)
+β(AVM + VC)cj

uic ←− uic
(1 + λ)(XVT )ic

(UVVT )ic + λ(UH)ic
(13)

The convergence proof and computational complexity of
PCGNLCF have been provided in the supplementary mate-
rial.

3.3. Computational Complexity Analysis

The objective function of the PCGNLCF is minimized by it-
eratively updating matrices U and V. In this subsection, we
will discuss the extra computational cost of our PCGNLCF
algorithm.

The big O analysis is usually used to express the com-
plexity of the algorithm [8]. However, it may be not precise
enough to differentiate the complexity of PCGNLCF [10].
Thus, we count the arithmetic operations for PCGNLCF al-
gorithm [10, 8, 11]. Three arithmetic operations addition,
multiplication and division are involved in the updating com-
putation. All these operations are performed on floating-point
numbers [8]. Table 1 has described the parameters used in the
complexity analysis.

Based on the updating rules, we count the number of op-
erations for each update step in PCGNLCF. It is important
to note that M and C are sparse matrices, we use MN and
CN to denote the number of pairwise must-link constraints
and pairwise cannot-link constraints, respectively. Thus, we
only need (MNK+NK2) flam (a floating point addition and
multiplication) to compute AVM and CNK flam to compute
VC. Moreover, W is also a sparse matrix, we only need
NpK flam to compute VW [10]. S and Z will cost MK,
MN flam respectively [11], H will cost NK fladd (a floating
point addition).

So PCGNLCF needs (2MNK+3MK+8NK+MN+
2MK2+2NK2+NpK+MNK+CNK) fladd, (2MNK+
3MK + 2NK + MN + 2MK2 + 2NK2 + NpK +
MNK + CNK) flmlt (a floating point multiplication) and
(MK + NK) fldiv (a floating point division) in each itera-
tion. Besides the multiplicative updating, PCGNLCF needs
O(L2) to construct the constraint matrices M and C, and
PCGNLCF also needs O(N2M) to construct the p-nearest
neighbor graph [10].

If the multiplicative updates stop after t iterations, the
overall computational complexity for PCGNLCF will be
O(tMNK + L2 +N2M).

4. EXPERIMENTAL RESULTS

In this section, we use image clustering tasks to evaluate our
PCGNLCF algorithm. Two metrics are used to evaluate the
clustering performance of each experiment. The algorithms
are evaluated by comparing the cluster label of each sample
point with its label provided by the dataset. The first metric is



Table 1. Parameters Used in Complexity Analysis
Parameters Description

N number of data points
M number of features
K number of factors
L number of labeled data points
MN number of pairwise must-link constraints
CN number of pairwise cannot-link constraints

the accuracy (AC), which can be used to measure the percent-
age of correct labels obtained by an algorithm. AC is defined
as follows [12], its details can refer to [10].

AC =

∑n
i=1 δ(γi,map(li))

n
(14)

Where n denotes the total number of images in the dataset,
δ(x, y) is the delta function that equals one if x = y and equals
zero otherwise, and map(li) is the mapping function that maps
each cluster label li to the equivalent label from the dataset.

The second metric is the normalized mutual information
(NMI). In clustering problems, normalized mutual infor-
mation can measure how similar two clusters are. NMI is
defined as follows, its details can refer to [10].

NMI(C,C′) =
MI(C,C′)

max(H(C),H(C′))
(15)

Where MI(C,C′) denotes the mutual information and
H(C) is the entropy.

The sparseness measure is based on the relationship be-
tween the L1 norm and the L2 norm [13, 11], it is defined as
follows:

SP (v) =

√
N − (

∑
|vi|/

√∑
v2i )√

N − 1
(16)

where v is a column vector of V, N is the dimensionality of
v. If all entry of v are equal, SP (v) takes a value of zero. If
v contains only a single non-zero entry, SP (v) evaluates to
unity. In our experiments, we report the average sparseness
on ten independent experiments on each database. On each
independent experiment, we compute the average sparseness
over all the new representations with each column vectors of
V [11].

4.1. Performance Evaluations and Comparisons

To evaluate how the clustering performance can be im-
proved by our method, we compare our algorithm with other
state-of-the-art algorithms, such as NMF [14], NLCF [1],
NMFSC [13], GNMF [10], CNMF [8], SSNMF [7], GNLCF
(PCGNLCF with setting β = 0) [1], PCNLCF (PCGNLCF
with setting α = 0).

Experiments are performed on four image databases,
UMIST 1 database consists of 575 images of 20 individuals,
the size of each cropped image is 40×40 pixels, with 256 gray
levels per pixel, thus, each image is represented by a 1600-
dimensional vector. Georgia Tech Face (GTF) 2 database ob-
tains 750 images of 50 distinct subjects, each image is rep-
resented by a 2500-dimensional vector. COIL100 3, USPS 4

handwritten digit database contains 10 objects. We select a
popular subset containing 9298 16×16 handwritten digit im-
ages in total.

We conduct ten independent experiments on each dataset,
and the average clustering results and standard deviations are
reported in Table 2. In each experiment, we randomly select
25 subjects for clustering on GTF and COIL100. On UMIST,
10 subjects are randomly selected for clustering. On USPS,
we randomly select 6 subjects for clustering in each experi-
ment. In our experiments, four images are randomly selected
from each cluster with labels on UMIST. On GTF, we ran-
domly select five images from each category to provide the
label information. For USPS and COIL100, we randomly
pick up 10% images from each cluster as the available label
information. For PCGNLCF, the pairwise constraints are gen-
erated among all the labeled images on each database. We set
k to be the number of clusters [1]. In the clustering process,
for NMF, NMFSC, GNMF and CNMF, in order to achieve the
best performance, fast K-means algorithm [15] is further ap-
plied to the new data representation V for clustering [10, 8].
For NLCF, GNLCF, PCNLCF and PCGNLCF, we use V to
determine the cluster label of each data point [1]. That is,
we examine each column of V, and assign data point xj to
cluster c if c = argmax

c
vcj .

For each algorithm, in order to achieve its best results,
the parameters are appropriately selected. For PCGNLCF, λ
searches the grid {0.1, 0.2, 0.5, 1}, α is set by searching the
grid {0.1, 0.5, 1, 5, 10}, β searches the grid {1, 5, 10, 15}. On
UMIST and COIL100, we fix λ = 0.2, α = 10, β = 5, on GTF
we set λ = 0.2, α = 0.1, β = 5, for USPS, we let λ = 0.2, α =
1, β = 5. The number of the nearest neighbors p searches the
grid {3, 4, 5, 6, 7, 8, 9, 10}. More results and parameters set-
tings of other algorithms can be found in the supplementary
material.

When β = 0, PCGNLCF degenerates to GNLCF, when
α = 0, PCGNLCF degenerates to PCNLCF. PCGNLCF de-
generates to NLCF when α = 0 and β = 0. Table 2 to Table
3 show the detailed clustering accuracy, normalized mutual
information and standard deviation on all the datasets. The
average sparseness of the coefficients matrix obtained by the
algorithms has been shown in Table 4. It can be seen that
our proposed PCGNLCF algorithm consistently outperforms
NMF, NLCF, NMFSC, GNMF, CNMF, SSNMF, GNLCF and

1http://www.sheffield.ac.uk/eee/research/iel/research/face
2http://www.face-rec.org/databases/
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
4http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html



Table 2. Clustering Accuracy Comparison on the four Images
Databases

Methods
Accuracy(%)

UMIST GTF COIL100 USPS
NMF 47.1±3.8 49.1±2.2 59.8±5.0 71.5±5.8
NLCF 46.9±4.4 49.9±4.2 55.6±5.9 67.0±5.1

NMFSC 49.2±5.1 49.5±2.2 59.6±5.7 71.1±6.6
GNMF 69.7±4.9 47.0±3.0 72.3±5.7 77.1±7.3
CNMF 51.9±3.4 56.2±3.2 62.6±4.5 76.3±6.6
SSNMF 60.1±4.6 75.4±2.7 68.2±5.7 83.1±2.1
GNLCF 55.8±4.6 53.7±4.0 62.9±4.3 77.8±9.3

PCNLCF 54.3±6.9 75.5±1.9 58.4±4.7 79.1±6.0
PCGNLCF 90.2±4.5 81.6±2.7 91.4±2.6 96.2±1.1

Table 3. Clustering normalized mutual information compari-
son on the four images databases

Methods
Normalized Mutual Information(%)

UMIST GTF COIL100 USPS
NMF 56.6±5.2 60.2±2.0 72.4±4.9 58.5±3.9
NLCF 58.6±4.8 63.6±3.5 71.4±5.1 54.8±4.6

NMFSC 58.0±6.3 62.5±1.8 73.2±5.1 58.1±5.1
GNMF 78.2±4.7 59.6±3.2 86.1±3.9 76.2±3.5
CNMF 60.6±2.5 67.5±2.3 74.3±4.3 63.0±4.1
SSNMF 62.1±5.7 76.2±2.6 73.7±4.8 65.2±3.3
GNLCF 67.5±3.5 65.2±2.9 76.9±4.3 72.0±6.9

PCNLCF 59.8±6.4 76.8±1.8 68.8±3.8 62.5±4.7
PCGNLCF 89.2±4.1 81.6±2.5 93.0±2.3 88.7±2.6

PCNLCF on each database. On UMIST database, GNMF
obtains the second best performance, PCGNLCF achieves
20.5% improvement in accuracy and 11% improvement in
normalized mutual information over GNMF on average. On
USPS database, SSNMF obtains the second best result for ac-
curacy measurement on average, GNMF gets the second best
performance in normalized mutual information measurement
on average. PCGNLCF achieves 13.1% improvement than
SSNMF in accuracy and 12.5% improvement over GNMF
in normalized mutual information on average. GNLCF only
considers the local structure of the data. PCNLCF only con-
siders the pairwise constraints. From Table 2 to Table 3 we
can see that both the two algorithms can not achieve the best
performance. With consideration of graph Laplacian and pair-
wise constraints, PCGNLCF achieves the best performance
and outperforms others algorithms significantly.

Table 4 shows the average sparseness of the coefficients
matrix obtained by NMF, NLCF CNMF, SSNMF, GNLCF,
PCNLCF and PCGNLCF. We do not list the sparseness
obtained by NMFSC and GNMF, because if NMFSC and
GNMF can get a better performance, the sparseness obtained
by NMFSC and GNMF will be lower than NMF in some
cases according to our experiments. When the sparseness ob-
tained by NMFSC and GNMF increases, the performances of
NMFSC and GNMF will decrease. In our paper, we make

Table 4. Average sparseness of coefficients matrix on each
database

Methods
Sparseness(%)

UMIST GTF COIL100 USPS
NMF 45.2±1.7 36.4±0.7 48.7±2.2 32.9±1.2
NLCF 92.7±0.8 90.3±0.6 95.6±0.7 73.3±2.1
CNMF 42.1±2.0 35.1±0.6 46.6±2.2 31.6±1.8
SSNMF 73.9±1.4 86.7±0.6 79.5±1.6 65.1±1.4
GNLCF 77.5±2.2 65.6±2.8 90.5±1.8 73.2±2.5

PCNLCF 87.4±1.3 91.7±0.5 87.3±1.0 72.3±1.3
PCGNLCF 79.7±3.2 87.1±0.9 81.4±3.1 82.1±2.6

a balanced choice between the performances and sparseness.
From Table 4, we can see that NLCF, GNLCF, PCNLCF and
PCGNLCF can indeed achieve sparser representations for the
data. Mainly because these algorithms have incorporated the
local coordinate constraint into NMF.

Moreover, it is interesting to see that even if NLCF can
obtain sparser representations for data in most instances, but
it does not necessarily have the best performance. This is
mainly because that NLCF can not guarantee that data points
sharing the same class label will be as close to the same an-
chor point as much as possible, while data points possessing
different class labels will be as close to different anchor points
as much as possible.

The sample images from GTF has been shown in Fig. 1
(a). Fig. 1 (b) to Fig. 1 (e) have shown the bases vectors
and image encodings obtained by PCGNLCF and NLCF. We
can see that PCGNLCF learns better bases vectors. The bases
vectors learned by PCGNLCF are more clear and bright, and
they look more like the original face images. The image en-
coding of each image obtained by PCGNLCF has almost only
one non-zero entry. The non-zero entry is the coordinate co-
efficient with respect to the basis image, which is closest to
the face image [1].

5. CONCLUSION

In this paper, PCGNLCF is proposed. PCGNLCF consid-
ers pairwise constraints of the data and graph Laplacian.
PCGNLCF can enhance the discriminative powerful of the
new representations of the data and achieve better perfor-
mance.
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(a) (b) (c) (d) (e)

Fig. 1. (a) is the original images on Georgia Tech Face, which contains 25 images from different 25 subjects. (b) and (d)
are the bases vectors learned by PCGNLCF and NLCF respectively. (c) and (e) are the image encodings (the obtained new
representations of the data) of PCGNLCF and NLCF respectively. Non-zero values are shown with white pixels.
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