
ar
X

iv
:1

40
8.

43
89

v2
 [

cs
.D

S
]

13
 N

ov
 2

01
4

On Unconstrained Quasi-Submodular Function
Optimization

Jincheng Mei, Kang Zhao and Bao-Liang Lu
Center for Brain-Like Computing and Machine Intelligence

Department of Computer Science and Engineering
Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering

Shanghai Jiao Tong University
800 Dong Chuan Road, Shanghai 200240, China
{jcmei,sjtuzk,bllu}@sjtu.edu.cn

Abstract

With the extensive application of submodularity, its generalizations are constantly
being proposed. However, most of them are tailored for special problems. In this
paper, we focus on quasi-submodularity, a universal generalization, which satis-
fies weaker properties than submodularity but still enjoys favorable performance
in optimization. Similar to the diminishing return property of submodularity, we
first define a corresponding property called thesingle sub-crossing, then we pro-
pose two algorithms for unconstrained quasi-submodular function minimization
and maximization, respectively. The proposed algorithms return the reduced lat-
tices inO(n) iterations, and guarantee the objective function values are strictly
monotonically increased or decreased after each iteration. Moreover, any local
and global optima are definitely contained in the reduced lattices. Experimental
results verify the effectiveness and efficiency of the proposed algorithms on lattice
reduction.

1 Introduction

Given a ground setN = {1, 2, · · · , n}, a set functionF : 2N 7→ R is said to be submodular [8] if
∀X,Y ⊆ N ,

F (X) + F (Y) ≥ F (X ∩ Y) + F (X ∪ Y).

An equivalent definition is given as following,i.e., ∀A ⊆ B ⊆ N , i ∈ N \B,

F (i|A) ≥ F (i|B),

whereF (i|A) , F (A+ i)−F (A) is called the marginal gain ofi with respect toA. It implies that
submodular functions capture thediminishing returnproperty. To facilitate our presentation, we use
F (A+ i) to refer toF (A ∪ {i}), andF (A− i) to refer toF (A \ {i}).

Submodularity is widely applied in economics, combinatorics, and machine learning, such as wel-
fare allocation [29], sensor placement [17], feature selection [4], and computer vision [20], to name
but a few.

With the wide application of submodularity, it has many generalizations. For example, Singh et al.
[27] formulate multiple sensor placement and multimodal feature selection as bisubmodular function
maximization, where the objectives have multiple set arguments. Golovin and Krause [13] introduce
the concept of adaptive submodularity to make a sequence of adaptive decisions with uncertain
responses. Feige [6] proposes maximizing subadditive functions on welfare problems to capture the
complement free property of the utility functions. However, all the mentioned generalizations of

1

http://arxiv.org/abs/1408.4389v2

submodularity enjoy benefits in special application scenarios (multiset selection, adaptive decision,
and complement free allocation).

In this paper, we study a universal generalization. Submodularity is often viewed as the discrete ana-
logue of convexity [21]. One of the most important generalizations of convexity is quasi-convexity
[2]. Quasi-convex functions satisfy some weaker properties, but still benefit much from the op-
timization perspective. More specifically, quasi-convex constraints can be easily transformed to
convex constraints via sublevel sets, and quasi-convex optimization problems can be solved through
a series of convex feasibility problems using bisection methods [2]. Considering the celebrated
analogue between submodularity and convexity, a natural question is whether submodularity has
similar generalizations which satisfy weaker properties but still enjoy favorable performance in op-
timization? In this paper, we positively answer this question and refer to this generalization as
quasi-submodularity.

As aforementioned, quasi-submodularity is a weaker property than submodularity. Similar to the di-
minishing return property of submodular functions, we firstdefine a corresponding property called
single sub-crossing. Then we propose two algorithms for unconstrained quasi-submodular mini-
mization and maximization, respectively. Our theoreticalanalyses show that the proposed algo-
rithms strictly increase or decrease the objective function values after each iteration. The output
reduced lattices can be obtained inO(n) iterations, which contain all the local and global optima
of the optimization problems. The theoretical and experimental results indicate that although quasi-
submodularity is a weaker property than submodularity, it enjoys favorable performance in opti-
mization.

The rest of the paper is organized as follows. In Section2, we introduce the concept of quasi-
submodularity and define the single sub-crossing property.In Section3 and Section4, we present
the efficient algorithms and theoretical analyses for unconstrained quasi-submodular function min-
imization and maximization, respectively. After that, we provide some discussion in Section5.
Experimental results in Section6 verify the effectiveness of the proposed algorithms on lattice re-
duction. Finally, we introduce some related work in Section7 and give some conclusions about our
work in Section8.

2 Quasi-Submodularity

It is well known that the term semi-modular is taken from lattice theory [5]. A lattice is a partially
ordered set, which contains the supremum and infimum of each element pair. Here, we introduce a
very useful lattice.

Definition 1 (Set Interval Lattice). Given two ground setsA, B, a set interval latticeL = [A,B] is
defined as{U | A ⊆ U ⊆ B}. L is not empty if and only ifA ⊆ B.

In the set interval lattice, the partially order relation isdefined as the set inclusion⊆. A setS ∈ L
iff A ⊆ S ⊆ B. Obviously,∀X, Y ∈ L, we haveX ∩ Y, X ∪ Y ∈ L, thusL is a lattice.

The concept of quasi-supermodularity is first proposed by Milgrom and Shannon [22] in economic
fields . Quasi-supermodularity captures the monotonicity of the solutions as the problem parameters
change, and has been proved useful in game theory [19], parametric cuts [14], and discrete convex
analysis [23]. Following [22], we give the definition of quasi-submodularity.

Definition 2 (QSB). A set functionF : 2N 7→ R is quasi-submodular function if∀X,Y ⊆ N , both
of the following conditions are satisfied

F (X ∩ Y) ≥ F (X)⇒ F (Y) ≥ F (X ∪ Y),

F (X ∩ Y) > F (X)⇒ F (Y) > F (X ∪ Y).
(1)

The following proposition implies that the concept of quasi-submodularity is a generalization of
submodularity.

Proposition 1. Any submodular function is quasi-submodular function, butnot vice versa.

Proof. SupposeF : 2N 7→ R is a submodular function, andF is not a quasi-submodular function.
Then we haveF (X∩Y) ≥ F (X),F (Y) < F (X∪Y), orF (X∩Y) > F (X),F (Y) ≤ F (X∪Y).

2

Both of the two cases lead toF (X) + F (Y) < F (X ∩ Y) + F (X ∪ Y), which contradicts the
definition of submodularity.

A counterexample is given to prove a quasi-submodular function may not be a submodular function.
SupposeN = {1, 2},F (∅) = 1,F ({1}) = 0,F ({2}) = 1.5, andF ({1, 2}) = 1. It is easy to check
thatF satisfies the definition of QSB. ButF is not a submodular function, sinceF ({1})+F ({2}) <
F (∅) + F ({1, 2}). Actually,F is a supermodular function.

Similar to the diminishing return property of submodular functions, we define a corresponding prop-
erty for quasi-submodularity, and name it assingle sub-crossing.

Definition 3 (SSBC). A set functionF : 2N 7→ R satisfies the single sub-crossing property if
∀A ⊆ B ⊆ N, i ∈ N \B, both of the following conditions are satisfied

F (A) ≥ F (B)⇒ F (A+ i) ≥ F (B + i),

F (A) > F (B)⇒ F (A+ i) > F (B + i).
(2)

As mentioned before, submodularity and diminishing returnproperty are equivalent definitions.
Analogously, quasi-submodularity and single sub-crossing property are also equivalent.

Proposition 2. Any quasi-submodular function satisfies the single sub-crossing property, and vice
versa.

Proof. SupposeF : 2N 7→ R is a quasi-submodular function.∀A ⊆ B ⊆ N, i ∈ N \ B, let
X = B, Y = A+ i in (1). It is obvious thatF satisfies the SSBC property.

On the other hand, supposeF satisfies the SSBC property.∀X,Y ⊆ N , we denoteY \ X =
{i1, i2, · · · , ik}. Based on the SSBC property, ifF (X ∩Y) ≥ (>)F (X), then we haveF (X ∩Y +
i1) ≥ (>)F (X + i1). Similarly, we haveF (X ∩ Y + i1 + i2) ≥ (>)F (X + i1 + i2). Repeating
the operation untilik is added, we getF (Y) ≥ (>)F (X ∪ Y).

Note that in the proof above, if we exchangeX andY , i.e., letX = A+ i, Y = B, we will get

F (A) ≥ F (A+ i)⇒ F (B) ≥ F (B + i),

F (A) > F (A+ i)⇒ F (B) > F (B + i).

We can rewrite it using the marginal gain notation,i.e., ∀A ⊆ B ⊆ N, i ∈ N \B,

F (i|A) ≤ (<) 0⇒ F (i|B) ≤ (<) 0. (3)

Note that althoughX andY are symmetric and interchangeable in (1), we get a representation which
is different with the SSBC property. Actually, (3) is a weaker condition than (1). The proposed
algorithms work on the weaker notion (3), and the results also hold for quasi-submodularity.

3 Unconstrained Quasi-Submodular Function Minimization

In this section, we are concerned with general unconstrained quasi-submodular minimization prob-
lems, where the objective functions are given in the form of value oracle. Generally, we do not
make any additional assumptions (such as nonnegative, monotone, symmetric, etc) except quasi-
submodularity.

Very recently, Iyer et al. [15] propose a discrete Majorization-Minimization like submodular func-
tion minimization algorithm. In [15], for each submodular function, a tight modular upper bound
is established at the current working set, then this bound isminimized as the surrogate function
of the objective function. But for quasi-submodular function, there is no known superdifferential,
and it can be verified that the upper bounds in [15] are no longer bounds for quasi-submodular
functions. Actually, without submodularity, quasi-submodularity is sufficient to perform lattice re-
duction. Consequently, we design the following algorithm.

X is a local minimum means∀i ∈ X , F (X − i) ≥ F (X), and∀j ∈ N \X , F (X + j) ≥ F (X).

Algorithm 1 has several nice theoretical guarantees. First, the objective function values are strictly
decreased after each iteration, as the following lemma states.

3

Algorithm 1 Unconstrained Quasi-Submodular Function Minimization (UQSFMin)
Input: Quasi-submodular functionF , N = {1, 2, ..., n},X0 ⊆ N , t← 0.
Output: Xt as a local optimum ofmin

X⊆N
F (X).

1: At Iterationt, findUt = {u ∈ N \Xt | F (u|Xt) < 0}. Yt ← Xt ∪ Ut.
2: FindDt = {d ∈ Xt | F (d|Yt − d) > 0}. Xt+1 ← Yt \Dt.
3: If Xt+1 = Xt (iff Ut = Dt = ∅), stop and outputXt.
4: t← t+ 1. Back to Step1.

Lemma 1. After each except the last iteration of Algorithm1, the objective function value of the
working set is strictly monotonically decreased, i.e.,∀t, F (Xt+1) < F (Xt).

Proof. We proveF (Yt) < F (Xt). F (Xt+1) < F (Yt) can be proved using a similar approach.
SupposeUt 6= ∅. DefineUk ∈ argminU⊆Ut:|U|=k F (Xt ∪ U), andY k

t = Xt ∪ Uk. According
to the algorithm,∀u ∈ Ut \ Uk, F (u|Xt) < 0. SinceXt ⊆ Y k

t , andu 6∈ Y k
t , based on the

SSBC property, we haveF (u|Y k
t) < 0. This impliesF (Y k+1

t) ≤ F (Xt ∪ (Uk + u)) < F (Xt ∪
Uk) = F (Y k

t). Note thatF (Y 1
t) = minu∈Ut

F (Xt + u) < F (Xt) = F (Y 0
t). We then have

F (Yt) = F (Y
|Ut|
t) < F (Y

|Ut|−1

t) < · · · < F (Y 0
t) = F (Xt).

If we start fromX0 = Q0 , ∅, after one iteration, we will getX1 = Q1 = {i | F (i|∅) < 0}.
Similarly, if we start fromX0 = S0 , N , we will getX1 = S1 = {i | F (i|N − i) ≤ 0}. Based
on the SSBC property, we have∀i ∈ N,F (i|∅) < 0 ⇒ F (i|N − i) < 0, i.e., Q1 ⊆ S1. Thus
the reduced latticeL = [Q1, S1] ⊆ [∅, N] is not empty, and we show that it contains all the global
minima.

Lemma 2. Any global minimum ofF (X) is contained in the latticeL = [Q1, S1], i.e., ∀X∗ ∈
argminX⊆N F (X), Q1 ⊆ X∗ ⊆ S1.

Proof. We proveQ1 ⊆ X∗. X∗ ⊆ S1 can be proved in a similar way. SupposeQ1 6⊆ X∗, i.e.,
∃ u ∈ Q1, u 6∈ X∗. According to the definition ofQ1, F (u|∅) < 0. Since∅ ⊆ X∗, based on the
SSBC property, we haveF (u|X∗) < 0, which impliesF (X∗ + u) < F (X∗). This contradicts the
optimality ofX∗.

If we start Algorithm1 from X0 = Q0 = ∅, suppose we getQt after t iterations. It is easy to
check that, due to the SSBC property, in each iteration,Qt only adds elements. So we get a chain
∅ = Q0 ⊆ Q1 ⊆ · · · ⊆ Qt ⊆ · · · ⊆ Q+, whereQ+ is the final output when the algorithm
terminates. Similarly, if we start fromX0 = S0 = N , we can get another chainS+ ⊆ · · · ⊆ St ⊆
· · · ⊆ S1 ⊆ S0 = N . We then prove that the endpoint sets of the two chains form a lattice, which
contains all the local minima ofF .

Lemma 3. Any local minimum ofF (X) is contained in the latticeL = [Q+, S+].

Proof. LetP be a local minimum. In the proof of Lemma2, we use singleton elements to construct
contradictions, so we haveQ1 ⊆ P ⊆ S1. SupposeQt ⊆ P ⊆ St, we then proveQt+1 ⊆ P ⊆
St+1. First, we supposeQt+1 6⊆ P . BecauseQt+1 = Qt ∪ Ut, ∃ u ∈ Ut, u 6∈ P . According to the
definition ofUt, F (u|Qt) < 0. SinceQt ⊆ P , based on the SSBC property, we haveF (u|P) < 0.
This indicatesF (P + u) < F (P), which contradicts the local optimality ofP . HenceQt+1 ⊆ P .
AndP ⊆ St+1 can be proved in a similar way.

Moreover, the two endpoint setsQ+ andS+ are local minima.

Lemma 4. Q+ andS+ are local minima ofF (X).

Proof. We prove forQ+. TheS+ case is similar. According to the algorithm,∀i ∈ N \ Q+,
F (i|Q+) ≥ 0. If ∃ j ∈ Q+, such thatF (j|Q+ − j) > 0, then we can supposej was added
into Q+ at a previous iterationt. SinceQt − j ⊆ Q+ − j, based on the SSBC property, we have
F (j|Qt − j) > 0. This contradicts the proof of Lemma1.

4

Because a global minimum is also a local minimum, Lemma3 results in the following theorem.

Theorem 1. Any global minimum ofF (X) is contained in the latticeL = [Q+, S+], i.e.,∀X∗ ∈
argminX⊆N F (X), Q+ ⊆ X∗ ⊆ S+.

4 Unconstrained Quasi-Submodular Function Maximization

Unconstrained submodular function minimization problemscan be exactly optimized in polynomial
time [25]. Yet unconstrained submodular maximization is NP-hard [7]. The best approximation
ratio for unconstrained nonnegative submodular maximization is1/2 [3], which matches the known
hardness result [7]. As a strict superset of submodular case, unconstrained quasi-submodular maxi-
mization is definitely NP-hard.

Iyer et al. [15] also propose a discrete Minorization-Maximization like submodular maximization
algorithm. They employ the permutation based subdifferential [8] to construct tight modular lower
bounds, and maximize the lower bounds as surrogate functions. With different permutation strate-
gies, their algorithm actually mimics several existing approximation algorithms, which means their
algorithm does not really reduce the lattices in optimization. In addition, for quasi-submodular cases,
it also can be verified that the lower bounds in [15] are no longer bounds, and quasi-submodular
functions have no known subdifferential. Thus, even generalizing their algorithm is impossible.

We find Buchbinder et al. [3] propose a simple linear time approximation method. The algorithm
maintains two working sets,S1 andS2, andS1 ⊆ S2. At the start,S1 = ∅ andS2 = N . Then at
each iteration, one elementi ∈ S2\S1 is queried to compute its marginal gains over the two working
sets,i.e., F (i|S1) andF (i|S2 − i). If F (i|S1) + F (i|S2 − i) ≥ 0, thenS1 ← S1 + i, otherwise
S2 ← S2 − i. After n iterations, the algorithm outputsS1 = S2. This algorithm is efficient and
reaches an approximation ratio of1/3. However, the approximate algorithm may mistakenly remove
a certain elemente ∈ X∗ from S2, or add an elementu 6∈ X∗ into S1. Here,X∗ is referred to as a
global maximum. Consequently, the working lattices of their algorithm may not contain the global
optima.

By contrast, we want to reduce the lattices after each iteration while avoid taking erroneous steps.
Fortunately, we find that if we simultaneously maintain two working sets at each iteration, and
take steps in a ”crossover” method, quasi-submodularity can provide theoretical guarantees that the
output lattices definitely contain all the global maxima. Hence, we propose the following algorithm.

Algorithm 2 Unconstrained Quasi-Submodular Function Maximization (UQSFMax)

Input: Quasi-submodular functionF , N = {1, 2, ..., n},X0 ← ∅, Y0 ← N , t← 0.
Output: Lattice[Xt, Yt].
1: At Iterationt, findUt = {u ∈ Yt \Xt | F (u|Yt − u) > 0}. Xt+1 ← Xt ∪ Ut.
2: FindDt = {d ∈ Yt \Xt | F (d|Xt) < 0}. Yt+1 ← Yt \Dt.
3: If Xt+1 = Xt andYt+1 = Yt, stop and output[Xt, Yt].
4: t← t+ 1. Back to Step1.

To ensure the result lattice is not empty, we prove that aftereach iteration Algorithm2 maintains a
nonempty lattice as the following lemma shows.

Lemma 5. At each iteration of Algorithm2, the lattice[Xt, Yt] is not empty, i.e.,∀t, Xt ⊆ Yt.

Proof. According to the definition, we haveX0 ⊆ Y0. SupposeXt ⊆ Yt, we then proveXt+1 ⊆
Yt+1. BecauseUt, Dt ⊆ Yt \ Xt, if we proveUt ∩ Dt = ∅, Xt+1 ⊆ Yt+1 will be satisfied.
According to the algorithm,∀u ∈ Ut, F (u|Yt − u) > 0. SinceXt ⊆ Yt − u, andu 6∈ Yt − u, based
on the SSBC property, we haveF (u|Xt) > 0, which impliesu 6∈ Dt.

Algorithm 2 also has several very favorable theoretical guarantees. First, the objective function
values are strictly increased after each iteration, as the following lemma states.

Lemma 6. After each except the last iteration of Algorithm2, the objective function values of
endpoint sets of lattice[Xt, Yt] are strictly monotonically increased, i.e.,∀t, F (Xt+1) > F (Xt) or
F (Yt+1) > F (Yt).

5

Proof. We proveF (Xt+1) > F (Xt). F (Yt+1) > F (Yt) can be proved using a similar approach.
SupposeUt 6= ∅. DefineUk ∈ argmaxU⊆Ut:|U|=k F (Xt ∪ U), andXk

t = Xt ∪ Uk. According
to the algorithm,∀u ∈ Ut \ Uk, F (u|Yt − u) > 0. SinceXk

t ⊆ Yt − u, andu 6∈ Yt − u, based
on the SSBC property, we haveF (u|Xk

t) > 0. This indicatesF (Xk+1
t) ≥ F (Xt ∪ (Uk + u)) >

F (Xt ∪ Uk) = F (Xk
t). Note thatF (X1

t) = maxu∈Ut
F (Xt + u) > F (Xt) = F (X0

t). We then

haveF (Xt+1) = F (X
|Ut|
t) > F (X

|Ut|−1

t) > · · · > F (X0
t) = F (Xt).

After the first iteration of Algorithm2, we getX1 = {i | F (i|N − i) > 0}, andY1 = {i | F (i|∅) ≥
0}. Based on Lemma5, we haveX1 ⊆ Y1. Thus the reduced latticeL = [X1, Y1] ⊆ [∅, N] is not
empty, and we show that it contains all the global maxima.

Lemma 7. Any global maximum ofF (X) is contained in the latticeL = [X1, Y1], i.e., ∀X∗ ∈
argmaxX⊆N F (X), X1 ⊆ X∗ ⊆ Y1.

Proof. We proveX1 ⊆ X∗. X∗ ⊆ Y1 can be proved in a similar way. SupposeX1 6⊆ X∗, i.e.,
∃ u ∈ X1, u 6∈ X∗. According to the definition,F (u|N − u) > 0. SinceX∗ ⊆ N − u, based
on the SSBC property, we haveF (u|X∗) > 0, that isF (X∗ + u) > F (X∗). This contradicts the
optimality ofX∗.

At each iteration of Algorithm2, due to the SSBC property,Xt only adds elements andYt only
removes elements. Thus we haveXt ⊆ Xt+1 andYt+1 ⊆ Yt, i.e., ∀t, [Xt+1, Yt+1] ⊆ [Xt, Yt].
We denote the output lattice of Algorithm2 as[X+, Y+]. Then[X+, Y+] is the smallest lattice in
the chain which consists of the working lattices:[X+, Y+] ⊆ · · · ⊆ [Xt, Yt] ⊆ · · · ⊆ [X1, Y1] ⊆
[X0, Y0] = [∅, N]. Based on Lemma5, [X+, Y+] is not empty, then we prove that it contains all the
global maxima ofF .

Theorem 2. Suppose Algorithm2 outputs lattice[X+, Y+]. Any global maximum ofF (X) is con-
tained in the latticeL = [X+, Y+], i.e.,∀X∗ ∈ argmaxX⊆N F (X), X+ ⊆ X∗ ⊆ Y+.

Proof. Based on Lemma7, we haveX1 ⊆ X∗ ⊆ Y1. SupposeXt ⊆ X∗ ⊆ Yt, we then prove
Xt+1 ⊆ X∗ ⊆ Yt+1. First, we supposeXt+1 6⊆ X∗. BecauseXt+1 = Xt ∪ Ut, so∃ u ∈ Ut,
u 6∈ X∗. According to the definition ofUt, F (u|Yt − u) > 0. SinceX∗ ⊆ Yt − u, based on the
SSBC property, we haveF (u|X∗) > 0. This impliesF (X∗ + u) > F (X∗), which contradicts the
optimality ofX∗. HenceXt+1 ⊆ X∗. AndX∗ ⊆ Yt+1 can be proved in a similar way.

Note that the proofs of Lemma7 and Theorem2 also work for local maximum cases, since we use
singleton elements to construct contradictions.

Lemma 8. Any local maximum ofF (X) is contained in the latticeL = [X+, Y+].

Lemma8 indicates that ifX+ (Y+) is a local maximum, it is the local maximum which contains the
least (most) number of elements. Unfortunately, finding a local maximum for submodular functions
is hard [7], let alone quasi-submodular cases. Nonetheless, Algorithm2 provides an efficient strategy
for search interval reduction, which is helpful because thereduction is on the exponential power.
In the experimental section, we show the reduction can be quite surprising. Moreover, when an
objective function has a unique local maximum, which is alsothe global maximumX+ = Y+, our
algorithm can find it quickly.

Theorem 3. Algorithm2 terminates inO(n) iterations. The time complexity isO(n2).

Proof. After each iteration, at least one element is removed from the current working lattice, so it
takesO(n) iterations to terminate. At each iteration, all the elements in the current working lattice
need to be queried once. Hence, the total complexity of Algorithm 2 isO(n2).

5 Discussions

In Algorithm 1, Q+ andS+ are local minima. While in Algorithm2, X+ andY+ may not be
local maxima. Is it possible to find a lattice for quasi-submodular maximization, where the endpoint
sets are local maxima? We give an example to show that such a lattice may not exist. Suppose

6

N = {1, 2}, F (∅) = (N) = 1, andF ({1}) = F ({2}) = 1.5. It is easy to check thatF is
submodular, thus quasi-submodular. The set of local maximais {{1}, {2}}. There is no local
maximum which contains or is contained by all the other localmaxima, since{1} and{2} are not
comparable under the set inclusion relation.

As aforementioned, unconstrained quasi-submodular function maximization is NP-hard. While for
unconstrained quasi-submodular function minimization, whether there exists a polynomial time al-
gorithm or not is open now.

6 Experimental Results

In this section, we experimentally verify the effectiveness and efficiency of our proposed algorithms.
We implement our algorithms using the SFO toolbox [16] and Matlab. All experiments are run on a
single core Intel i5 2.8 GHz CPU with4GB RAM.

We list several widely used quasi-submodular functions andthe settings of our experiments as the
following:

• Iwata’s functionF (X) = |X ||N \X | −
∑

i∈X

(5i− 2n) [9]. The ground set cardinality is

set to ben = 5000.

• The COM (concave over modular) functionF (X) =
√

w1(X)+w2(N \X), wherew1 and
w2 are randomly generated in[0, 1]n. This function is applied in speech corpora selection
[15]. The ground set cardinality is set to ben = 5000.

• The half-products functionF (X) =
∑

i,j∈X,i≤j

a(i)b(j) − c(X), wherea, b, c are modular

functions, anda, b are non-negative. This function is employed in formulations of many
scheduling problems and energy models [1]. SinceF is quasi-supermodular, we minimize
F through equivalently maximizing the quasi-submodular function −F , i.e., minF =
−max (−F). n is set to be100.

• The linearly perturbed functions. We consider the perturbed facility location function
F (X) = L(M,X) + σ(X), whereL(M,X) is the facility location function.M is a
n× d positive matrix.σ is an-dimensional modular function which denotes the perturbing
noise of facility. We setn = 100, d = 400, and randomly generateM in [0.5, 1]n×d, the
perturbing noiseσ in [−0.01, 0.01]n.

• The determinant functionF (X) = det(KX), whereK is a realn × n positive definite
matrix indexed by the elements ofN , andKX = [Kij]i,j∈X is the restriction ofK to the
indices ofX . This function is used to represent the sampling probability of determinantal
point processes [18]. We setn = 100.

• The multiplicatively separable functionF (X) = Πk
i=1Fi(Xi). One example is the Cobb-

Douglas production functionF (X) = Πn
i=1w(i)

αi , wherew ≥ 0 andαi ≥ 0. This
function is applied in economic fields [28]. We setn = 2000.

We are concerned with the approximation ratio of an optimization algorithm. We compare the
approximation ratio and running time of UQSFMax with MMax [15]. For MMax, we consider the
following variants: random permutation (RP), randomized local search (RLS), and randomized bi-
directional greedy (RG). For UQSFMax, we use it as the preprocessing steps of RP, RLS and RG,
and denote the corresponding combined methods as URP, URLS,and URG.

For Iwata’s function and COM function,n = 5000. In such an input scale, the exact branch-and-
bound algorithm [11] cannot terminate because of the exponential time complexity. Actually, since
the reduced lattices are quite small, we use the branch-and-bound method on the reduced lattices to
obtain the exact optima.

Table 2 presents the approximation ratios while Table3 shows the running time. According to
the comparison results, we find that using our UQSFMax as the preprocessing steps of other ap-
proximation methods can reach comparable or better approximation performance while improve the
efficiency, since the UQSFMax can efficiently reduce the search spaces of other approximation al-
gorithms, and the reduced lattices definitely contain all the local and global optima as shown in the
previous theoretical analysis.

7

Table 1: Average lattice reduction rates.

Algorithm UQSFMax UQSFMin
Iwata’s function 99.9% 99.9%
COM function 99.5% 100.0%

half-products function 51.2% 48.8%
linearly perturbed function 99.3% 99.8%

determinant function 87.0% 72.6%
Multiplicatively separable function 100.0% 100.0%

Table 2: Approximation ratios of different algorithms and functions.

Algorithm RP URP RLS URLS RG URG
Iwata’s function 0.94 1.00 0.99 1.00 0.98 1.00
COM function 0.99 1.00 0.99 1.00 0.99 1.00

half-products function 0.96 0.97 0.95 0.94 0.96 0.99
linearly perturbed function 0.99 1.00 0.99 1.00 0.99 1.00

Table 3: Running time (seconds) of different algorithms andfunctions.

Algorithm RP URP RLS URLS RG URG
Iwata’s function 96.18 2.42 240.62 2.47 194.30 2.41
COM function 43.85 7.01 194.52 6.91 366.43 7.16

half-products function 0.35 0.22 0.98 0.52 9.96 4.59
linearly perturbed function 1.37 0.06 3.12 0.06 15.92 0.06

Note that for non-submodular functions (determinant function and multiplicatively separable func-
tion), at present we have no efficient method to get approximate optima. So we cannot calculate the
approximation ratios and we just record the average latticereduction rates. We also record the rates
of other functions for completeness.

The average lattice reduction rates are shown in Table1. This result also matches the running time.
For example, the average lattice reduction rate for half-products function is51.2%, and the running
time of URG is about a half of the running time of RG. For minimization, we have similar lattice
reduction results, which are also presented in Table1.

7 Related Work

In this section, we introduce some related work of quasi-submodularity.

7.1 Quasi-Supermodularity

Quasi-supermodularity stems from economic fields. Milgromand Shannon [22] first propose the
definition of quasi-supermodularity. They find that the maximizer of a quasi-supermodular function
is monotone as the parameter changes. In combinatorial optimization, for quasi-submodular func-
tions, this property means the set of minimizers has a nestedstructure, which is the foundation of
the proposed UQSFMin algorithm.

Theorem 4(Reformulated from [22]). Given a quasi-submodular functionF : 2N 7→ R. ∀A,B ⊆
N , A ⊆ B, ∃SA ∈ argminS⊆A F (S), SB ∈ argminS⊆B F (S), s.t.SA ⊆ SB.

Proof. SupposeSA ∈ argminS⊆A F (S), SB′ ∈ argminS⊆B F (S). We haveF (SA) ≤ F (SA ∩
SB′) because ofSA ⊆ A, SA ∩ SB′ ⊆ A andF (SA) = minS⊆A F (S). According to quasi-

8

submodularity, we haveF (SA ∪ SB′) ≤ F (SB′). DenoteSB , SA ∪ SB′ . It is obvious that
SB ∈ argminS⊆B F (S) andSA ⊆ SB .

Based on the theorem above, suppose we start fromX = ∅, if ∃i ∈ N \ X , F (X + i) < F (X),
then we can setX ← X + i. This theorem ensures that there exists a chain structure ofminimizers.
This is a general principle. First, it works in submodular cases, for submodularity is a strict subset of
quasi-submodularity. Moreover, when the superdifferential in [15] is not superdifferential for non-
submodular quasi-submodular functions, such as the determinant function and the multiplicatively
separable functions, this principle can also hold.

In [22], only quasi-submodular function minimization (or equivalently, quasi-supermodular function
maximization) is considered. For quasi-submodular function maximization, there is no existing
study.

7.2 Discrete Quasi-Convexity

Another related direction is discrete quasi-convexity [23, 24], which departs further from combina-
torial optimization. In this paper, we consider set functions,i.e., functions defined on{0, 1}n. While
in [24], quasi L-convex function, which is defined onZn, is proposed.

In [24], quasi L-convex function is a kind of integer-valuedfunction. When we restrict its domain
from Z

n to {0, 1}n, quasi L-convex function reduces to quasi-submodular function. Meanwhile,
their results based onZn domain extension reduces to trivial cases in combinatorialoptimization.
Hence, we view quasi L-convexity [24] as a generalization ofquasi-submodularity based on domain
extension,i.e., extending the domain from{0, 1}n to Z

n.

7.3 Submodularity

As a special case of quasi-submodularity, submodularity should be the most related work to
quasi-submodularity. Iyer et al. [15] propose the superdifferential based discrete Majorization-
Minimization like algorithm, which performs lattice reduction for submodular function minimiza-
tion. While the preliminary preservation algorithm [10] has the same effect for submodular function
maximization.

As a weaker notion than submodularity, quasi-submodularity has no superdifferential, but it is also
sufficient for lattice reduction. Thus the proposed UQSFMinalgorithm can be viewed as a general-
ization of the MMin algorithm [15]. One should note that since there is no known superdifferential
for quasi-submodular function, our proof based on sub-single crossing property is quite different
from the superdifferential based MMin algorithm. Generally, quasi-submodular function optimiza-
tion is much harder than submodular function optimization.

Goldengorin [10] proposes the preliminary preservation algorithm (PPA), which is based on the
preservation rules [12]. The preservation rule is another interpretation of the maximizers of sub-
modular functions using set interval lattice partition. Unlike the superdifferential, we find that
the preservation rules perfectly hold for not only submodular functions but also quasi-submodular
functions. This provides an elegant principle for quasi-submodular function maximization. Us-
ing preservation rules for quasi-submodularity can also lead to the proposed UQSFMax algorithm.
Thus we view UQSFMax as a generalization of PPA from submodular function maximization to
quasi-submodular function maximization.

7.4 Applications

Unlike submodularity, quasi-submodularity is not well-known. Nonetheless, there are several appli-
cations related to quasi-submodularity scattered in different fields.

In rent seeking game, every contestant tends to maximize hisprobability of winning for a rent by
adjusting his bidding. The payoff function of each contestant is quasi-submodular on his bidding
and the total bidding of all the contestants (also called ”aggregator”). Rent seeking game is a kind of
aggregative quasi-submodular game, where each player’s payoff function is quasi-submodular. We
refer readers to [26] for more details and examples of aggregative quasi-submodular games.

9

In minimum cut problems with parametric arc capacities, submodularity implies nested structural
properties [14]. While quasi-submodularity also leads to the same properties. But how to employ
the properties to find an efficient max flow update algorithm for quasi-submodular functions is open
at present [14].

8 Conclusions

In this paper, we go beyond submodularity, and focus on a universal generalization of submodular-
ity called quasi-submodularity. We propose two effective and efficient algorithms for unconstrained
quasi-submodular function optimization. The theoreticalanalyses and experimental results demon-
strate that although quasi-submodularity is a weaker property than submodularity, it has some good
properties in optimization, which lead to lattice reduction while enable us to keep local and global
optima in reduced lattices.

In our future work, we would like to make our algorithms exactfor quasi-submodular function
minimization and approximate for quasi-submodular function maximization if it is possible, and try
to incorporate the constrained optimization into our framework.

References

[1] E. Boros and P. L. Hammer. Pseudo-boolean optimization.Discrete applied mathematics, 123(1):155–
225, 2002.

[2] S. P. Boyd and L. Vandenberghe.Convex optimization. Cambridge university press, 2004.

[3] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight linear time (1/2)-approximation for uncon-
strained submodular maximization. InIEEE Annual Symposium on Foundations of Computer Science,
pages 649–658, 2012.

[4] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse approx-
imation and dictionary selection. InInternational Conference on Machine Learning, pages 1057–1064,
2011.

[5] J. Edmonds. Submodular functions, matroids, and certain polyhedra. InCombinatorial Optimization-
Eureka, You Shrink!, pages 11–26. Springer, 2003.

[6] U. Feige. On maximizing welfare when utility functions are subadditive.SIAM Journal on Computing,
39(1):122–142, 2009.

[7] U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions.SIAM
Journal on Computing, 40(4):1133–1153, 2011.

[8] S. Fujishige.Submodular functions and optimization, volume 58. Elsevier, 2005.

[9] S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the minimum-norm
base.Pacific Journal of Optimization, 7(1):3–17, 2011.

[10] B. Goldengorin. Maximization of submodular functions: Theory and enumeration algorithms.European
Journal of Operational Research, 198(1):102–112, 2009.

[11] B. Goldengorin, G. Sierksma, G. A. Tijssen, and M. Tso. The data-correcting algorithm for the minimiza-
tion of supermodular functions.Management Science, 45(11):1539–1551, 1999.

[12] B. Goldengorin, G. A. Tijssen, and M. Tso.The Maximization of Submodular Functions: Old and New
Proofs for the Correctness of the Dichotomy Algorithm. University of Groningen, 1999.

[13] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and
stochastic optimization.Journal of Artificial Intelligence Research, 42(1):427–486, 2011.

[14] F. Granot, S. T. McCormick, M. Queyranne, and F. Tardella. Structural and algorithmic properties for
parametric minimum cuts.Mathematical programming, 135(1-2):337–367, 2012.

[15] R. Iyer, S. Jegelka, and J. Bilmes. Fast semidifferential-based submodular function optimization. In
International Conference on Machine Learning, pages 855–863, 2013.

[16] A. Krause. Sfo: A toolbox for submodular function optimization. The Journal of Machine Learning
Research, 11:1141–1144, 2010.

[17] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies.The Journal of Machine Learning Research, 9:235–284, 2008.

[18] A. Kulesza and B. Taskar. Determinantal point processes for machine learning.Foundations and Trends
in Machine Learning, 5(2-3):123–286, 2012.

10

[19] W. Leininger. Fending off one means fending off all: evolutionary stability in quasi-submodular aggrega-
tive games.Economic Theory, 29(3):713–719, 2006.

[20] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel segmentation. InIEEE
Conference on Computer Vision and Pattern Recognition, pages 2097–2104, 2011.

[21] L. Lovász. Submodular functions and convexity. InMathematical Programming The State of the Art,
pages 235–257. Springer, 1983.

[22] P. Milgrom and C. Shannon. Monotone comparative statics. Econometrica: Journal of the Econometric
Society, pages 157–180, 1994.

[23] K. Murota. Discrete convex analysis, volume 10. SIAM, 2003.

[24] K. Murota and A. Shioura. Quasi m-convex and l-convex functions - quasiconvexity in discrete optimiza-
tion. Discrete Applied Mathematics, 131(2):467–494, 2003.

[25] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization.Mathe-
matical Programming, 118(2):237–251, 2009.

[26] B. C. Schipper. Submodularity and the evolution of walrasian behavior.International Journal of Game
Theory, 32(4):471–477, 2004.

[27] A. P. Singh, A. Guillory, and J. Bilmes. On bisubmodularmaximization. InInternational Conference on
Artificial Intelligence and Statistics, pages 1055–1063, 2012.

[28] D. M. Topkis. Supermodularity and complementarity. Princeton University Press, 1998.

[29] J. Vondrák. Optimal approximation for the submodularwelfare problem in the value oracle model. In
ACM Symposium on Theory of Computing, pages 67–74. ACM, 2008.

11

	1 Introduction
	2 Quasi-Submodularity
	3 Unconstrained Quasi-Submodular Function Minimization
	4 Unconstrained Quasi-Submodular Function Maximization
	5 Discussions
	6 Experimental Results
	7 Related Work
	7.1 Quasi-Supermodularity
	7.2 Discrete Quasi-Convexity
	7.3 Submodularity
	7.4 Applications

	8 Conclusions

