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Artificial immune system is a class of computational intelligence methods drawing inspi-
ration from human immune system. As one type of popular artificial immune computing
model, clonal selection algorithm (CSA) has been widely used for many optimization prob-
lems. CSA mainly generates new schemes by hyper-mutation operators which simulate the
immune response process. However, these hyper-mutation operators, which usually per-
turb the antibodies in population, are semi-blind and not effective enough for complex
optimization problems. In this paper, we propose a hybrid learning clonal selection algo-
rithm (HLCSA) by incorporating two learning mechanisms, Baldwinian learning and
orthogonal learning, into CSA to guide the immune response process. Specifically, (1) Bald-
winian learning is used to direct the genotypic changes based on the Baldwin effect, and
this operator can enhance the antibody information by employing other antibodies’ infor-
mation to alter the search space; (2) Orthogonal learning operator is used to search the
space defined by one antibody and its best Baldwinian learning vector. In HLCSA, the Bald-
winian learning works for exploration (global search) while the orthogonal learning for
exploitation (local refinement). Therefore, orthogonal learning can be viewed as the com-
pensation for the search ability of Baldwinian learning. In order to validate the effective-
ness of the proposed algorithm, a suite of sixteen benchmark test problems are fed into
HLCSA. Experimental results show that HLCSA performs very well in solving most of the
optimization problems. Therefore, HLCSA is an effective and robust algorithm for
optimization.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Artificial immune system has received increasing attention from both academic and industrial communities recently.
Similar to evolutionary algorithms, artificial immune system makes use of the mechanism of vertebrate immune system
to construct new intelligent algorithms, which provides some novel channels to solve optimization problems. Putting the
artificial immune system into optimization becomes popular since the advance of CSA [1], which is based on the clonal
selection theory and can perform multi-modal optimization while delivering good approximations for a global optimum.
The main idea of clonal selection theory lies in the phenomenon that antibody can selectively react to the antigen. When
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an antigen is detected, the antibodies which can best recognize such antigen will proliferate by cloning. The newly cloned
antibodies undergo hyper-mutations in order to increase their receptor population.

In the last several years, much effort has been made to improve the performance of CSA and consequently a large number
of CSA variants were proposed. A detailed review of CSAs and their applications can be found in [2,3]. Here we will give a
brief literature review of recent studies on CSA from the following three aspects: the research on theoretical analysis, com-
puting models and applications respectively.

� Theoretical perspective. In spite of the successful applications of artificial immune system in diverse fields, there is little
knowledge and hardly any theoretical investigation about how and why they perform well. In terms of convergence
proofs, Villalobos-Arias et al. [4] presented a complete proof for a specific multi-objective CSA using Markov chains. Hone
and Kelsey [5] pointed that a useful and valued avenue to explore into the dynamics of immune algorithms would be
based on the nonlinear dynamical systems and stochastic differential equations. Timmis et al. [6] presented the detailed
theoretical analysis for the three main types of artificial immune algorithms: clonal selection, immune network and neg-
ative selection algorithm. Jansen et al. analyzed different variants of immune inspired somatic contiguous hyper-muta-
tions in [7].
� Model perspective. Many improved CSAs were proposed by modifying the operators and introducing new operators

within the CSA framework. Khilwani et al. [8] proposed a fast clonal algorithm (FCA) which designs a parallel mutation
operator comprising of Gaussian and Cauchy mutation strategies. In addition, a new concept was proposed for initializa-
tion, selection and clonal expansion process. Jiao et al. [9] presented a quantum-inspired immune clonal algorithm (QICA)
in which the antibodies are proliferated and divided into a set of sub-populations. In QICA, the antibodies are represented
by multi-state gene quantum bits. The general quantum rotation gate strategy and dynamic adjusting angle mechanism
are applied to update antibody information. Gong et al. [10] proposed an orthogonal immune algorithm (OIA) based on
the orthogonal initialization and a novel neighborhood orthogonal cloning operator. CSA with non-dominated neighbor-
hood selection strategy (NNIA) [11] was proposed by Gong et al. for multi-objective optimization. Shang et al. [12]
proposed an immune clonal algorithm (NICA) for multi-objective optimization problems, which makes improvements
on four aspects in comparison with the traditional clonal selection computing model.
Moreover, the search ability of CSA is enhanced by combining with other evolutionary algorithms. Gong et al. [13] put
forward the differential immune clonal selection algorithm (DICSA), which uses the differential mutation and differential
crossover operators. Fu et al. [14] proposed an immune algorithm-based particle swarm optimization (IA-PSO) for
short-term hydropower scheduling of reservoirs, which is formulated by coupling the immune information processing
mechanism with the particle swarm optimization algorithm in order to achieve a better global solution with less
computational effort. Afaneh et al. [15] presented the virus detection clonal algorithm (VDC), which uses genetic
algorithm to search the optimal parameters for clonal selection algorithm.
� Application perspective. Artificial immune system has been applied in diverse fields such as machine learning, pattern

recognition, anomaly detection, optimization, and robotics. Liu et al. [16] incorporated the gene transposon theory into
clonal selection algorithm and formulated the gene transposon CSA (GTCSA), which is used to automatically determine
the number of clusters. Ma et al. [17] proposed the immune memetic clustering algorithm (IMCA), which combines
the immune clonal selection and memetic algorithm simultaneously. This proposed framework is used to do image seg-
mentation. Batista et al. [18] presented an real-coded distributed clonal selection algorithm (DCSA) for electromagnetic
design optimization. Xi et al. [19] proposed an immune statistical model, which merges the statistical model and the
immune algorithm together, to deal with the data analysis problems of dam displacement. Zhong et al. put artificial
immune system-based computational models to applications in hyper-spectral remote sensing imagery [20–22]; specif-
ically, an unsupervised artificial immune classifier (UAIC) was proposed to perform remote sensing image classification
[20], Clonal Selection Feature Selection (CSFS) algorithm and Clonal Selection feature weighting (CSFW) algorithm were
proposed to do dimensionality reduction which is formulated as an optimization problem [21] and an artificial antibody
network (ABNet) based on immune network theory was designed for multi-/hyper-spectral image classification [22].
Also, CSA was used for epileptic EEG signal feature selection [23]. A detailed survey of the applications of artificial
immune system can be found in [24].

Generally, the traditional clonal selection algorithm generates new schemes by various forms of hyper-mutation. These
hyper-mutation operators randomly perturb a current solution, rendering the CSA a type of parallel hill climbing algorithm.
Therefore, the search ability of CSA is limited when dealing with complex optimization problems. Existing studies have
shown that learning mechanism can guide the evolutionary process of CSA [25]. However, only one learning rule was
designed in the proposed Baldwinian learning CSA (BCSA) [25], which is less effective for complex optimization problems
with different characteristics.

In this paper, we propose an enhanced CSA, hybrid learning CSA, by introducing two learning mechanisms: Baldwinian
learning and orthogonal learning. In HLCSA, new schemes are generated by the way of learning from others instead of the
parallel trial and error process in CSA. Different from BCSA, HLCSA maintains a strategy pool with four candidate learning
rules, which assigns HLCSA the ability to adapt to different types of optimization problems. Furthermore, as described in
memetic computing [26,27], a healthy balance between global search and local search can enhance the search ability of evo-
lutionary algorithms. To improve the global search performed by Baldwinian learning, the orthogonal learning is introduced
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to do local search. These two learning mechanisms work together to guide the evolutionary process of CSA towards the glo-
bal optimum. Obviously, HLCSA improves the traditional CSA from the model perspective.

The rest of this paper is organized as follows. Section 2 reviews the traditional CSA, the foundation of Baldwin effect and
orthogonal experimental design. In Section 3, we reveal the inefficacy of traditional CSA, present the two learning mecha-
nisms (Baldwinian learning and orthogonal learning) to enhance the performance of CSA, and formulate the whole frame-
work of our proposed HLCSA. Section 4 presents the benchmark test functions, the experimental settings for each
algorithm, the experimental results as well as several discussions. Conclusions and future work are given in Section 5.

2. Preliminaries

In this section, we review the traditional CSA, the foundation of Baldwin effect and orthogonal experimental design (OED)
theory, which will form the basis for introducing our proposed HLCSA framework.

2.1. Clonal selection algorithm

Before introducing the basic flow of CSA, we present some immunological terms first for helping to understand this
algorithm.

� Antigen. In immunology, any substance can be called antigen if it can cause the immune systems to produce antibodies
against its invasion. In evolutionary computation, antigens refer to the pending problems. Taking the following optimi-
zation problem for example,
min f ð x!Þ; x!¼ ðx1; x2; . . . ; xDÞ 2 S ¼
YD

i¼1

½ai; bi�; ð1Þ

where f ð x!Þ is the objective function which is also called antigen, x!2 S is a variable vector, S 2 RD is the feasible space
and 8i 2 f1;2; . . . ;Dg;�1 < ai < bi < þ1.
� Antibody. An antibody (Ab), also known as an immunoglobulin (Ig), is a large Y-shaped protein produced by B-cells that is

used by the immune system to identify and neutralize foreign objects such as bacteria and viruses. In this paper, an anti-
body is the representation of a candidate solution of an antigen. The antibody a!¼ ða1; a2; . . . ; aDÞ is the coding of variable
x!, denoted by a!¼ eð x!Þ and x! is called the decoding of antibody a!, expressed as x!¼ e�1ð a!Þ. The representation of
antibody a!, which may be different from that of antigen, can be binary string, real number sequence, symbolic sequence
and character. In this paper, we adopt real-valued representation, which is simply a!¼ eð x!Þ ¼ x!.
Let I be the antibody space, where a!2 I. The antibody population A ¼ f a!1; a!2; . . . ; a!ng, where a!i 2 I;1 6 i 6 n, is an n-
dimensional group of antibody a!, where the positive integer n is the antibody population size.
� Affinity. In immunology, affinity is the fitness measurement of an antibody. For the optimization problem defined in (1),

the affinity Fð�Þ is a certain type of function of the value of objective function f ð�Þ. In this paper, we use the identity func-
tion for simplicity, which is Fð�Þ ¼ f ð�Þ.
Based on the terminologies above, we introduce the basic flow of CSA below, whose framework is described in Algorithm 1.

Algorithm 1. Clonal Selection Algorithm

Step 1. Initialization: Determine the parameters and termination criterion; Randomly generate the initial antibody
population A(0); Set t = 0;

Step 2. Evaluation: Calculate the affinity of each antibody in A(t);
Step 3. Clonal Proliferation: Generate X(t) by applying clonal proliferation operator to A(t);
Step 4. Hyper-mutation: Generate Y(t) by applying hyper-mutation operator to X(t);
Step 5. Evaluation: Calculate the affinity of each antibody in Y(t);
Step 6. Clonal Selection: Generate A(t + 1) by applying clonal selection operator to Y(t) and A(t);
Step 7. Termination Test: If termination criterion is met, stop and output the antibody with the highest affinity in

A(t + 1); Otherwise, t = t + 1, go to Step 3.

The three main operators, clonal proliferation, hyper-mutation and clonal selection, are explained as follows.

� Clonal Proliferation TC . In immunology, clone means asexual propagation, so that a group of identical cells can be des-
cended from a single ancestor. In the t-th generation of CSA, the resulting population can be obtained by applying the
clonal proliferation operator TC to the population A(t)=f a!1ðtÞ; a!2ðtÞ; . . . ; a!nðtÞg:
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XðtÞ ¼ TCðAðtÞÞ ¼ TCð a!1ðtÞÞ; TCð a!2ðtÞÞ; . . . ; TCð a!nðtÞÞ
n o

; ð2Þ

where XiðtÞ ¼ TCð a!iðtÞÞ ¼ x!i1ðtÞ; x!i2ðtÞ; . . . ; x!iqi
ðtÞ

n o
, and x!ijðtÞ ¼ a!iðtÞ, i ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ; qi. qi is a self-adaptive

parameter or a constant, termed clonal scale or clonal factor. Essentially, clonal proliferation on antibody a!iðtÞ is to make
qi identical copies of a!iðtÞ.
� Hyper-mutation TM . In immunology, hyper-mutation is the main mechanism for the immune system to recognize exter-

nal pattern in the form of antibody gene mutation and compilation so as to gain higher affinity [28]. Inspired by immune
response process, the hyper-mutation operation TM exploits local areas around antibodies by introducing blind perturba-
tion and this is the only operation in traditional CSA to generate new schemes. When applying hyper-mutation operator
TM on population X(t), the resulting population is
YðtÞ ¼ TMðXðtÞÞ ¼ TMðX1ðtÞÞ; TMðX2ðtÞÞ; . . . ; TMðXnðtÞÞ
n o

; ð3Þ

where YiðtÞ ¼ y!i1ðtÞ; y!i2ðtÞ; . . . ; y!iqi
ðtÞ

n o
and y!ijðtÞ ¼ TMð x!ijðtÞÞ, i ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ; qi. TMð x!ijðtÞÞ means modify-

ing each element of antibody x!ijðtÞ based on a general mutation operator with probability Pm, so each antibody in the
population X(t) in each generation will undergo about D� Pm mutations, where D is the dimension of variable vector.
� Clonal Selection TS. For 8i ¼ 1;2; . . . ;n, if y!�i (t) is the antibody with the highest affinity in Yi(t), then the process of apply-

ing TS on Yi(t) is
a!iðt þ 1Þ ¼ TSðYiðtÞ [ a!iðtÞÞ ¼
y!�i ðtÞ; if F y!�i ðtÞ

� �
> Fð a!iðtÞÞ;

a!iðtÞ; otherwise:

8<
: ð4Þ

The population entering the next generation is

Aðt þ 1Þ ¼ TSðYðtÞ [ AðtÞÞ ¼ TSðY1ðtÞ [ a!1Þ; TSðY2ðtÞ [ a!2Þ; . . . ; TSðYnðtÞ [ a!nÞ
n o

¼ f a!1ðt þ 1Þ; a!2ðt þ 1Þ; . . . ; a!nðt þ 1Þg ð5Þ

This selection process can be seen as a sort of parallel hill climbing and each antibody is locally optimized via affinity
maturation process.

2.2. Baldwin effect

Baldwin effect is a theory of a possible evolutionary process. Within this framework, selected offspring would tend to
have an increased capacity for learning new skills rather than being confined to genetically coded, relatively fixed abilities.
In Baldwin effect, it places emphasis on the fact that the sustained behavior of a specie or group can shape the evolution of
such specie. Its underlying idea is that enhancing the evolutionary process through learning the models of Baldwin effect are
diverse.

The basic theory of Baldwin effect is twofold: (1) Learning can improve the individual performance, which will be
reflected by its phenotype; and (2) the ability obtained from learning will be finally integrated into the genotype and be
inherited in following evolutionary process. Based on the Baldwin effect, an individual will survive longer if its learned fit-
ness is better and consequently it will be replaced by a lower probability in the evolutionary process. If this individual can
survive for a sufficient number of generations, it will be possible to evolve, by genetic operators, into the right genotype cor-
responding to the learned fitness [29]. Even though the characteristics to be learned in the phenotype space were not genet-
ically specified, there is evidence [30,31] to show that the Baldwin effect is able to direct the genotypic changes.

Recently, Baldwin effect was widely incorporated into evolutionary computing models to improve their performance.
Yuan et al. [32] presented a hybrid genetic algorithm (HGA) in which the local search step is based on the Baldwin effect.
Zhang [33] proposed a sexual adaptive genetic algorithm (AGA). By employing the Baldwin effect, AGA guides individuals
to forward or reverse learning and enables the transmission of fitness information between parents and offspring to adapt
individuals’ acquired fitness. Gong et al. [34,25] first introduced the Baldwin effect into CSA and formulated the Baldwinian
clonal selection algorithm (BCSA), which guides the evolution of each antibody by the differential information of other anti-
bodies in the population. Qi et al. [35] incorporated the Baldwinian learning strategy into the nondominated neighborhood
immune algorithm for multi-objective optimization. The Baldwinian learning strategy extracts the evolving environment of
current population by building a probability distribution model and generates a predictive improving direction by combining
the environment information and evolving history of the parental individuals. Zhang et al. [36] incorporated the Larmarckian
and Baldwinian learning by analyzing the search ability between exploration and exploitation in the process of migration
among subpopulations as well as in the hybridization of differential evolution (DE) [37] and local search.
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2.3. Orthogonal experimental design

Considering a system whose cost depends on K factors (i.e., variables) and each factor can take one of Q levels (i.e., values),
we aim at finding the best combination of levels for each factor to minimize the system cost. The simplest way is to do one
experiment for each combination of factor levels and then select the best one. Obviously, it is impossible to try all QK trials
when K and Q are large. As an alternative, experimental design methods provide us an effective way to deal with this com-
binational optimization problem, which can sample a small number of well representative combinations for testing.

Orthogonal design is one of several widely used experimental design tools, which works on a predefined table, called
orthogonal array (OA). An OA with K factors and Q levels per factor is denoted by LMðQKÞ, where L denotes the orthogonal
array and M is the number of combinations of test cases. As an example, L9ð34Þ is shown as follows:
L9ð34Þ ¼

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

2
66666666666666664

3
77777777777777775

: ð6Þ
Each row in this array is a combination of levels, that is, an experiment. So there are 9 experiments in total. Specifically, the
fourth row [2123] means that factors 1, 2, 3, 4 are respectively set as levels 2, 1, 2 and 3.

The orthogonality of an OA means that: (1) Each level of the factor occurs equal times in each column and (2) each
possible level combination of any two given factors occurs equal times in the array. Orthogonal experimental design is a
sampling method used in the predefined space, which forms the orthogonal learning strategy.

3. Hybrid learning clonal selection algorithm

In this section, two learning mechanisms, the Baldwinian learning and orthogonal learning, will be described in detail.
Based on these two important ingredients, the whole framework of HLCSA as well as several explanations will be presented.

3.1. Baldwinian learning

The Baldwinian learning draws inspiration from the Baldwin effect, which basically encourages guiding the evolutionary
process through learning [38,39]. It makes use of the exploration performed by the phenotype to facilitate the evolutionary
search for good genotypes. The Baldwinian learning mechanism was first introduced to improve the performance of CSA by
Gong et al. [25]. The Baldwinian learning is essentially a ‘rand/1’ like operator, which is the widely used operation in differ-
ential evolution [37]. In the resulting Baldwinian learning CSA (BCSA), each antibody is enhanced by learning from the dif-
ferential information of two randomly selected antibodies according to user-defined probability. However, [40,41] show that
learning from exemplar, which are corresponding to ‘best/2’ and ‘best/1’ operators, may have some advantages over ‘rand/1’.
Furthermore, some other learning rules may be suitable for some specific problems. Wang et al. proposed the composite dif-
ferential evolution (CoDE) model [42], which also uses composite trial vector generating strategies.

Obviously, different learning strategies have different characteristics which will be helpful for different optimization
problems. To this end, we maintain a strategy candidate pool which contains several effective learning rules instead of using
only a single learning rule. In the present study, the newly designed Baldwinian leaning pool maintains the following four
strategies:

� BL/rand/1:
y!i;G ¼ x!r1;G þ s � ð x!r2;G � x!r3;GÞ; ð7Þ

� BL/rand/2:

y!i;G ¼ x!r1;G þ s � ð x!r2;G � x!r3;GÞ þ s � ð x!r4;G � x!r5;GÞ; ð8Þ

� BL/current-to-rand/1:

y!i;G ¼ x!i;G þ rand � ð x!r1;G � x!i;GÞ þ s � ð x!r2;G � x!r3;GÞ; ð9Þ

� BL/current-to-best/2:

y!i;G ¼ x!i;G þ s � ð x!best;G � x!i;GÞ þ s � ð x!r1;G � x!r2;GÞ þ s � ð x!r3;G � x!r4;GÞ; ð10Þ
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where x!i;G is the selected antibody to do Baldwinian learning and y!i;G is the resulting antibody. r1; r2; r3; r4 and r5 are
different indices uniformly randomly selected from f1;2; . . . ;NPg n fig; s is the strength of Baldwinian learning, and rand
is a random number in ½0;1�.

When performing Baldwinian learning in each generation, each learning strategy in the candidate pool is used to create a
new vector. Thus, four vectors are generated for each antibody and then the best one will be selected to enter the next stage.

The reasons accounting for selecting these four learning rules to construct the strategy pool are as follows. In the ‘BL/rand/
1’ strategy, all vectors are selected randomly from the population and have no bias to any specific direction. This strategy
usually demonstrates slow convergence speed and bears stronger exploration capacity. Therefore, it is usually more suitable
for solving multi-modal problems than the strategies relying on the best solution found so far. Similarly, the ‘BL/rand/2’
strategy, which is a two-difference-vectors-based strategy, may lead to better perturbation than the strategies with only
one difference vector and thus can generate more different vectors than ‘BL/rand/1’ strategy. It helps to maintain the diver-
sity of population and avoid premature, which can avoid the slow convergence problem in later evolutionary process to some
extent. ‘BL/current-to-rand/1’ is a rotation-invariant strategy [43] and will be beneficial to the rotated multi-modal prob-
lems. Strategies such as ‘best/1’ and ‘best/2’, which rely on the best solution found so far, usually lead to fast convergence
speed and perform well when solving unimodal problems and easily get stuck in local optima. Therefore we use the ‘cur-
rent-to-best/2’ strategy instead and this two-difference-vectors-based strategy can bring much diversity to avoid premature
when solving multi-modal problems.

3.2. Orthogonal learning

After performing the Baldwinian learning on each antibody, the antibody as well as its corresponding best Baldwinian
learning vector are obtained. We randomly select several pairs of them to undergo orthogonal learning (OL), which means
the OL operator is used to probe the hyper-rectangle defined by the antibody and its best Baldwinian learning vector. The
detailed implementation of OL strategy will be described later. The OED is previously prepared to reduce the computational
effort in each generation; however, within our framework, following the idea in [44], we only apply OL on one pair of these
antibodies to save the computational cost and keep the implementation simple. The experimental results show that the
sampling solutions produced by OL strategy can effectively probe such defined search space.

The motivations of introducing OL strategy in this study are twofold.

� The Baldwinian learning mechanism performs as exploration by using the phenotype to guide the evolutionary search for
good genotypes. However, as mentioned in [26], the excellent search ability relies on a healthy balance in exploration
(global search) and exploitation (local refinement) under a fixed computational budget, so we need to incorporate a local
improvement mechanism to enhance the evolutionary search efficacy of CSA. Accordingly, OL strategy here can be seen as
a local search strategy for compensating the global search strategy performed by Baldwinian learning.
� Recent studies have shown that incorporating orthogonal experimental design in evolutionary computing algorithms can

improve their performance significantly. Zhang and his collaborators designed the orthogonal crossover (OX) based on
OED [45,46]. OX operators can make a systematic and statistically sound search in a region defined by parental solutions.
Similarly, OED has been widely incorporated into other evolutionary models such as CSA [10], differential evolution
[47,44], particle swarm optimization [48,49] and effectively improve the performance of these models. Furthermore,
orthogonal design was used to solve constrained evolutionary optimization problem [50]. In this paper, we use the
OED to form an OL strategy, which searches the specified hyper-rectangle in order to construct some more promising
individuals. From this perspective, OL can be viewed as a strategy to refine solutions.

Here we give the detailed description of OL strategy. If a!¼ ða1; a2; . . . ; aDÞ and b
!
¼ ðb1; b2; . . . ; bDÞ are the two selected

antibodies to undergo OL search. The search range for i-th dimension is defined as ½minðai; biÞ;maxðai; biÞ�.
Considering the fact that the dimension of variables D may be larger than K, we use the quantization technique [46] to

partition ðx1; x2; . . . ; xDÞ into K subvectors, specifically
F
!

1 ¼ ðx1; . . . ; xt1 Þ

F
!

2 ¼ ðxt1þ1; . . . ; xt2 Þ

� � �

F
!

K ¼ ðxtK�1þ1; . . . ; xDÞ

8>>>>>>><
>>>>>>>:

ð11Þ
where t1; t2; . . . ; tK�1 are randomly generated integers which satisfy 1 < t1 < t2 < � � � < tK�1 < D. OL treats each
F
!

i; i ¼ 1;2; . . . ;K , as a factor and accordingly there are K factors in total. Based on the definition of LMðQ KÞ, we should define
Q levels for F

!
i:
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L
!

i1 ¼ ðlti�1þ1;1; lti�1þ2;1; . . . ; ltiþ1;1Þ

L
!

i2 ¼ ðlti�1þ1;2; lti�1þ2;2; . . . ; ltiþ1;2Þ

� � �

L
!

iQ ¼ ðlti�1þ1;Q ; lti�1þ2;Q ; . . . ; ltiþ1;Q Þ

8>>>>>><
>>>>>>:

ð12Þ
and
li;j ¼minðai; biÞ þ
j� 1
Q � 1

� ½maxðai; biÞ �minðai; biÞ�; ð13Þ
where j ¼ 1;2; . . . ;Q . In this way, LMðQ KÞ can be used on factors F
!

i; i ¼ 1;2; . . . ;K , to construct M solutions, where each factor
holds Q levels.

If the dimension of variables D is smaller than K, the first D columns of the orthogonal array can be used to OL directly. If
L9ð34Þ is used on 2-dimensional space (the first 2 columns of array (6) are used) and two parental solutions are a!=(-1,2) and
b
!

=(0,1), the corresponding nine quantized points generated by orthogonal learning are shown in Fig. 1.
The concrete examples of implementing this orthogonal learning with quantization can be found in [46,44].

3.3. The proposed algorithm framework

This section introduces the proposed hybrid learning clonal selection algorithm (HLCSA), whose overall framework is
summarized in Algorithm 2.

Algorithm 2. Hybrid Learning Clonal Selection Algorithm (HLCSA)

Parameters
NP: population size;
q: clonal scale (=4);
s: strength of Baldwinian learning;

LMðQKÞ: orthogonal array;
mFES: maximum number of function evaluations;
FES: current number of function evaluations

Step 1: Initialization
Set current generation number t = 0 and current number of function evaluations FES = 0;
Randomly generate initial population in the feasible solution space:

A(0)= a!1ð0Þ; a!2ð0Þ; . . . ; a!NPð0Þ
n o

;

Calculate the affinity of each antibody a!i (i ¼ 1;2; . . . ;NP) in the initial population;
Set the current number of function evaluations FES = NP;

Step 2: Randomly choose an index k from {1;2; . . . ;NP};
Step 3: Clonal Proliferation

Apply clonal proliferation operator TC on A(t) and generate the resulting population X(t) (each antibody in A(t) will
be proliferated to four antibodies);

Step 4: Baldwinian Learning
Apply Baldwinian learning strategy on X(t) and generate the resulting population Y(t) (each antibody in X(t) will

undergo Baldwinian learning according to (7)–(10));
Choose the best one of the four Baldwinian learning vectors originating from the same antibody and form a new

population Z(t);
Update the number of function evaluations as FES =FES + q�NP;

Step 6: Orthogonal Learning
Apply OL strategy to search the space defined by a!kðtÞ and z!kðtÞ, which will generate M sampling solutions;
Choose the best one of these M solutions to substitute z!kðtÞ;
Update the number of function evaluations as FES =FES+Q2;

Step 7: Clonal Selection

Generate A(t + 1) by applying clonal selection operator TS on Z(t) and A(t);
Step 8: If FESPmFES, stop and output the best results; otherwise, set t = t + 1 and go to Step 2.



Fig. 1. Illustration of quantization in two-dimensional space.
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Below are explanations of some operations defined in the HLCSA framework.

� There are four strategies in the candidate pool for Baldwinian learning and thus each antibody will be proliferated to four
antibodies. Therefore the clonal scale q is four, which means that there will be 4⁄NP antibodies after Baldwinian learning if
the initial population size is NP. This process can be described as follows:
XðtÞ ¼ x!11ðtÞ; . . . ; x!1qðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

; x!21ðtÞ; . . . ; x!2qðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

; . . . ; x!NP;1ðtÞ; . . . ; x!NP;qðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

8><
>:

9>=
>;

¼ a!1ðtÞ; . . . ; a!1ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4

; a!2ðtÞ; . . . ; a!2ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4

; . . . ; a!NPðtÞ; . . . ; a!NPðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4

8<
:

9=
;;
YðtÞ ¼ y!11ðtÞ; . . . ; y!1qðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

; y!21ðtÞ; . . . ; y!2qðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

; . . . ; y!NP;1ðtÞ; . . . ; y!NP;qðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q

8><
>:

9>=
>;;

where y!ij is obtained from x!i based on (7)–(10) for i ¼ 1;2; . . . ;NP and j ¼ 1;2; . . . ; q. Among these four antibodies, the
best one is selected and consequently NP antibodies are selected to form an intermediate population ZðtÞ as follows:

ZðtÞ ¼ y!1;bestðtÞ; y!2;bestðtÞ; . . . ; y!NP;bestðtÞ
n o

, z!1ðtÞ; z!2ðtÞ; . . . ; z!NPðtÞ
n o

;

where Fð z!iðtÞÞ ¼min Fð y!i1ðtÞÞ; . . . ; Fð y!iqðtÞÞ
n o

.
� Once choosing an index from [1, NP] randomly, we will obtain two parental antibodies, which are antibody a!2 AðtÞ and

its best Baldwinian learning vector z!2 AðtÞ. Applying OL strategy on this hyper-rectangle defined by a! and z!, this oper-
ation will generate M antibodies if LMðQ kÞ OED [45] used. Choosing the best one of these M new solutions to substitute z!.
The following step is clonal selection between AðtÞ and ZðtÞ.
� As mentioned in Section 2.1, the hyper-mutation is a semi-blind operator and in HLCSA its role has been replaced by Bal-

dwininan learning and orthogonal learning. Therefore, there is no hyper-mutation operation in the proposed HLCSA
framework.

4. Experimental studies

In this section, we conduct experiments to evaluate the performance of HLCSA by solving 16 commonly used global opti-
mization problems. We firstly compare HLCSA with traditional CSA and then compare HLCSA with some state-of-the-art evo-
lutionary computing models. Some discussions on the performance analysis of HLCSA are also included.

4.1. Test functions

Table 1 gives the test functions used in the experiments. They can be categorized into four types: f 1 � f 2 are unimodal
functions, f 3 � f 8 are unrotated multi-modal functions, f 9 � f 14 are rotated multi-modal functions, and f 15 � f 16 are compos-
ite functions. The detailed characteristics of these functions can be found in [51,52].



Table 1
Benchmark functions used in our experimental study.

Name Test function D S f min

Sphere fun f 1ðxÞ ¼
PD

i¼1x2
i

10/30 [�100,100] 0

Rosenbrock’s fun f 2ðxÞ ¼
PD�1

i¼1 100 x2
i � xiþ1

� �2 þ ðxi � 1Þ2
� �

10/30 [�2.048,2.048] 0

Ackley’s fun
f 3ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1x2

i

q� 	
� exp 1

D

PD
i¼1 cosð2pxiÞ

� �
þ 20þ e

10/30 [�32.768,32.768] 0

Griewanks’s fun f 4ðxÞ ¼
PD

i¼1
x2

i
4000�

QD
i¼1 cosð xiffi

i
p Þ þ 1 10/30 [�600,600] 0

Weierstrass fun f 5ðxÞ ¼
PD

i¼1
Pkmax

k¼1 ½ak cosð2pbkðxi þ 0:5ÞÞ�
n o

� D
Pkmax

k¼1 ak cosð2pbk � 0:5Þ
n o

a ¼ 0:5; b ¼ 3; kmax ¼ 20

10/30 [�0.5,0.5] 0

Rastrigin’s fun f 6ðxÞ ¼
PD

i¼1fx2
i � 10 cosð2pxiÞ þ 10g 10/30 [�5.12,5.12] 0

Noncont. Ras
f 7ðxÞ ¼

PD
i¼1 y2

i � 10 cosð2pyiÞ þ 10

 �

, yi ¼
xi jxij < 0:5
roundð2xiÞ

2 jxijP 0:5

�
, i ¼ 1;2; . . . ;D

10/30 [�5.12,5.12] 0

Schwefel’s fun f 8ðxÞ ¼ 418:9829D�
PD

i¼1fxi sinðjxij0:5Þg 10/30 [�500,500] 0

Rot. Ackley’s f 9ðxÞ ¼ f 3ðyÞ; y ¼ M � x 10/30 [�32.768,32.768] 0
Rot. Griewanks’s f 10ðxÞ ¼ f 4ðyÞ; y ¼ M � x 10/30 [�600,600] 0
Rot. Weierstrass f 11ðxÞ ¼ f 5ðyÞ; y ¼ M � x 10/30 [�0.5,0.5] 0
Rot. Rastrigin’s f 12ðxÞ ¼ f 6ðyÞ; y ¼ M � x 10/30 [�5.12,5.12] 0
Rot. noncon Ras f 13ðxÞ ¼ f 7ðyÞ; y ¼ M � x 10/30 [�5.12,5.12] 0
Rot. Schwefel’s

f 14ðxÞ ¼ 418:9829D�
PD

i¼1zi , zi ¼
yi sinðjyij

0:5Þ jyij 6 500
0:001ðjyij � 500Þ2 jyij > 500

�
,

i ¼ 1;2; . . . ;D; y ¼ M � ðx� 420:96Þ þ 420:96

10/30 [�500,500] 0

Composition f 15 ¼ CF1 10/30 [�5,5] 0
Composition f 16 ¼ CF2 10/30 [�5,5] 0
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4.2. Experimental settings

The experiments are divided into two parts: (1) We compare the HLCSA with the traditional clonal selection algorithm
(CLONALG) [1] on the above mentioned 16 test problems with 10 dimensions and 30 dimensions, respectively and (2) exper-
iments are conducted on the proposed HLCSA model and other seven state-of-the-art evolutionary algorithms on the same
optimization problems. The seven representative evolutionary algorithms are listed as follows:

� Baldwinian clonal selection algorithm (BCSA) [25];
� Self-adaptive differential evolution (SaDE) [43];
� Orthogonal crossover based differential evolution (OXDE) [44];
� Orthogonal genetic algorithm with quantization (OGA/Q) [46];
� Comprehensive learning particle swarm optimization (CLPSO) [51];
� Evolutionary strategy with covariance matrix adaptation (CMA-ES) [53];
� Global and local real-coded genetic algorithm (GL-25) [54].

The population size is set as 30 for both 10-D and 30-D problems and the maximum number of function evaluations
(mFES) are set as 10;000� D, respectively. All experiments were run 30 independent times. Any specific algorithm-related
parameters are set exactly the same as those in the original work. The results including the mean values and standard devi-
ations are reported. In HLCSA, the parameter s, which is the strength of Baldwinian learning, is approximated by a normal
distribution with mean value 0.5 and standard deviation 0.3, denoted by N(0.5,0.3). Different values of s are randomly sam-
pled from this normal distribution and applied to each Baldwinian learning rule. In OGA/Q [46], the initial population was
generated with orthogonal design. In this paper, the global optimal solutions of some test instances are located at the center
of the feasible solution space. If the orthogonal design is used to generate the initial population, it can directly find the global
optimum after initialization without any evolutionary process. Therefore, we report the experimental results as well as the
convergence of OGA/Q based on random initialization for fair comparison.

4.3. Experimental results and discussions

4.3.1. Results of HLCSA and CLONALG
Table 2 shows the statistical results of CLONALG and HLCSA in optimizing the 16 test problems with D = 10 based on 30

independent runs including the maximum, minimum, mean and standard deviation. The best mean values are shown in bold
face. From the results, we can observe that, for all these test instances, HLCSA performs much better than CLONALG. HLCSA
can find the exact global optima of functions f 4; f 5; f 6; f 7, f 8; f 11; f 14 and f 15 with probability 1 and the approximate global
optima of functions f 2; f 3 and f 9. In fact, from the statistical results we know HLCSA can find the global optimum in most
of cases for function 16 only with small probability being trapped in local optima. This shows that the learning mechanism



Table 2
Results of traditional clonal selection algorithm and HLCSA when D ¼ 10.

ALGs Clonal selection algorithm Hybrid learning clonal selection algorithm

Max Min Mean Std Max Min Mean Std

f 1 1.6739e�007 2.2182e�009 5.0414e�008 4.4098e�008 5.4303e�052 2.8538e�055 4.2228e�053 9.9892e�053
f 2 8.1888e+000 3.1046e�001 5.5057e+000 2.7914e+000 2.9934e�027 0 3.9087e�028 6.6496e�028

f 3 4.7052e�002 5.0332e�005 2.8532e�003 8.5712e�003 2.6645e�015 0 2.5757e�015 4.8648e�016
f 4 6.6558e�002 1.2522e�007 2.6092e�002 1.9092e�002 0 0 0 0
f 5 2.2506e�002 6.2798e�003 1.2569e�002 4.4216e�003 0 0 0 0
f 6 1.3129e+001 3.2257e+000 8.4141e+000 2.4848e+000 0 0 0 0
f 7 8.0000e+000 3.0000e+000 5.7681e+000 1.3571e+000 0 0 0 0
f 8 5.9346e+002 1.9237e+002 3.6436e+002 9.7648e+001 0 0 0 0

f 9 2.5278e+000 9.1471e�003 1.0619e+000 7.9728e�001 3.5527e�015 3.5527e�015 3.5527e�015 0.0000e�000
f 10 6.3623e�001 1.6119e�001 4.2974e�001 1.0264e�001 6.8888e�002 0 2.8802e�002 1.9129e�002
f 11 8.2950e+000 2.1579e+000 6.0837e+000 1.5496e+000 0 0 0 0
f 12 5.0439e+001 3.0548e+001 4.2193e+001 5.4173e+000 9.9596e+000 0 4.2783e+000 2.0095e+000
f 13 5.2738e+001 3.1727e+001 4.3672e+001 5.5570e+000 1.1219e+001 5.4104e�011 4.2442e+000 2.6469e+000
f 14 2.2228e+003 9.4657e+002 1.9305e+003 2.3358e+002 0 0 0 0

f 15 1.0706e+002 1.4519e+000 4.5354e+001 3.2450e+001 0 0 0 0
f 16 8.4258e+001 1.7281e+001 5.1701e+001 1.7347e+001 2.4468e+000 0 4.6177e�001 8.1247e�001
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is appealing in searching new schemes within CSA than the widely used hyper-mutation operator. Moreover, solutions of
different optimization problems (unimodal, multi-modal, rotated multi-modal and composite problems) obtained by HLCSA
are very stable. This is mainly caused by the diverse characteristics of the candidate Baldwinian learning strategies in the
pool. Taking functions f 2; f 8 and f 14 for example, these three problems are ill-conditioned and their global optima are not
located at the symmetric centers of corresponding feasible solution spaces. The global optima of functions f 2, f 8 and f 14

can be obtained at ½1;1; . . . ;1�, ½420:96;420:96; . . . ;420:96� and ½420:96;420:96; . . . ;420:96�, respectively. However, HLCSA
can effectively adapt to different optimization stages and find the global optima of functions f 8 and f 14, and the approximate
global optimum of function f 2.

Table 3 shows the results for CLONALG and HLCSA when D = 30, which indicate that HLCSA scales well in dealing with
high-dimensional optimization problems. The best mean values are shown in bold face. The performance of HLCSA has
no obvious degeneration for all the test problems except function f 14 while CLONALG performs much worse. The local per-
turbation in CLONALG severely relies on the information of antibody itself, which leads to the lack of ability to jump out of
local optima when the landscape of optimization problems are complex. However, the learning mechanism in HLCSA can
help to pull the antibody out of local optima and effectively guide the evolutionary process towards the global optima.

4.3.2. Results of HLCSA and other EAs
Table 4 presents the mean values and standard deviations of the eight algorithms on the 16 test functions with D ¼ 10,

where the best results are shown in bold face. The best results among these eight algorithms are shown in boldface. As can be
seen from the results, we observe that HLCSA surpasses all the other algorithms on functions f 2; f 4, f 14 and f 16 with great
superiority. HLCSA can reach the global optima with probability 1 on functions f 4 and f 14. Moreover, HLCSA, BCSA, SaDE,
and CLPSO can obtain the global minima 0 on functions f 5; f 6; f 7, and f 8; HLCSA, BCSA, SaDE, OXDE get the gloabl optimum
of function f 11 and HLCSA, SaDE, OXDE, GL-25 find the optimum on function f 15. HLCSA especially improves the results on
functions f 2; f 4; f 14 and f 16. Though HLCSA cannot get the best results on functions f 3; f 9; f 10; f 12 and f 13, it still get the com-
parable solutions with respect to the best results obtained by one of the other algorithms. HLCSA performs better on complex
problems such as the ill-conditioned problems (functions f 2; f 8 and f 14) and the composite problems (functions f 15 and f 16)
while the other algorithms are easily trapped in local optima. HLCSA successfully avoids falling into deep local optima which
are far away from the global optimum. OXDE shares similar properties with HLCSA, which makes the differential evolution
and orthogonal learning work in parallel towards the excellent solution spaces; however, the orthogonal learning in HLCSA is
performed after the Baldwinian learning stage in each generation, which is more like a local search operator to refine the
solutions found in Baldwinian learning stage. OXDE can reach the optimal results on functions f 5; f 8, f 11 and f 15. For function
f 2, only OXDE can obtain a comparable result with that obtained by HLCSA. Without uniform initial population generated by
orthogonal experimental design, OGA/Q cannot get promising results on most optimization problems. There may be two rea-
sons accounting for this phenomenon: (1) the parameters used in the experiment are not the optimal values for running
OGA/Q (e.g., the population size NP, the size of orthogonal array M, and the genetic algorithm related parameters Pc; Pm)
and (2) the standard genetic algorithm framework, which employs the crossover and mutation as main operators to generate
new schemes, is not effective enough for complex optimization problems.

Furthermore, the distance index
DistðDÞ ¼
log10ðf bestðDÞ � f optðDÞÞ

D
; ð14Þ



Table 3
Results of traditional clonal selection algorithm and HLCSA when D ¼ 30.

ALGs Clonal selection algorithm Hybrid learning clonal selection algorithm

Max Min Mean Std Max Min Mean Std

f 1 1.4476e�001 2.6361e�002 6.4595e�002 2.9504e�002 1.1106e�064 1.9204e�068 7.1289e�066 2.0169e�065
f 2 3.6521e+001 2.2686e+001 2.7748e+001 2.1866e+000 3.0489e�014 4.7144e�020 1.1617e�015 5.5448e�015

f 3 7.7705e�001 1.1075e�001 3.1589e�001 1.8716e�001 2.6645e�015 2.6645e�015 2.6645e�015 0.0000e�000
f 4 2.4262e�001 5.9626e�002 1.6746e�001 4.3211e�002 0 0 0 0
f 5 7.8409e�001 4.9631e�001 6.3164e�001 7.5307e�002 0 0 0 0
f 6 4.4944e+001 2.9332e+001 3.6752e+001 4.6907e+000 0 0 0 0
f 7 2.8000e+001 1.8002e+001 2.3935e+001 2.5226e+000 0 0 0 0
f 8 1.8848e+003 1.1766e+003 1.6279e+003 1.7813e+002 0 0 0 0

f 9 4.5588e+000 3.1783e+000 3.8700e+000 3.2556e�001 3.5527e�015 3.5527e�015 3.5527e�015 0.0000e�000
f 10 9.3288e�001 6.1664e�001 8.3333e�001 7.5256e�002 0 0 0 0
f 11 3.9576e+001 2.6649e+001 3.3702e+001 2.7162e+000 0 0 0 0
f 12 2.9042e+002 2.3028e+002 2.5929e+002 1.4658e+001 3.7808e+001 1.2934e+001 2.5471e+001 6.7663e+000
f 13 3.0161e+002 2.0977e+002 2.5762e+002 2.1376e+001 8.1537e+001 1.6995e+001 4.7609e+001 1.5104e+001
f 14 9.3431e+003 7.9673e+003 8.7875e+003 3.2136e+002 2.4636e+003 2.1714e+002 1.0663e+003 5.2886e+002

f 15 6.3307e+001 2.8034e+001 4.4892e+001 9.5942e+000 0 0 0 0
f 16 4.9399e+001 3.3236e+001 3.9889e+001 4.3023e+000 5.3329e+000 9.0349e�001 3.2212e+000 1.0133e+000

Table 4
Results (mean ± std) of HLCSA and other state-of-the-art evolutionary algorithms when D ¼ 10.

ALGs f 1 f 2 f 3 f 4

HLCSA 4.2228e�053 ± 9.9892e�053 3.9087e�028 ± 6.6496e�028 2.5757e�015 ± 4.8648e�016 0 ± 0
BCSA 1.1694e�037 ± 1.3065e�037� 1.8521e�001 ± 7.2808e�001� 2.6645e�015 ± 0.0000e�000	 1.4146e�001 ± 1.3744e�001�

SaDE 1.4451e�176 ± 0.0000e�000� 2.0249e+000 ± 7.4832e�001� 5.0330e�015 ± 1.1109e�015� 1.8074e�003 ± 3.8251e�003�

OXDE 4.5059e�056 ± 7.4966e�056� 1.0265e�026 ± 2.0786e�026� 2.0724e�015 ± 1.3467e�015� 9.9330e�004 ± 1.0673e�002�

OGA/Q 5.3319e�001 ± 6.7874e�001� 1.6235e+001 ± 2.1478e+001� 4.8250e�001 ± 3.7514e�001� 4.8189e�001 ± 2.2341e�001�

CLPSO 1.8154e�041 ± 3.0360e�041� 2.1490e+000 ± 1.2450e+000� 3.9672e�015 ± 1.7413e�015� 7.4577e�006 ± 2.1864e�005�

CMA-ES 7.7614e�039 ± 2.2017e�039� 5.3154e�001 ± 1.3783e+000� 1.9403e+001 ± 3.0498e�001� 8.9474e�003 ± 9.0610e�003�

GL-25 1.0771e�321 ± 0.0000e�000� 2.0956e+000 ± 6.3579e�001� 2.7830e�015 ± 1.4703e�015	 1.2134e�002 ± 1.0199e�002�

ALGs f 5 f 6 f 7 f 8

HLCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
BCSA 0 ± 0	 0 ± 0	 0 ± 0	 0 ± 0	

SaDE 0 ± 0	 0 ± 0	 0 ± 0	 0 ± 0	

OXDE 0 ± 0	 6.6331e�002 ± 2.5243e�001� 5.6667e�001 ± 7.2793e�001� 0 ± 0	

OGA/Q 4.3288e�001 ± 1.3145e�001� 3.1418e�001 ± 3.7811e�001� 3.0388e�001 ± 1.9649e�001� 1.2069e+000 ± 1.1358e+000�

CLPSO 0 ± 0	 0 ± 0	 0 ± 0	 0 ± 0	

CMA-ES 3.7346e�001 ± 6.5859e�001� 7.6213e+001 ± 1.9296e+001� 8.1200e+001 ± 2.8241e+001� 1.7471e+003 ± 3.9521e+002�

GL-25 7.3315e�007 ± 2.2405e�006� 1.9633e+000 ± 1.1774e+000� 5.6336e+000 ± 1.2724e+000� 2.8952e+002 ± 1.9959e+002�

ALGs f 9 f 10 f 11 f 12

HLCSA 3.5527e�015 ± 0.0000e�000 2.8802e�002 ± 1.9129e�002 0 ± 0 4.2783e+000 ± 2.0095e+000
BCSA 3.5527e�015 ± 0.0000e�000	 3.2715e�001 ± 1.7104e�001� 0 ± 0	 6.2881e+001 ± 1.6334e+001�

SaDE 9.4739e�016 ± 1.5979e�015� 1.3704e�002 ± 1.6048e�002� 0 ± 0	 3.9135e+000 ± 1.4295e+000�

OXDE 3.1974e�015 ± 1.0840e�015	 4.9045e�001 ± 2.7411e�002� 0 ± 0	 3.7808e+000 ± 1.9094e+000�

OGA/Q 1.8265e+000 ± 8.2484e�001� 7.4891e�001 ± 1.7034e�001� 3.3346e+000 ± 9.2087e�001� 1.1955e+001 ± 5.0220e+000�

CLPSO 3.8606e�014 ± 5.8665e�014� 2.8592e�002 ± 1.5307e�002	 1.4403e�002 ± 1.2235e�002� 4.1634e+000 ± 9.0362e�001�

CMA-ES 1.8759e+001 ± 3.5652e+000� 1.0993e�002 ± 1.0707e�002� 5.1369e�001 ± 7.1191e�001� 7.1669e+001 ± 2.3717e+001�

GL-25 3.5527e�015 ± 0.0000e�000	 1.0545e�002 ± 1.0858e�002� 2.1771e�004 ± 4.7010e�004� 3.3619e+000 ± 2.2861e+000�

ALGs f 13 f 14 f 15 f 16

HLCSA 4.2442e+000 ± 2.6469e+000 0 ± 0 0 ± 0 4.6177e�001 ± 8.1247e�001
BCSA 6.5935e+001 ± 1.0618e+001� 2.6391e+002 ± 7.9682e+001� 4.3387e�031 ± 6.5797e�031� 8.7291e+000 ± 1.7669e+001�

SaDE 3.9534e+000 ± 1.9500e+000� 2.0681e+002 ± 8.6302e+001� 0 ± 0	 1.8019e+001 ± 3.7308e+001�

OXDE 3.0956e+000 ± 1.1245e+000� 1.5792e+001 ± 6.7669e+001� 0 ± 0	 1.0047e+001 ± 3.0498e+001�

OGA/Q 1.1296e+001 ± 4.9557e+000� 1.1708e+003 ± 4.4485e+002� 6.0134e+001 ± 7.2387e+001� 1.3740e+002 ± 1.5614e+002�

CLPSO 2.0254e+000 ± 1.0621e+000� 3.1281e+002 ± 1.5723e+002� 2.3104e�002 ± 6.5636e�002� 6.0233e+000 ± 4.0698e+000�

CMA-ES 7.8599e+001 ± 2.8068e+001� 1.7538e+003 ± 6.7858e+002� 1.2667e+002 ± 1.8370e+002� 1.2878e+002 ± 2.2171e+002�

GL-25 7.3657e+000 ± 2.2262e+000� 5.2254e+002 ± 1.7963e+002� 0 ± 0	 9.0000e+001 ± 3.0513e+001�

‘‘y’’ and ‘‘z’’ indicate the t value is significant at a 0.05 level of significance by two-tailed t-test. ‘‘y’’, ‘‘z’’ and ‘‘	’’ denote the performance of corresponding
algorithm is better than, worse than, and similar to that of HLCSA, respectively.

138 Y. Peng, B.-L. Lu / Information Sciences 296 (2015) 128–146



Y. Peng, B.-L. Lu / Information Sciences 296 (2015) 128–146 139
which was suggested in [55], is employed to measure the convergence speed of each algorithm. Fig. 2 presents the DistðDÞ
values in terms of the best fitness value of the median run of each algorithm for each problem (D = 10). We record the best
solutions every 5000 function evaluations for each test problem with total function evaluations 100,000. Therefore, the inter-
val for the horizontal coordinate is [1,20] and the vertical coordinate shows the value of DistðDÞ. It can be viewed from the
convergence graphs, among these eight algorithms, HLCSA and SaDE have the comparatively best convergence characteristic
for most test problems. SaDE employs different learning rules as well as adaptive control parameters according to the evo-
lutionary history and thus it can adapt to different optimization stages and attain good convergence speed. However, SaDE
has high computational cost on adapting the parameters F and CR. GL-25 shows good convergence speed on functions
f 1; f 3; f 9; f 10; f 12 and f 15. CLPSO, which guides the evolutionary process by learning from all other particles’ historical best
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Fig. 2. The median dist(D) values of 10-D test functions.
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Fig. 2 (continued)
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information, performs well on functions f 5; f 6; f 7; f 8 and f 13. HLCSA can be seen as an enhanced version of BCSA with two
improvements: (1) using more Baldwinian learning rules to explore the feasible solution space and (2) incorporating the
orthogonal learning strategy to refine the solutions; therefore, it consistently converges faster than BCSA. OXDE has similar
convergence speed with HLCSA on functions f 2; f 3, f 5; f 11 and f 15. Though OGA/Q employed the orthogonal crossover operator
as well, it does not work on excellent parents; in other words, the subspace defined by parents is large or not promising and
it is hard for orthogonal learning to search in such subspace effectively. Therefore, OGA/Q has slower convergence speed with
respect to HLCSA.

The experiments conducted on 10-D problems are repeated on the 30-D problems and the results are presented in Table 5.
Table 5 shows the scalability of HLCSA is pretty well when dealing with high dimensional optimization problems, where the
best results are shown in bold face. It can consistently obtain good results when D ¼ 30. Overall, the performance of HLCSA on
30-D problems are slightly better than those on 10-D problems. HLCSA can achieve the best performance on functions f 2; f 3; f 4,
f 5; f 6; f 7; f 8; f 9; f 10; f 11 and f 15. Even HLCSA cannot find the best results on functions f 12; f 13 and f 16, its obtained results are very
close to the best results obtained by one of the other algorithms. For example, the best result on function f 16

(2.5992e+000 ± 5.6332e�001) is found by GL-25 while a comparable result obtained by HLCSA is 3.2212e+000 ±
1.0133e+000. HLCSA greatly improves the results on functions f 2; f 9; f 10, f 11 and f 15. It obtains comparatively good results
on functions f 12; f 13 and f 14. The convergence characteristics of HLCSA on the 30-D problems are similar with those when
D ¼ 10 and are not presented here.

4.4. Discussions

In this section, we will give some discussions on the proposed HLCSA from the following aspects:

� The sensitivity of parameter s which is the strength of Baldwinian learning.
� The performance comparison between OGA/Q and HLCSA in which orthogonal design are used to initialize a uniform

population.
� The effect of the size of the orthogonal array.
� The performance comparison between HLCSA without orthogonal learning and the existing Baldwinian clonal selection

algorithm (BCSA).
� The number of times of each the newly designed Baldwinian learning strategy in the candidate pool.

The strength of Baldwinian learning parameter s is approximated by a normal distribution with mean 0.5 and standard
deviation 0.3, which follows the setting of the scaling factor F in [43]. For testing the sensitivity of s, we have tested another
three variants of HLCSA in which s are fixed as 0.9, 0.5 and 0.3, respectively. We denote these three variants as HLCSA_S09,
HLCSA_S05 and HLCSA_S03, respectively. The comparison results are presented in Table 6. From Table 6, we can see that
HLCSA with s following the Gaussian distribution can obtain best result on most test instances. HLCSA has weaker results



Table 5
Results (mean ± std) of HLCSA and other state-of-the-art evolutionary algorithms when D ¼ 30.

ALGs f 1 f 2 f 3 f 4

HLCSA 7.1289e�066 ± 2.0169e�065 1.1617e�015 ± 5.5448e�015 2.6645e�015 ± 0.0000e�000 0 ± 0
BCSA 2.9665e�025 ± 8.4182e�025� 1.9018e+001 ± 2.6925e+000� 1.5614e�013 ± 3.9345e�013� 0 ± 0	

SaDE 9.1236e�150 ± 4.4538e�149� 2.1973e+001 ± 1.0132e+000� 7.7383e�001 ± 6.0009e�001� 1.1999e�002 ± 1.9462e�002�

OXDE 4.8545e�059 ± 1.2064e�058� 2.6577e�001 ± 1.0114e+000� 2.6645e�001 ± 0.0000e�000� 2.8730e�003 ± 5.6727e�003�

OGA/Q 1.1781e+000 ± 7.6430e�001� 9.2384e�001 ± 3.9658e�001� 5.5912e�001 ± 1.8677e�001� 8.1427e�001 ± 1.7221e�001�

CLPSO 1.9761e�029 ± 1.5041e�029� 1.7605e+001 ± 3.6364e+000� 1.8415e�014 ± 3.0495e�015� 1.1102e�016 ± 3.2467e�016�

CMA-ES 6.6629e�029 ± 1.2542e�029� 2.6577e�001 ± 1.0114e+000� 1.9417e+001 ± 1.4026e�001� 1.4782e�003 ± 4.2710e�003�

GL-25 5.3539e�228 ± 0.0000e�000� 2.0832e+001 ± 8.6842e�001� 8.4969e�014 ± 1.7664e�013� 9.7959e�015 ± 3.2264e�014�

ALGs f 5 f 6 f 7 f 8

HLCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
BCSA 0 ± 0	 0 ± 0	 0 ± 0	 0 ± 0	

SaDE 9.5195e�002 ± 1.5798e�001� 8.6230e�001 ± 8.9502e�001� 6.3333e�001 ± 7.6489e�001� 3.9479e+001 ± 6.4747e+001�

OXDE 1.6214e�003 ± 6.5408e�003� 9.4189e�000 ± 2.0859e�000� 1.5100e+001 ± 2.9868e+000� 3.9479e+000 ± 2.1624e+001�

OGA/Q 1.2748e+000 ± 2.3090e�001� 8.6041e�001 ± 4.0063e�001� 1.6526e+000 ± 5.5564e�001� 5.3729e+000 ± 6.5351e+000�

CLPSO 0 ± 0	 0 ± 0	 8.7634e�015 ± 1.3333e�014� 0 ± 0	

CMA-ES 3.1331e+000 ± 2.2102e+000� 2.3285e+002 ± 4.3316e+001� 2.5993e+002 ± 3.8251e+001� 5.3906e+003 ± 8.5755e+002�

GL-25 7.1724e�004 ± 4.8027e�004� 2.3030e+001 ± 8.4952e+000� 3.9096e+001 ± 2.2071e+001� 3.5030e+003 ± 6.8004e+000�

ALGs f 9 f 10 f 11 f 12

HLCSA 3.5527e�015 ± 0.0000e�000 0 ± 0 0 ± 0 2.5471e+001 ± 6.7663e+000
BCSA 1.3086e�013 ± 3.4341e�013� 1.2273e�002 ± 2.2389e�002� 1.8516e�014 ± 4.8488e�014� 3.2115e+001 ± 9.0135e+000�

SaDE 1.1708e+000 ± 6.5356e�001� 1.3096e�002 ± 2.6787e�002� 2.0504e+000 ± 9.0887e�001� 2.5050e+001 ± 6.6415e+000	

OXDE 3.5527e�015 ± 0.0000e�000	 1.5612e�003 ± 3.2032e�003� 1.4210e�001 ± 2.3765e�001� 1.6549e+001 ± 4.4609e+000�

OGA/Q 2.5607e+000 ± 6.8983e�001� 8.5935e�001 ± 1.5327e�001� 9.6029e+000 ± 2.0326e+000� 4.4368e+001 ± 1.4684e+001�

CLPSO 1.4501e�007 ± 7.0645e�007� 4.4152e�007 ± 7.4331e�007� 1.7977e+000 ± 6.1941e�001� 4.6287e+001 ± 5.7149e+000�

CMA-ES 1.9486e+001 ± 1.5860e�001� 6.5723e�004 ± 2.5834e�003� 2.9295e+000 ± 1.9939e+000� 2.2961e+002 ± 5.0531e+001�

GL-25 1.1416e�013 ± 1.6841e�013� 4.2040e�015 ± 5.5414e�015� 5.6795e�003 ± 2.6720e�003� 2.9464e+001 ± 2.2594e+001�

ALGs f 13 f 14 f 15 f 16

HLCSA 4.7609e+001 ± 1.5104e+001 1.0663e+003 ± 5.2886e+002 0 ± 0 3.2212e+000 ± 1.0133e+000
BCSA 2.6912e+001 ± 1.2152e+001� 2.6533e+003 ± 5.3339e+002� 2.0259e�023 ± 6.3626e�023� 1.8053e+001 ± 1.8282e+001�

SaDE 2.2788e+001 ± 6.6879e+000� 2.4742e+003 ± 5.9013e+002� 1.1833e�031 ± 2.1659e�031� 1.0208e+001 ± 1.7851e+001�

OXDE 1.7959e+001 ± 5.1559e+000� 4.3428e+001 ± 8.8341e+001� 3.3333e+000 ± 1.8257e+001� 2.5992e+000 ± 5.6332e�001�

OGA/Q 4.0286e+001 ± 1.3281e+001� 4.0473e+003 ± 9.4893e+002� 5.3477e+001 ± 9.3689e+001� 2.3187e+001 ± 5.5504e+000�

CLPSO 4.0333e+001 ± 7.5039e+000� 2.6321e+003 ± 3.3553e+002� 8.2952e�005 ± 3.3295e�004� 7.9983e+000 ± 1.6728e+000�

CMA-ES 2.4410e+002 ± 4.9446e+001� 6.7111e+003 ± 1.2362e+003� 1.2000e+002 ± 1.6897e+002� 7.6018e+001 ± 1.4964e+000�

GL-25 9.6862e+001 ± 4.0914e+001� 3.2335e+003 ± 5.9871e+002� 2.7878e�028 ± 1.1207e�027� 5.2187e+001 ± 2.1654e+001�

Table 6
Sensitivity of HLCSA on the Baldwinian learning strength parameter s when D ¼ 10.

FUNs HLCSA Gaussian s � Nð0:5;0:3Þ HLCSA_S09 HLCSA_S05 HLCSA_S03
Fixed s = 0.9 Fixed s = 0.5 Fixed s = 0.3

f 1 4.22e�53 ± 9.98e�53 6.74e�46 ± 1.55e�45� 1.62e�108 ± 8.23e�108� 4.00e�01 ± 8.87e�01�

f 2 3.91e�28 ± 6.65e�28 3.54e�29 ± 6.22e�29� 6.44e+00 ± 1.26e+00� 7.82e+00 ± 1.06e+00�

f 3 2.58e�15 ± 4.86e�16 2.66e�15 ± 0.00e�00	 1.78e�16 ± 1.66e�15� 8.18e�01 ± 8.59e�01�

f 4 0 ± 0 2.49e�02 ± 1.70e�02� 1.76e�02 ± 1.51e�02� 7.76e�02 ± 4.27e�02�

f 5 0 ± 0 0 ± 0	 0 ± 0	 3.87e�02 ± 1.23e�01�

f 6 0 ± 0 4.64e�01 ± 7.27e�01� 1.16e+00 ± 1.14e+00� 1.51e+00 ± 9.48e�01�

f 7 0 ± 0 1.39e+00 ± 1.23e+00� 1.73e+00 ± 1.36e+00� 2.57e+00 ± 1.27e+00�

f 8 0 ± 0 0 ± 0	 0 ± 0	 5.57e+01 ± 8.66e+01�

f 9 3.55e�15 ± 0.00e�00 3.32e�15 ± 9.01e�16	 2.01e�15 ± 1.79e�15� 1.09e+00 ± 9.38e�01�

f 10 2.88e�02 ± 1.91e�02 3.89e�02 ± 2.37e�02� 2.92e�02 ± 3.03e�02	 8.34e�02 ± 7.72e�02�

f 11 0 ± 0 0 ± 0	 0 ± 0	 2.04e�01 ± 2.34e�01�

f 12 4.28e+00 ± 2.01e+00 6.67e+00 ± 3.35e+00� 4.94e+00 ± 2.87e+00� 4.15e+00 ± 1.83e+00	

f 13 4.24e+00 ± 2.65e+00 4.57e+00 ± 1.45e+00	 7.07e+00 ± 2.35e+00� 6.60e+00 ± 1.87e+00�

f 14 0 ± 0 4.54e+01 ± 1.07e+00� 1.49e+00 ± 1.69e+00� 4.82e+02 ± 2.51e+02�

f 15 0 ± 0 0 ± 0	 1.43e+01 ± 3.63e+01� 2.11e+01 ± 3.84e+01�

f 16 4.62e�01 ± 8.12–01 1.34e�01 ± 4.11e�01� 2.30e+00 ± 2.48e+00� 1.85e+01 ± 1.83e+01�
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on f 1; f 2; f 3 and f 9 with respect to its certain variants. However, the results of f 2, f 3 and f 9 obtained by HLCSA just have slight
accuracies loss when compared with the best results. Therefore, we can conclude that it is better to use genus-random
Baldwinian learning strength s instead of fixed values. The reason accounting for why this randomness can bring accuracy
gain could be that it may introduce more variation to the search and thus strength the search ability.



Table 7
Performance comparison between OGA/Q and HLCSA in which the orthogonal design is used to initialize an uniform population.

FUNs D ¼ 10 D = 30

HLCSA OGA/Q HLCSA OGA/Q

f 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 2 3.91e�28 ± 6.65e�28 6.55e+00 ± 2.56e+00 1.16e�15 ± 5.54e�15 9.24e�01 ± 3.97e�01
f 3 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 4 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 5 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 6 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 7 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 8 0 ± 0 2.52e+00 ± 2.93e+00 0 ± 0 5.97e+00 ± 3.61e+00
f 9 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 10 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 11 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 12 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 13 0 ± 0 0 ± 0 0 ± 0 0 ± 0
f 14 0 ± 0 2.29e+01 ± 8.54e+01 2.66e+ 00 ± 0.00e+00 6.50e+00 ± 3.81e+00
f 15 0 ± 0 2.13e+02 ± 1.89e+00 0 ± 0 4.02e+01 ± 1.04e+02
f 16 4.62e�01 ± 8.12e�01 1.44e+02 ± 1.95e+02 3.22e+00 ± 1.01e+00 9.00e+01 ± 0.00e+00

Table 8
Results (mean ± std) of HLCSA over 30 independent runs with varying sampling points of orthogonal learning when D ¼ 10.

L9ð34Þ L25ð56Þ L49ð78Þ

f 1 4.22e�53 ± 9.98e�53 7.22e�46 ± 1.57e�45 7.26e�38 ± 9.73e�38
f 2 3.91e�28 ± 6.65e�28 2.28e�23 ± 5.31e�23 8.66e�19 ± 1.32e�18
f 3 2.58e�15 ± 4.86e�16 2.55e�15 ± 6.49e�16 2.66e�15 ± 0.00e�00
f 4 0 ± 0 0 ± 0 1.50e�12 ± 8.20e�12
f 5 0 ± 0 0 ± 0 0 ± 0
f 6 0 ± 0 0 ± 0 0 ± 0
f 7 0 ± 0 0 ± 0 0 ± 0
f 8 0 ± 0 0 ± 0 0 ± 0
f 9 3.55e�15 ± 0.00e�00 3.83e�15 ± 6.49e�16 8.31e�14 ± 9.01e�15
f 10 2.88e�02 ± 1.91e�02 2.03e�02 ± 1.22e�02 2.58e�02 ± 1.79e�02
f 11 0 ± 0 0 ± 0 0 ± 0
f 12 4.28e+00 ± 2.01e+00 2.65e+00 ± 1.23e+00 3.42e+00 ± 1.63e+00
f 13 4.24e+00 ± 2.65e+00 4.09e+00 ± 1.29e+00 3.04e+00 ± 1.03e+00
f 14 0 ± 0 0 ± 0 0 ± 0
f 15 0 ± 0 0 ± 0 0 ± 0
f 16 4.62e�01 ± 8.12e�01 3.53e�01 ± 7.47e�01 3.87e�01 ± 6.08e�01

Table 9
Results (mean ± std) of HLCSA over 30 independent runs with varying sampling points of orthogonal learning when D ¼ 30.

L9ð34Þ L25ð56Þ L49ð78Þ

f 1 7.13e�66 ± 2.02e�65 2.05e�56 ± 6.84e�56 1.07e�46 ± 1.41e�46
f 2 1.16e�15 ± 5.54e�15 1.46e�11 ± 6.11e�11 1.33e�01 ± 7.28e�01
f 3 2.66e�15 ± 0.00e�00 2.66e�15 ± 0.00e�00 2.66e�15 ± 0.00e�00
f 4 0 ± 0 0 ± 0 3.28e�04 ± 1.79e�03
f 5 0 ± 0 0 ± 0 0 ± 0
f 6 0 ± 0 0 ± 0 0 ± 0
f 7 0 ± 0 0 ± 0 0 ± 0
f 8 0 ± 0 0 ± 0 0 ± 0
f 9 3.55e�15 ± 0.00e�00 3.55e�15 ± 0.00e�00 3.55e�15 ± 0.00e�00
f 10 0 ± 0 0 ± 0 0 ± 0
f 11 0 ± 0 0 ± 0 1.89e�01 ± 4.23e�01
f 12 2.55e+01 ± 6.77e+00 2.44e+01 ± 7.73e+00 2.58e+01 ± 8.02e+00
f 13 4.76e+01 ± 1.51e+01 2.83e+01 ± 6.50e+00 2.79e+01 ± 7.17e+00
f 14 1.07e+03 ± 5.29e+02 3.78e+02 ± 3.14e+02 1.44e+03 ± 4.61e+02
f 15 0 ± 0 0 ± 0 0 ± 0
f 16 3.22e+00 ± 1.01e+00 3.76e+00 ± 1.31e+00 3.88e+000 ± 9.69e�01
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In Section 4.3.2, we run OGA/Q [46] without using orthogonal design to initialize the population. Here, we compare the
performance between OGA/Q and HLCSA and use the orthogonal design to in both the algorithms to generate a uniform pop-
ulation. The other settings are exactly the same as described in Section 4.2. Table 7 presents the results obtained by these
two algorithms. From Table 7, we can see that for both situations of D ¼ 10 and D ¼ 30, HLCSA can obtain better results
on functions f 2; f 8; f 14; f 15 and f 16. The common characteristic of these five test instances is that the optimal solutions cannot
be obtained in the center of the feasible solution space. Therefore, using orthogonal learning only is not sufficient for
exploration.

In previous experiments, we use nine sample points of orthogonal learning for test instances over 10 and 30 dimensions.
Though nine sample points are effective for generating promising results as described in Section 4.3.2, how the number of
sample points of orthogonal experimental design affects the performance of HLCSA still need to be investigated. Therefore,
we evaluate the performance of HLCSA by sampling 9(L9ð34Þ), 25(L25ð56Þ) and 49(L49ð78Þ) points for test instances with 10
dimensions, and 9(L9ð34Þ), 25(L25ð56Þ) and 49(L49ð78Þ) points for test instances with 30 dimensions. The experimental results
are presented in Tables 8 and 9, where the best results are shown in bold face. We can find that L9ð34Þ and L25ð56Þ are more
appropriate for both D = 10 and D = 30, which is consistent with the conclusion found in [44]. However, the trend is not
obvious whether L25ð56Þ is better than L9ð34Þ when D = 30, which may be caused by the randomness of algorithm (e.g., using
the Gaussian distributed Baldwinian learning strength s instead of a fixed value).

For evaluating the effectiveness of newly designed Baldwinian learning pool, we remove the orthogonal learning from the
HLCSA and compared this modified HLCSA with single rule Baldwinian leaning method proposed in BCSA [25]. The
experiments are conducted on benchmark test instances and the results are shown in Tables 10 and 11. Our experimental
results demonstrate that this modified HLCSA can obtain better performance on all test instances except f 13 when D = 30.
This shows us that different optimization problems may need different trial vector generating rules and even for a single
problem, different rules may be needed at different evolutionary stages. For example, we need to quickly locate the excellent
solution space according to the guidance of the best individual in the population during the earlier evolutionary stages; and
then we need to keep diversity to avoid premature during the last evolutionary stages (may be by introducing randomness).
Furthermore, we include the results of HLCSA in Tables 10 and 11 to evaluate the validity of the orthogonal learning. Obvi-
ously, HLCSA can achieve better results than modified HLCSA without orthogonal learning on most test instances, which
shows orthogonal learning is effective in refining the solutions. For the rotated multi-modal functions such as f 10; f 12 and
f 14, the performance gap between HLCSA and modified HLCSA is obvious, which means that the mode ‘global search with
local search’ is necessary for more complex optimization problems. In HLCSA, a number of function evaluations are con-
sumed on calculating the fitness of solutions generated by orthogonal learning. Given the fixed number of function evalu-
ations, the generations in HLCSA is fewer than that in modified HLCSA, which is the possible reason accounting for that
the performance of HLCSA is worse than that of HLCSA without orthogonal learning in few test instances.

For making statistics to count the number of times of each newly designed strategy in the Baldwinian learning pool, we
run HLCSA on each test instances for 30 independent times. The experimental results are shown in Fig. 3. As suggested by
[43,42], multiple learning strategies are beneficial for generating better trial vectors. As shown in Fig. 3,, ‘rand/1’ learning
rule is used most on all test instances. This accounts for the reason why Baldwinian clonal selection algorithm (BCSA)
[25] used ‘rand/1’ as the only learning rule. However, the remaining learning rules are also important and used very often,
especially on functions f 2, f 10; f 12 and f 13 when D = 10.
Table 10
Results (mean ± std) of HLCSA, HLCSA without orthogonal learning and BCSA when D = 10.

Functions HLCSA Modified HLCSA BCSA

f 1 4.22e�53 ± 9.99e�53 4.07e�140 ± 7.89e�140� 1.17e�37 ± 1.31e�37�

f 2 3.91e�28 ± 6.65e�28 1.58e�20 ± 8.65e�20� 1.85e�01 ± 7.28e�01�

f 3 2.58e�15 ± 4.86e�16 0 ± 0� 2.66e�15 ± 1.11e�15�

f 4 0 ± 0 5.09e�03 ± 8.40e�03� 1.41e�01 ± 1.37e�01�

f 5 0 ± 0 0 ± 0	 0 ± 0	

f 6 0 ± 0 0 ± 0	 0 ± 0	

f 7 0 ± 0 0 ± 0	 0 ± 0	

f 8 0 ± 0 0 ± 0	 0 ± 0	

f 9 3.55e�15 ± 0.00e�00 0 ± 0� 3.55e�15 ± 0.00e�00�

f 10 2.88–02 ± 1.91e�02 1.67e�02 ± 1.55e�02� 3.27e�01 ± 1.71e�01�

f 11 0 ± 0 0 ± 0	 0 ± 0	

f 12 4.27e+00 ± 2.01e+00 5.07e+00 ± 2.30e+00� 6.29e+01 ± 1.63e+01�

f 13 4.24e+00 ± 2.65e+00 5.47e+00 ± 1.31e+00� 6.59e+01 ± 1.06e+01�

f 14 0 ± 0 1.31e+02 ± 1.79e+02� 2.64e+02 ± 7.97e+01�

f 15 0 ± 0 0 ± 0	 4.34e�31 ± 6.58e�31�

f 16 4.62e�01 ± 8.12e�01 9.12e�02 ± 3.50e�01� 8.73e+00 ± 1.77e+01�

‘‘y’’, ‘‘z’’ and ‘‘	’’ in the third column denote the performance of modified HLCSA is better than, worse than, and similar to that of HLCSA, respectively.
‘‘y’’, ‘‘z’’ and ‘‘	’’ in the fourth column denote the performance of BCSA is better than, worse than, and similar to that of modified HLCSA, respectively.
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Fig. 3. The statistical times of each Baldwinian learning strategy used in optimizing f 1 � f 8. ‘‘rand/1’’,‘‘rand/2’’,‘‘c-to-r/1’’, ‘‘c-to-b/2’’ are respectively the
abbreviations of ‘‘BL/rand/1’’, ‘‘BL/rand/2’’, ‘‘BL/current-to-rand/1’’ and ‘‘BL/current-to-best/2’’ defined in Section 3.1. The statistical times of each Baldwinian
learning strategy used in optimizing f 9 � f 16. ‘‘rand/1’’,‘‘rand/2’’,‘‘c-to-r/1’’, ‘‘c-to-b/2’’ are respectively the abbreviations of ‘‘BL/rand/1’’, ‘‘BL/rand/2’’, ‘‘BL/
current-to-rand/1’’ and ‘‘BL/current-to-best/2’’ defined in Section 3.1.

Table 11
Results (mean ± std) of HLCSA, HLCSA without orthogonal learning and BCSA when D = 30.

Functions HLCSA Modified HLCSA BCSA

f 1 7.13e�66 ± 2.02e�65 1.33e�102 ± 2.39e�102� 2.97e�25 ± 8.42e�25�

f 2 1.16e�15 ± 5.54e�15 6.55e�10 ± 2.30e�09� 1.90e+01 ± 2.69e+00�

f 3 2.66e�15 ± 0.00e�00 5.98e�14 ± 9.01e�14� 1.56e�13 ± 3.93e�13�

f 4 0 ± 0 0 ± 0	 0 ± 0	

f 5 0 ± 0 0 ± 0	 0 ± 0	

f 6 0 ± 0 0 ± 0	 0 ± 0	

f 7 0 ± 0 0 ± 0	 0 ± 0	

f 8 0 ± 0 0 ± 0	 0 ± 0	

f 9 3.55e�15 ± 0.00e�00 0 ± 0� 1.31e�13 ± 3.43e�13�

f 10 0 ± 0 3.20e�03 ± 6.04e�03� 1.22e�02 ± 2.24e�02�

f 11 0 ± 0 0 ± 0	 1.85e�14 ± 4.85e�14�

f 12 2.55e+01 ± 6.77e+00 2.74e+01 ± 8.08e+00� 3.21e+01 ± 9.01e+00�

f 13 4.76e+01 ± 1.51e+01 2.78e+01 ± 8.54e+00� 2.69e+001 ± 1.21e+01�

f 14 1.06e+03 ± 5.29e+02 1.96e+03 ± 7.44e+02� 2.65e+003 ± 5.33e+02�

f 15 0 ± 0 0 ± 0	 2.02e�023 ± 6.36e�23�

f 16 3.22e+00 ± 1.01e+00 4.05e+00 ± 1.29e+00� 1.80e+001 ± 1.83e+01�

‘‘y’’, ‘‘z’’ and ‘‘	’’ in the third column denote the performance of modified HLCSA is better than, worse than, and similar to that of HLCSA, respectively.
‘‘y’’, ‘‘z’’ and ‘‘	’’ in the fourth column denote the performance of BCSA is better than, worse than, and similar to that of modified HLCSA, respectively.
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5. Conclusions and future work

The paper presented an enhanced clonal selection algorithm based on the idea that learning strategy could guide the evo-
lutionary process based on hyper-mutation in CSA. Within the proposed framework, the hybrid learning clonal selection
algorithm (HLCSA), two learning mechanisms were introduced: the Baldwinian learning and orthogonal learning. In the
Baldwinian learning stage, four widely used strategies form the candidate pool which provides more flexibility to diverse
optimization problems; in the orthogonal learning stage, the hyper-rectangle space defined by the selected antibody and
its best Baldwinian learning vector is probed systematically. The experimental results on 16 test problems demonstrated
that the proposed HLCSA has excellent performance for a variety of optimization problems.

In HLCSA, after Baldwinian learning, the best antibody in the four Baldwinian learning vectors originating from the same
antibody are selected to form a new population ZðtÞ; then the orthogonal learning strategy is employed to search in the space
defined by a!kðtÞ and z!kðtÞ. Here, the similarity between a!kðtÞ and z!kðtÞ is neglected. However, it is important to produce a
small but representative set of points as the potential offspring according to the similarity of two parents. Thus, the most
promising way is to adaptively adjust the number of orthogonal array’s factors and location for dividing the parents into sev-
eral sub-vectors. Doing this may also alleviate the burden of evaluating the offspring generated by orthogonal design in each
generation. Our future work will focus on two aspects: (1) Investigate the adaptive orthogonal learning mechanism based on
the similarity between parents, which will use different orthogonal arrays for different parent pairs and thus partition the
space (defined by parent pair) into different number of subspaces. (2) Both clonal selection algorithm and orthogonal design
are widely used in solving multi-objective optimization problem and demonstrate excellent performance [56,11,12]. The
hybrid learning clonal selection algorithm (HLCSA) is proposed for global optimization problems in this paper. Therefore,
extending the proposed algorithm to tackle multi-objective optimization problems (MOPs) is the other future work.
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