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Abstract— For EEG-based emotion recognition tasks, there
are many irrelevant channel signals contained in multichannel
EEG data, which may cause noise and degrade the performance
of emotion recognition systems. In order to tackle this problem,
we propose a novel deep belief network (DBN) based method
for examining critical channels and frequency bands in this
paper. First, we design an emotion experiment and collect EEG
data while subjects are watching emotional film clips. Then we
train DBN for recognizing three emotions (positive, neutral,
and negative) with extracted differential entropy features as
input and compare DBN with other shallow models such as
KNN, LR, and SVM. The experiment results show that DBN
achieves the best average accuracy of 86.08%. We further
explore critical channels and frequency bands by examining the
weight distribution learned by DBN, which is different from
the existing work. We identify four profiles with 4, 6, 9 and
12 channels, which achieve recognition accuracies of 82.88%,
85.03%, 84.02%, 86.65%, respectively, using SVM.

I. INTRODUCTION

Affective computing (AC) aims to develop the com-
putational models of emotions and advance the affective
intelligence of computers [1]. One of the key elements
of AC is automatic emotion recognition that estimates the
emotional states from behavioral and physiological responses
[2]. Among various emotion recognition approaches, the
methods based on electroencephalogram (EEG) are more
reliable because of its high accuracy and objective evalu-
ation compared to other external appearance clues such as
expression and gesture. However, EEG signals often cause
much noise during acquiring. In addition, many channels are
irrelevant to emotion processing tasks, which may degrade
the performance of emotion recognition systems. It is also
important to investigate critical channels and frequency band-
s for emotion processing, which can fundamentally help us
deeply understand emotion processing mechanisms and find
neural signatures associated with different emotions in the
human brains.

In the past several years, many studies have examined the
neutral correlates of emotion and tried to find the critical
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channels and frequency bands associated with emotion pro-
cessing. Li and Lu [3] proposed a frequency band searching
method to choose an optimal band and their results indicated
that the gamma band was suitable for EEG-based emotion
classification. Lin and his colleagues identified 30 subject-
independent features that were most relevant to emotional
processing across subjects according to F-score criterion.
They also explored the feasibility of using fewer electrodes
to characterize the EEG dynamics during music listening
[4]. The identified features were primarily derived from
electrodes placed near the frontal and the parietal lobes. Kang
et al. [5] presented a DBN based critical channel selection
method with the observation that data in irrelevant channels
randomly update the parameters in the DBN, and data in
critical channels update the parameters in the DBN according
to the related patterns. However, they did not investigated
the performance of the selected pools of channels. Duan
et al. [6] demonstrated that minimal-redundancy-maximal-
relevance (MRMR) algorithm could help to improve the
performance of classifiers. Their results indicated that some
features are irrelevant or redundant for emotion recognition.

However, the critical channels and frequency bands for
EEG-based emotion recognition are not fully determined
and need further investigation. For example, the emotional
stimuli used in [3] are still images and the category of
emotions are only positive and negative emotions in [6].
In this paper, we use emotional film clips as stimuli and
propose a novel deep belief network (DBN) based method for
revealing critical channels and frequency bands. By examin-
ing the weight distribution learned by DBNs, we determine
the critical channels and bands and identify four profiles
of relative electrode sets, which can achieve comparable
performance for emotion recognition.

II. EXPERIMENTS

We first design an emotion experiment to record EEG
signals of different emotional states. In this study, we used
emotional film clips as elicitation stimuli for their reliability
and efficiency in emotion experiments. We carefully chose
fifteen clips from a preliminary study for three emotions:
positive, neutral, and negative. Each film clips lasted for
about 4 minutes and each emotions had five corresponding
emotional clips. The clips we chose were from Chinese
films such as Tangshan Earthquake, Lost in Thailand, Flirting
Scholar, and World Heritage in China.

Fifteen subjects (7 males and 8 females; MEAN: 23.27,
STD: 2.37) with self-reported normal or corrected-to-normal
vision and normal hearing participated in the experiments.
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We selected the subjects using the Eysenck Personality
Questionnaire (EQP). EQP is a questionnaire to assess the
personality traits of a person as three dimensions of Ex-
traversion/Introversion, Neuroticism/Stability and Psychoti-
cism/Socialisation devised by Hans Eysenck et al. [7]. We
tended to select subjects who are extraverted and have
stable moods from the feedback of questionnaires. Subjects
were informed about purposes and procedures before the
experiments. Fig. 1 shows the experiment scene.

Fig. 1. The experiment scene. (One of our study motivations aims to
enhance driving safety via recognizing and adapting to drivers’ emotions.
So we utilize a driving simulator in the lab, which has a relatively closed
environment.)

While subjects were watching emotional film clips and
elicited corresponding emotions, EEG signals were recorded
with ESI NeuroScan System at a sampling rate of 1000 Hz
from 62-channel electrode cap according to the international
10-20 system, simultaneously. There were fifteen trials for
each experiments. There were a 5s hint before each trial, 45s
for feedback, and 15s rest after each trials. For feedback,
subjects were asked to rate the scores how they elicited the
specific emotions. Each subjects performed the experiments
twice at the interval of about one week and there were totally
30 experiments evaluated in this study.

III. METHODS
A. Feature Extraction

For preprocessing, the raw EEG data are first downsam-
pled to 200Hz and then processed with a bandpass filter
between 0.3Hz and 50Hz to filter out the noise and remove
the artifacts. After that, we extract efficient EEG features
associated with emotion processing. In this paper, we employ
differential entropy (DE) features proposed in our previous
work [6], [8]. For a fixed length EEG segment, differential
entropy is equivalent to logarithmic energy spectrum in a cer-
tain frequency band. Our previous experiments showed that
DE has the balance ability of discriminating EEG patterns
between low and high frequency energy and outperforms
other conventional EEG features. Therefore, we calculate DE
features in five frequency bands (delta: 1-3Hz, theta: 4-7Hz,
alpha: 8-13Hz, beta: 14-30Hz, gamma: 31-50Hz) with a 256-
point Short-Time Fourier Transform. Features are normalized
between 0 and 1 before training classifiers.

B. Deep Belief Networks

After extracting DE features from preprocessed EEG data,
we adopt deep belief network (DBN) [9], [10] to build
emotion recognition system. Deep Belief Network (DBN)
is a probabilistic generative model with deep architecture,
which is constructed by stacking a predefined number of
RBMs on top of each other. The output from a lower-level
RBM is the input to a higher-level RBM. For RBMs, there
are no visible-visible and hidden-hidden connections.

In an RBM, the joint distribution p(v, h; θ) over the visible
units v and hidden units h, given the model parameters θ, is
defined in terms of an energy function E(v, h; θ) of

P (v, h; θ) =
exp(−E(v, h; θ))

Z

where Z =
∑

v

∑
h exp(−E(v, h; θ)) is a normalization

factor. For a Gaussian (visible)-Bernoulli (hidden) RBM, the
energy function is defined as

E(v, h; θ) = −
I∑

i=1

J∑
j=1

wijvihj−
1

2

I∑
i=1

(vi−bi)2−
J∑

j=1

ajhj

where wij is the symmetric interaction term between visible
unit vi and hidden unit hj , bi and aj are the bias terms,
and I and J are the numbers of visible and hidden units,
respectively. The conditional probabilities can be efficiently
calculated as

P (hj = 1|v; θ) = σ(

I∑
i=1

wijvi + aj)

P (vi = 1|h; θ) = N(

J∑
j=1

wijhj + bi, 1)

where σ(x) = 1/(1 + exp(x)) and vi takes real values and
follows a Gaussian distribution.

Taking the gradient of the log likelihood log p(v; θ), we
can derive the update rule for the RBM weights as:

∆wij = Edata(vihj)− Emodel(vihj)

where Edata(vihj) is the expectation observed in the training
set and Emodel(vihj) is the same expectation under the
distribution defined by the model. But Emodel(vihj) is
intractable to compute so the contrastive divergence ap-
proximation to the gradient is used where Emodel(vihj) is
replaced by running the Gibbs sampler initialized at the data
for one full step.

C. Classifier Training

Besides DBN, we compare the performance of different
classifiers, KNN, l2-regularized logistic regression (LR) and
SVM. Here, we describe the details of parameters used in
different classifiers. For KNN, we set K = 5 for comparison.
For LR-l2, we tune the regularization parameter in [1.5:10]
with step of 0.5. For SVM, we use LIBLINEAR software
[11] to implement the SVM classifier with linear kernel. We
search the parameter space 2[−10:10] with step of one for C
to find the optimal value. For DBN, we use the DBNToolbox
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Matlab code [12] to construct the DBN classifier with two
hidden layers. We search the optimal neuron numbers of
first and second hidden layers in the range of [200:500] and
[150:500] with step of 50, respectively. The unsupervised
learning rate and supervised learning rate are 0.5 and 0.6,
respectively. The data of the first nine trials are used as
training data, and the rest six trials from the same experiment
are used as testing data for performance evaluation.

IV. RESULTS AND DISCUSSION
First we compare the performance of different classifiers.

Using DE features from five frequency bands as input,
the means and standard deviations of accuracies of KN-
N, LR, SVM and DBN are 72.60/13.16%, 82.70/10.38%,
83.9/9.72%, 86.08/8.34%, respectively. From the results,
we can see that the DBN classifier achieves highest mean
accuracy and lowest standard deviation, which outperforms
other shallow classifiers, KNN, LR and SVM.

Electrode set reduction can, not only reduce the com-
putational complexity, but also filter irrelative noise. The
optimal electrodes placement is usually defined according
to some statistical factors like correlation coefficient and
accuracy rate in the existing work. In this study, we examine
the critical channels and frequency bands through analyzing
the weight distributions of the trained deep belief networks.
According to the training algorithms of neural networks, the
weights of neurons that contribute more for the tasks to be
learned will be updated to certain high values, while the
weights of irrelevant neurons tend to be distributed randomly.
So the weight could represent how important it is for emotion
recognition models. Fig. 2 shows the mean absolute weight
distribution of the trained DBNs in the first layers learned
from total experiments. We can see from the plot that the high
peaks are mostly located at beta and gamma bands, which
indicates that the feature components of beta and gamma
bands contain more important discriminative information.
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Fig. 2. The mean absolute weight distribution of the trained DBNs in the
first layers.
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Fig. 3. We project the mean weight distribution to the brain scalp, which
shows different activated brain regions in different frequency bands.

To clearly explore critical channels, we project the mean
weight distribution to the brain scalp. Fig. 3 depicts the
weight distribution of different brain regions in different
frequency bands. From Fig. 3, we could extract the subject-
independent critical channels for emotion recognition. The
lateral temporal and prefrontal brain areas activate more than
other brain areas in beta and gamma bands, which show that
these brain areas are critical channels and contribute more
than other areas in the deep neural networks. These results
confirm the findings in the literature [3], [13].

We design four different profiles of electrodes placements
according to features of high peaks in the weight distribution
and asymmetric properties in emotion processing. Fig. 4
shows these four different profiles evaluated in this study:
(a) 4 channels: FT7, FT8, T7 and T8; (b) 6 channels:
FT7, FT8, T7, T8, TP7 and TP8; (c) 9 channels: FP1,
FPZ, FP2, FT7, FT8, T7, T8, TP7 and TP8; and (d) 12
channels: FT7, FT8, T7, T8, C5, C6, TP7, TP8, CP5,
CP6, P7 and P8. The electrodes of profiles (a), (b) and (d)
are located in the lateral temporal areas, and profile (c) adds
3 extra prefrontal electrodes.

Considering that the selected pools of electrodes sets are
reduced to comparably low dimensions as input and these
critical channels are selected by deep neural networks when
training, it is better to evaluate the performance of these
critical channels for emotion recognition models with SVM,
which has no explicit feature selection properties. Fig. 5
shows the mean accuracies of different profiles in different
frequency bands. The best mean accuracies and standard
deviations of 4 channels, 6 channels, 9 channels and 12
channels are 82.88/10.92%, 85.03/9.63%, 84.02/10.34%, and
86.65/8.62%, respectively, while the best mean accuracy and
standard deviation of full 62 channels are 83.99/9.72%.

For 4 channels profiles, we can see that they can achieve
comparably high and stable accuracies of 82.88/10.92%
using DE features of total frequency bands, which is just
slightly lower than the full 62 electrodes. Profiles of 6
channels, 9 channels and 12 channels with SVM achieve
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(a) (b) (c) (d)

Fig. 4. Four different profiles of selected electrodes placements according to features of high peaks in the weight distribution and asymmetric properties
in emotion processing: (a) 4 channels; (b) 6 channels; (c) 9 channels; (d) 12 channels
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Fig. 5. The mean accuracies and standard deviations of different profiles
of electrode sets in different frequency bands

better performance than 62 channels with SVM. These
results indicate that the selected critical channels contain
most discriminative information for emotion recognition and
training with critical channels can enhance the performance.
Moreover, 12 channels profile with SVM attains the high-
est accuracy and lowest standard deviation (86.65/8.62%),
even better than the original full 62 channels with SVM
(83.99/9.72%) and DBN (86.08/8.34%). We also investigate
the performance of critical channels with leave-one-subject-
out cross validation. For cross-subject scheme, the mean
accuracies and standard deviations of 4, 6, 9, 12 and total 62
channels were 60.81/10.33%, 66.25/11.79%, 67.84/12.71%,
66.49/10.01%, and 63.91/14.77%, respectively. These results
show that profiles of selected critical channels can also
achieve better and more stable performance across subjects
than whole channels. This further confirms the superiority
and efficiency of the selected critical channels.

V. CONCLUSIONS

In this paper, we have proposed a novel DBN based
method for revealing the critical channels and frequency

bands for recognizing positive, neutral, and negative e-
motions. Our experimental results indicate that the lateral
temporal and prefrontal channels are critical channels and
the beta and gamma bands are critical frequency bands. By
examining the weight distribution learned by DBNs, we have
identified four profiles of 4, 6, 9, and 12 channels, which
achieve relatively stable performance with comparable ac-
curacies in both subject-dependent and subject-independent
experiments, even better than original whole 62 channels.
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