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Abstract

Extreme learning machine (ELM) uses a non-iterative method to train single-hidden-layer feed-forward networks (SLFN-
s), which has been proven to be an efficient and effective learning model for both classification and regression. The main
advantage of ELM lies in that the input weights as well as the hidden layer biases can be randomly generated, which
contributes to the analytical solution of output weights. In this paper, we propose a discriminative manifold ELM
(DMELM) by simultaneously considering the discriminative information and geometric structure of data; specifically,
we exploit the discriminative information in the local neighborhood around each data point. To this end, a graph regu-
larizer based on a newly designed graph Laplacian to characterize both properties is formulated and incorporated into
the ELM objective. In DMELM, the output weights can also be obtained in analytical form. Extensive experiments
are conducted on image and EEG signal classification to evaluate the effectiveness of DMELM. The results show that
DMELM consistently achieves better performance than original ELM and yields promising results in comparison with
several state-of-the-art algorithms, which suggests that the discriminative as well as manifold information are beneficial
to classification.

Keywords: Extreme learning machine, Discriminative information, Manifold information, Image classification, EEG,
Emotion recognition

1. Introduction

SLFNs have been extensively studied during the past
several decades. The most popular algorithm used for
training SLFNs is the back-propagation algorithm [1],
which adopts the gradient descent methods to optimize
the weights in neural networks. However, the gradient-
based methods cannot guarantee the global optima and
they are often time-consuming due to the iterative process
in weight tuning.
As an alternate, ELM was proposed by Huang et al.

[2, 3] as a new paradigm to train SLFNs in which only
the output weights between the hidden layer and output
layer need to be optimized. The main difference between
ELM and existing approaches is that the input weights
and biases of the hidden neurons in ELM can be random-
ly generated. The original ELM adopts the least square
loss to measure the prediction error, which causes that
the output weights can be solved analytically. Therefore,
ELM can attain much faster learning speed than gradient-
based methods. The universal approximation capacity is
also maintained by ELM with fixed hidden neurons and
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tunable output weights [4, 5]. ELM provides us a uni-
fied model for binary classification, multiclass classifica-
tion and regression [6], which can achieve comparable or
even better prediction error than support vector machine
(SVM) [6, 7]. ELM shares many similarities as well as sev-
eral differences with SVM, which were reviewed in detail
by [8, 9, 10].

With the advance of ELM research, much efforts have
been made from both theoretical and applications perspec-
tives. Inspired by the great success of deep learning model-
s, Kasun et al. introduced a building block, ELM autoen-
coder (ELM-AE), to represent features based on singular
values [11]. Several ELM-AEs can be stacked together to
form a deep architecture, namely multilayer neural net-
work. The elastic net regularized ELM was proposed by
[12] and put into EEG-based drivers’ vigilance estimation.
Wang et al. proposed a parallelized ELM ensemble frame-
work based on the min-max modular network [13], which
has great capacity to process big and imbalanced data [14].
To emphasize the label consistency of training examples,
Peng et al. presented the discriminative graph regular-
ized ELM (GELM) [15], which enforces the ELM network
outputs of training samples from the same class to be sim-
ilar. Though most of existing ELM variants focused on
supervised learning tasks, Huang and colleagues extend-
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ed ELM into semi-supervised and unsupervised learning
based on the manifold regularization [16], which greatly
expands the applicability of ELM. Various improvements
have been applied to the original ELM, rendering it more
effective or suitable for specific applications such as ELM
for sequential online learning [17, 7, 18, 19], security as-
sessment in power systems [20], no-reference image quality
assessment [21], remote sensing image classification [22],
medical related applications [23, 24, 25], data privacy [26].
ELM has been implemented by parallel techniques [27, 28].
The hardware technique-based implementation [29] makes
ELM efficiently deal with large data sets and real time rea-
soning. Detailed review on ELM can be found in [30, 31].
Though ELMs have become increasingly popular in di-

verse fields, the objective of ELMs in least square form
mainly pays attention to the discriminative information of
data. Recently, various researchers [32, 33, 34] have consid-
ered the case when the data is sampled from a probability
distribution that has support on or near to a submanifold

of the ambient space. Here, a d-dimensional submanifold
of an Euclidean space R

m is a subset M ⊂ R
m which lo-

cally looks like a flat d-dimensional Euclidean space [35].
In order to detect the underlying manifold structure, vari-
ous manifold learning algorithms have been proposed such
as locally linear embedding [32], ISOMAP [33], Laplacian
eigenmap [34] and local tangent space alignment [36]. One
of the key ideas in manifold learning is the so-called local-
ly invariant idea [37], i.e., the nearby points are likely to
have similar transformed representations.
The earlier research on manifold learning mainly focused

on nonlinear dimensionality reduction. In recent studies,
manifold assumption or locally invariant idea was exten-
sively applied to some popular learning models such as
non-negative matrix factorization [38, 39, 40], concept fac-
torization [41], sparse coding [42], low-rank representation
[43], and Gaussian mixture model [44]. All these stud-
ies demonstrated that learning performance can be sig-
nificantly enhanced if the geometric structure of data is
exploited and the local invariance is considered.
In this paper, we propose to improve the performance of

ELM by emphasizing both discriminative information and
geometric structure of data. Accordingly, a discriminative
manifold extreme learning machine is formulated, which
can exploit the discriminative information in the neigh-
borhood around each data point. Different from the ex-
isting several linear models which employed the maximum
margin criterion [45] and local manifold information [40],
the proposed DMELM has two different characteristics:
(1) random feature mapping from input layer to hidden
layer; and (2) the output weights can be more efficiently
obtained by solving a regularized least square problem. As
pointed by [16], generating feature mapping randomly en-
ables ELM the capacity of nonlinear feature learning and
alleviates the risk of overfitting.
The remainder of this paper is organized as follows. In

Section 2, we briefly review the ordinary ELM and the
discriminative graph regularized ELM. The model formu-

lation as well as some discussions of the proposed DMELM
are introduced in Section 3. Experiments to show the ef-
fectiveness of DMELM on image and EEG signal classifi-
cation are presented in Section 4. Concluding remarks are
given in Section 5.

2. Preliminaries

2.1. Extreme learning machine

ELM was originally proposed for training SLFNs and
was then extended for training the generalized SLFN-
s where the hidden layer need not to be neuron alike.
Considering the supervised learning task, we are provid-
ed N training samples {xi, ti}i=1,...,N from C classes,
where each sample and its corresponding network target
vector are respectively as xi = (xi1, xi2, . . . , xiD)T and
ti = (ti1, ti2, . . . , tiC). In ELM, the network input weights
W ∈ R

L×D and the hidden layer biases b ∈ R
L are ran-

domly generated. Assuming that the number of hidden
neurons is L, the output function of ELM for SLFNs is

fL(x) =

L
∑

i=1

βihi(x) = h(x)β, (1)

where β = [β1, β2, . . . , βL]
T ∈ R

L×C is the output weights
between the hidden layer and the output layer, h(x) =
[h1(x), . . . , hL(x)] is the output row vector of the hidden
layer w.r.t. the input x. h(x) actually maps the data
from the D-dimensional input space to the L-dimensional
hidden layer feature space, that is, ELM feature space H.
Therefore, h(x) is indeed a feature mapping.
The ordinary ELM aims to minimize the objective

min
β

‖Hβ −T‖2, (2)

where H is the hidden layer output matrix as

H =











h(x1)
h(x2)

...
h(xN )











=











h1(x1) h2(x1) . . . hL(x1)
h1(x2) h2(x2) . . . hL(x2)

...
...

...
...

h1(xN ) h2(xN ) . . . hL(xN )











.

Therefore, the output weight matrix β can be estimated
analytically by

β̂ = argmin
β

||Hβ −T||22 = H†T, (3)

where H† is the Moore-Penrose generalized inverse of H.
IfHTH is nonsingular,H† = (HTH)−1HT ; or whenHHT

is nonsingular, H† = HT (HHT )−1 [6].
In order to improve the stability and generalization per-

formance of the ordinary ELM, a small positive value can
be added to the diagonal ofHTH orHHT . In this method,
the solution of regularized ELM can be expressed as

β̂ =

(

HTH+
I

λ

)−1

HTT. (4)
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The solution shown in (4) can be obtained by solving the
following optimization problem

min
β

JRLEM =
1

λ
‖β‖2 +

N
∑

i=1

‖ξi‖22,

s.t., ξi = ti − h(xi)β, i = 1, . . . , N

(5)

where ||β||22 =
∑L

j=1 ||βj ||22 is regarded as the regulariza-

tion term and ||βj ||22 denotes the ℓ2-norm of vector βj .
Moreover, λ denotes the regularization parameter to bal-
ance the influence of error term and the model complexity.
It is a general method to make the least square regression
stable, which is called “ridge regression” [46] in statistics.
As a whole, training a SLFN based on ELM rule can be

summarized in Algorithm 1.

Algorithm 1 Extreme learning machine

Input: training set X = {xi, ti}i=1,...,N , activation function
g(·), number of hidden neurons L and regularization pa-
rameter λ;

Output: Output weight matrix β;
1: Randomly assign input weights W and hidden biases b;
2: Calculate the hidden layer output matrix H;
3: Calculate the output weight matrix β̂ by (3) or (4).

2.2. Discriminative graph regularized ELM

As the label consistency property of training samples is
not considered in ELM, GELM [15] was proposed to en-
force the output of training samples from the same class to
be similar. In GELM, label information of training sam-
ples was used to construct an adjacent graph and the graph
regularizer was formulated to constrain the output. This
constraint is imposed on the ELM objective. In GELM,
the output weights can be solved analytically.
In GELM, supposing that we have a training set with

N samples from C classes in which the c-th class has Nc

samples, then the adjacent matrix W would be defined as

Wij =







1
Nc

, if both h(xi) and h(xj) belong to

the c-th class,
0, otherwise,

where h(xi) = [h1(xi), . . . , hL(xi)] , hi and h(xj) =

[h1(xj), . . . , hL(xj)] , hj are hidden layer representation-
s w.r.t. two input samples xi and xj , respectively. If
we define a diagonal matrix D with column sums of W
as its entries, the graph Laplacian can be calculated by
LGELM = D − W. Denote the outputs w.r.t. hi and hj

respectively by yi and yj . On the basis of label consisten-
cy that when hi and hj are from the same class, yi and yj

should share similar properties, we minimize the following
objective

N
∑

i=1

N
∑

j=1

‖yi − yj‖2Wij = Tr(YTLGELMY), (6)

where Y = Hβ is the output of ELM. Therefore, the ob-
jective function of GELM is defined as follows

min
β

‖Hβ −T‖22 + λ1Tr
(

(Hβ)TLGELM(Hβ)
)

+
1

λ2

‖β‖22,
(7)

where Tr
(

(Hβ)TLGELM(Hβ)
)

is the graph regularizer.

3. Discriminative manifold ELM

3.1. DMELM model formulation

The graph regularizer in GELM tried to preserve the
label consistency of training samples. Roughly, GELM as-
sumes the samples from each class as one manifold, which
considers the manifold structure of data on the class level.
However, in real world applications, taking face recogni-
tion as an example, face images with similar variations,
such as illumination or expression, often have higher cor-
relation than those from the same subject. This means
that mining the discriminative information in a local area
is beneficial for classification. Therefore, in this section we
will present a new regularizer into ELM to let its output
layer (1) preserve the geometric structure of data by apply-
ing manifold regularization and (2) maximize the margins
between different classes to incorporate the discriminative
information. Specifically, both properties can be attained
by exploiting the discriminative information in the local
neighborhood around each data point.
Before introducing the regularizer, we first review the

general manifold regularization method [47]. General-
ly, manifold regularization exploits the geometry of the
marginal distribution PX , which ensures that the solution
is smooth w.r.t. both ambient space and the marginal
distribution PX , resulting in the following objective

min
f∈HK

1

N

N
∑

i=1

ℓ(xi, yi, f(xi)) + γA‖f‖2K + γI‖f‖2I, (8)

where the regularizer ‖f‖2K controls the model complexity,
‖f‖2I is the manifold regularizer to control the complexity
measured by the manifold geometry of the sample distri-
bution, and ℓ is the loss function. In ELM, the specific
form of objective (8) becomes

min
β

‖Hβ −T‖22 + λ1Rdm +
1

λ2

‖β‖22. (9)

The Rdm in (9) is expected to reflect the local discrim-
inative structure of data. Then, in the output layer of
discriminative manifold ELM, the learned representation
can well preserve the neighboring relationship of samples
from the same class while separate the nearby samples
from different classes far from each other. As a result, D-
MELM can further maximize the margins among samples
from different classes in local neighborhood around each
data point.
Based on the spectral graph theory [48] and the general

graph embedding framework [49], the geometric structure
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of data can be characterized by a graphG(V,E,W), where
V is a set of vertices in which each vertex represents a da-
ta point, E ⊆ V × V is a set of edges connecting related
vertices and W is an adjacency matrix recording the pair-
wise weights between vertices. To depict local geometric
structure, G is usually a sparse graph which means that
W only gives the nearest neighbors information of each
data point. In our discriminative manifold formulation of
ELM, two graphs, within-class graph Gw and between-
class graph Gb, are constructed in the ELM input layer
because the discriminative as well as manifold information
of data are fully given in the original data space.
Concretely, for each data point xi, we first divide its

k nearest neighbors into two non-overlapping subsets ac-
cording to their labels. Then, we can construct graphs Gw

and Gb for xi as

Ww,ij =







1, if xj ∈ Nk(xi) or xi ∈ Nk(xj)
xi and xj are from the same class,

0, otherwise.

Wb,ij =







1, if xj ∈ Nk(xi) or xi ∈ Nk(xj)
xi and xj are from different classes,

0, otherwise.

where Nk(xi) denotes the set of k nearest neighbors of xi.
Obviously, in DMELM output layer, we need to (1) enforce
the output representations of neighboring samples on Gw

to stay as close as possible and (2) enforce the output
representations of connected samples on Gb stay as far as
possible. Denote these two objectives respectively by O1

and O2 and we can simply define them as

O1 =
1

2

N
∑

i=1

N
∑

j=1

Ww,ij‖hiβ − hjβ‖22, (10)

and

O2 =
1

2

N
∑

i=1

N
∑

j=1

Wb,ij‖hiβ − hjβ‖22, (11)

where hi and hj ∈ R
1×L are two rows in H, corresponding

to the two hidden representations of samples xi and xj .
The compact forms of O1 and O2 can be reached by

respectively imposing linear transformations on (10) and
(11). Therefore, we have

O1 =
1

2

N
∑

i,j=1

Ww,ij‖hiβ − hjβ‖22

=
1

2

N
∑

i,j=1

Ww,ijTr
(

(hiβ − hjβ)
T (hiβ − hjβ)

)

= Tr





N
∑

i=1

(hiβ)
T





∑

j

Ww,ij



hiβ −
N
∑

i,j=1

(hiβ)
TWw,ijhjβ





= Tr
(

(Hβ)T (Dw −Ww)(Hβ)
)

= Tr
(

(Hβ)TLw(Hβ)
)

,

where Dw is a diagonal degree matrix with entries Dw,ii =
∑

j Ww,ij or Dw,ii =
∑

i Ww,ij since Ww is symmetric,
Lw = Dw − Ww is the Laplacian matrix of graph Gw.
Similarly, we have

O2 = Tr
(

(Hβ)TLb(Hβ)
)

,

where Lb = Db − Wb is the Laplacian matrix of graph
Gb. Similar to Dw, Db is also a degree matrix which has
each diagonal entry defined as Db,ii =

∑

j Wb,ij or Db,ii =
∑

iWb,ij since Wb is symmetric.

Define F , Hβ, simultaneously minimizing O1 and
maximizing O2 lead to the following problem

min
F

Tr(FTLwF)

Tr(FTLbF)
. (12)

Based on the connection between Rayleigh quotient and
eigen-value decomposition, the above objective can be op-
timized by solving the following eigenvalue decomposition
problem

Lwv = ηLbv, (13)

which is equivalent to

LwL
− 1

2

b u = ηu (14)

by setting u = L
− 1

2

b v. Therefore, we have the transformed
form as

L
− 1

2

b LwL
− 1

2

b u = ηu, (15)

which is corresponding to the objective as

min
F

Tr
(

FTL
− 1

2

b LwL
− 1

2

b F
)

. (16)

Accordingly, the Rdm in (9) has the following expression

Rdm = Tr
(

(Hβ)T (L
− 1

2

b )TLw(L
− 1

2

b )(Hβ)
)

. (17)

We add a tiny perturbation to the diagonal of the graph
Laplacian matrix Lb, i.e., L̃b = Lb + ζI, to make it always
invertible. In all experiments, we empirically set ζ as a
fixed small value 10−6Tr(Lb). In the rest of this paper, we
still use the notation Lb other than the perturbed matrix
L̃b for simplicity.
We define a unified graph Laplacian matrix as

LDMELM , (L
− 1

2

b )TLw(L
− 1

2

b ) for graphs Gw and Gb in-
stead of individually using two matrices Lw and Lb fol-
lowing the lines in [40]. As a result, we can formulate the
objective of DMELM as

min
β

‖Hβ−T‖22 + λ1Tr
(

(Hβ)TLDMELM(Hβ)
)

+
1

λ2

‖β‖22.
(18)

We can easily find that the objective of DMELM shares
the same form as that of GELM [15]. However, the d-
ifference between them is obvious; the Laplacian matrix
LDMELM characterizes manifold as well as discriminative
information of data, which contains more information than
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LGELM in GELM. Objective (18) is a quadratic form w.r.t.
β. By setting its derivative w.r.t. β to be zero, we can
obtain the estimated output weight matrix of DMELM as

β̂ = (HTH+ λ1H
TLDMELMH+

1

λ2

I)−1HTT. (19)

3.2. Discussion

We give some discussions on the connection between D-
MELM and related works.
Yan and colleagues [49] proposed a general framework

for dimensionality reduction based on graph embedding
in which the statistical or geometric properties of a da-
ta set was characterized by constructing different graphs.
This work is closely related to DMELM in constructing
the two different types of graphs Gw and Gb. However,
there are several differences between DMELM and Yan’s
work. Firstly, Yan’s work directly operates sample in the
raw feature space; in DMELM, we use the representation
in ELM feature space, whose rationality has been exten-
sively studied in [50, 51, 52]. Secondly, Yan’s work mainly
works on dimensionality reduction which can be seen as
feature transformation. In DMELM, we aim to let its out-
put layer (1) preserve the geometric structure of data by
applying manifold regularization, and (2) maximize the
margins between different classes to incorporate the dis-
criminative information.
The motivation of the GELM [15] model is actually to

preserve the local consistency of data; however, such ge-
ometric property is hard to explore after the nonlinear
mapping of ELM hidden layer. Therefore, GELM tried to
preserve the label consistency of training samples. Gener-
ally, GELM assumes the samples from each class as one
manifold, which considers the manifold structure of data
on class level. In DMELM, we try to exploit the discrimi-
native information in local neighborhood around each data
point, which explicitly considers the local manifold struc-
ture and discriminative information of data. We can view
DMELM as a refinement of GELM by emphasizing the
local geometric property.

4. Experimental studies

In this section, we evaluate the performance of DMELM
on two types of classification tasks, image classification
and EEG-based emotion recognition. In both experiments,
the activation function of the hidden layer is the ‘sigmoid’
function. To help reproducing the experimental results
described in this work, the source code will be available
from http://bcmi.sjtu.edu.cn/~pengyong.

4.1. Image classification

Four representative data sets, ORL, PIE, COIL20 and
USPS, are used in image classification. The properties of
these four data sets are briefly described below (see also
Table 1).

4.1.1. Data sets

• ORL1. There are 40 subjects and each subject has 10
different face images in ORL database. For some sub-
jects, the images were taken at different times, vary-
ing the lighting, facial expressions (open/closed eye-
s, smiling/not smiling) and facial details (glasses/no
glasses). All the images were taken against a dark
homogeneous background with the subjects in an up-
right, frontal position (with tolerance for some side
movement). Each image was normalized to 32×32
pixel array and reshaped to a long vector.

• PIE2. It contains 41,368 face images of 68 subjects,
each subject under 13 different poses, 43 different illu-
mination conditions and with 4 different expressions.
We choose the five near frontal poses (C05, C07, C09,
C27, C29) and use all 11,544 images under different
illuminations and expressions where each person has
about 170 images except for a few bad images.

• COIL203. It is a dataset of gray-scale images of
20 objects. The objects were placed on a motorized
turntable against a background. The turntable was
rotated through 360◦ to vary the object poses with
respect to a fixed camera. Images of the objects were
taken at pose intervals of 5◦, which corresponds to
72 images per object. For experiments, we have re-
sized each of the original 1440 images down to 32×32
pixels.

• USPS. It consists of gray-scale handwritten digit im-
ages. We use a popular subset which contains 9298
handwritten digit images in total provided by Deng
Cai4. The size of each image is 16×16 pixels with 256
gray levels.

Figure 1 shows some sample images from above data sets.

Table 1: Statistics of the four data sets.

Dataset Size(N) Dimensionality(D) #Class (C)

ORL 400 1024 40
PIE 11544 1024 68

COIL20 1440 1024 20
USPS 9298 256 10

In this experiment, we compare DMELM with ordinary
ELM, the ℓ2-norm regularized ELM (RELM) and discrim-
inative graph regularized ELM. Each image data set is
partitioned into the different gallery and probe sets, and
for these data sets we randomly select lORL = {2, 3, 4, 5},
lPIE = {5, 10, 15, 20}, lCOIL20 = {2, 4, 6, 8} and lUSPS =
{3, 5, 10, 15} samples per class for training and the rest for

1http://www.uk.research.att.com/facedatabase.html
2http://www.ri.cmu.edu/projects/project 418.html
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php
4http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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(a) Sample images of 2 subjects in ORL.

(b) Sample images of 2 subjects in PIE.

(c) Sample images of 20 objects in COIL20.

(d) Sample images of 10 digits in USPS.

Figure 1: Sample images of ORL, PIE, COIL20 and USPS.

testing. Though the training and testing sets are randomly
generated, they are kept the same for all comparing algo-
rithms for fair comparison. Before classification, samples
are projected to Ntr − 1 (Ntr is the number of training
examples) dimensional PCA subspace for all ELMs. The
setting of specific parameters in DMELM will be described
in section 4.1.3.

4.1.2. Experimental results

Tables 2, 3, 4 and 5 show the experimental results of
different ELMs on these four data sets, respectively. It
can be found that DMELM consistently achieves the best
performance over all the data sets.
From the results, we can see that all ELMs can be effec-

tively trained when given more training samples and thus
the accuracy gap between them is minor. However, when
given a small amount of training samples, DMELM can
obtain better generalization performance than the other
ELMs. For example, in the ORL classification experimen-
t, DMELM and ELM has significant difference in accuracy
(10%), which is caused by that DMELM explores more side
information from the data set such as the discriminative
and manifold structure than ELM.

Table 2: Results (%) of ELM variants on ORL.

ORL 2 Train 3 Train 4 Train 5 Train

ELM 79.69 84.64 89.17 94.50
RELM 83.44 87.86 95.83 96.50
GELM 87.19 90.71 96.25 96.50
DMELM 89.38 91.79 97.50 97.50

Table 3: Results (%) of ELM variants on PIE.

PIE 5 Train 10 Train 15 Train 20 Train

ELM 69.27 78.93 83.90 87.49
RELM 73.85 86.32 90.72 92.82
GELM 78.10 88.47 92.11 93.83
DMELM 79.19 88.90 92.41 94.01

Table 4: Results (%) of ELM variants on COIL20.

COIL20 2 Train 4 Train 6 Train 8 Train

ELM 71.50 84.34 87.05 89.77
RELM 72.43 84.71 87.12 89.84
GELM 73.64 85.29 87.65 91.33
DMELM 75.29 87.35 89.77 92.89

Table 5: Results (%) of ELM variants on USPS.

USPS 3 Train 5 Train 10 Train 15 Train

ELM 71.47 81.08 84.22 88.15
RELM 72.31 82.29 84.95 88.61
GELM 72.32 82.58 85.01 88.87
DMELM 73.94 84.22 86.82 89.60

These experimental results reveal a number of interest-
ing points:

(1) The stability of learning algorithm is important. The
ordinary ELM may encounter the singularity problem
which can be avoided by introducing the ℓ2-norm reg-
ularization. The ℓ2-norm constraint can shrink values
of output weight matrix, which yields better general-
ization performance. Thus, the performance of RELM
is better than that of ELM;

(2) The label consistency is important besides the train-
ing error. Actually, the graph regularization in GELM
depicts the manifold information on class level. By
enforcing the label consistency property that samples
from the same class have similar outputs, GELM ob-
tains obvious accuracy improvement w.r.t. ELM and
RELM;

(3) Both discriminative information and manifold struc-
ture in data are important for classification. Our
experimental results demonstrated that the unified
graph Laplacian defined in DMELM which simulta-
neously considers the discriminative and manifold in-
formation is much more effective than that in GELM.
The learned output weights can obtain the strong dis-
criminative ability and vary smoothly along the data
manifold to some extent.

Further, we show the effectiveness of DMELM by com-
paring them with some state-of-the-art classification meth-
ods by following the pipeline in [15]. For fair comparison,
the experimental paradigm is the same as that in [53] and
the data sets are Extended Yale B and AR face data sets.
These classification method widely used in face recogni-
tion are nearest neighbor classifier (NN), linear regression
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classifier (LRC), support vector machine (SVM), sparse
representation-based classification (SRC) [54], collabora-
tive representation-based regularized least square (CR-
C RLS) [53]. The characteristics of these two data sets
are stated as follows:

• Extended Yale B5. The Extended Yale B contains
contains 2414 frontal face images of 38 subjects. We
used the cropped and normalized face images of size
54×48, which were taken under varying illumination
conditions. We randomly split the data set into two
halves. One half, which contains 32 images for each
subject, was used as training set, and the other half
was used for testing.

• AR6. It contains 100 subjects and each subject has
26 face images taken in two sessions. For each session,
there are 13 face images. In our experiment, a subset
(with only illumination and expression changes) was
chosen. For each subject, 7 images from session 1 were
used for training, with the other 7 images from session
2 for testing. The images were cropped to 60×43.

Some sample images from Extended Yale B and AR data
sets are shown in Figure 2.

(a) Sample images of 2 subjects in Extended Yale B.

(b) Sample images of 2 subjects in AR.

Figure 2: Sample images from Extended Yale B and AR.

Table 6 demonstrates the results versus feature dimen-
sion by NN, LRC, SVM, SRC, CRC RLS and DMELM on
the Extended Yale B and AR data sets, respectively. It
can be seen that regardless of different dimension settings,
DMELM always results in the best performance over these
state-of-the-art classification methods. Even the accuracy
is nearly saturated, DMELM still can obtain the superi-
ority to GELM. Especially for result when dimension is
54 on AR, DMELM gets approximately 3% improvemen-
t. This shows that by leveraging the power of exploiting
the two properties, the learned ELM output mapping can
yield better generalization performance.

4.1.3. Parameter sensitivity analysis

There are five parameters in the proposed DMELM
model: the number of hidden neurons L, the parameters

5http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
6http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html

Table 6: The classification results (%) of different classification
methods on Extended Yale B and AR.

Extended Yale B #dim=84 #dim=150 #dim=300

NN 85.8 90.0 91.6
LRC 94.5 95.1 95.9
SVM 94.9 96.4 97.0
SRC 95.5 96.8 97.9

CRC RLS 95.0 96.3 97.9
GELM 95.6 97.8 98.8
DMELM 96.0 98.1 99.2

AR #dim=54 #dim=120 #dim=300

NN 68.0 70.1 71.3
LRC 71.0 75.4 76.0
SVM 69.4 74.5 75.4
SRC 83.3 89.5 93.3

CRC RLS 80.5 90.0 93.7
GELM 83.0 90.3 93.6
DMELM 85.7 91.3 94.1

* The accuracies of the first five methods are from [53].

λ1 for discriminative manifold regularizer, λ2 for ℓ2-norm
regularizer, parameters k1 and k2 for the sizes of within-
class and between-class graphs. In this section, we analyze
the sensitivity of DMELM w.r.t. these parameters.

Based on the results in [6], the performance of ELM is
not very sensitive to the number of hidden neurons, which
is still an open problem in ELM research. We also conduct
experiments on the four data sets used in section 4.1.1
and Figure 3 shows the sensitivity of ELM versus different
number of hidden neurons. We can easily find that the
performance of ELM is very stable w.r.t. different number
of hidden neurons (only slight fluctuation when the size of
training set is pretty small). Therefore, similar to [15], we
simply set the number of hidden neurons a near optimal
value as 5 × numDim for ORL, PIE, COIL20, Extended
Yale B and AR and 10 × numDim for USPS. Therefore,
if the dimension of input data is 10, the number of hidden
neurons will be 50.

For the remaining four parameters, we divide them in-
to two groups based on their different properties in D-
MELM: λ1 and λ2 are in group 1, k1 and k2 are in group
2. We evaluate the sensitivity of DMELM w.r.t. these two
groups on PIE data set. We vary λ1 and γ2 in candidates
{2−10, . . . , 210}, k1 in candidates {1, 2, . . . , lPIE − 1} and
k2 in {5, 15, . . . , 95}.
Figure 4 shows the sensitivity of DMELM w.r.t. d-

ifferent combinations of λ1 and λ2 with different num-
ber of training samples per subject. As we can see, for
each setting of training and testing data, there is a large
flat area near the optimal value on the landscape, which
means DMELM is insensitive to the combination of pa-
rameters λ1 and λ2. For example, DMELM consistently
achieves good performance for λ1 = {24, 25, . . . , 210} and
λ2 = {23, 24, . . . , 210} when lPIE = 20 and we can select pa-
rameter combination (λ1, λ2) from these candidate values.
Generally, large λ1 values are encouraged to emphasize the
local discriminative information in data.
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(b) PIE
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(c) COIL20
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Figure 3: Performance of ELM to different number of hidden neu-
rons.
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Figure 4: Performance of DMELM to different combinations of (λ1,
λ2) on PIE.

Figure 5 shows the sensitivity of DMELM w.r.t. differ-
ent combinations of k1 and k2 with different number of
training samples per subject. It is obvious that the per-
formance of DMELM is very stable w.r.t. different combi-
nations of (k1, k2).
Thus, we fixed (λ1, λ2) as (10

0, 104), k1 = min(l, 3) and
k2=20 for all the image data sets in previous experiments.

4.2. EEG-based emotion recognition

EEG signal, which record the electrical activities along
the scalp, can provide researchers a reliable channel to
investigate human emotional states. In this experiment,
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Figure 5: Performance of DMELM to different combinations of (k1,
k2) on PIE.

the proposed DMELM will be evaluated on EEG-based
emotion recognition was compared with linear kernelized
SVM, ELM, RELM and GELM.

4.2.1. Data sets

The EEG data consists of three types of emotional states
(positive, neutral and negative), which were previously e-
voked by watching corresponding types of movie clips. The
stimuli are popular movies in Chinese, which are Just An-
other Pandora’s Box, Lost in Thailand, World Heritage in

China, After Shock and Back to 1942. Posters of these
movies are shown in Figure 6.

Figure 6: Movie clips to evoke different types of emotional states.
(from [55])

Three men and three women aged between 20 and 27
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were involved in the EEG collection experiment. Each sub-
ject had three sessions experiment, with about one week
interval. There are 15 movie clips in each session and 5
clips for each state. Each movie clip lasts about 4 minutes
to show an vivid and relatively complete story.
A 62-channel electrode cap according to the extended in-

ternational 10-20 system and ESI NeuroScan system were
used to record the EEG data with sampling rate 1000Hz.
Movie clips were played with a 10s rest and 15s hint be-
tween consecutive clips. During the rest, subjects were
asked to fill a form as feedback to show whether the e-
motional states were successfully evoked. Figure 7 is the
experimental procedure.

Hint of 

start 
15 sec 

Movie 

Clip 
Rest 

10 sec 4 min 

Session 1 Session 2 Session 3 … Session N 

Figure 7: Procedure of stimuli playing.

The differential entropy (DE) [56], which is defined as

h(X) = −
∫

X

f(x) log(f(x))dx

=

∫ +∞

−∞

−1√
2πσ2

e−
(x−µ)2

2σ2 log

(

1√
2πσ2

e−
(x−µ)2

2σ2

)

dx

=
1

2
log(2πeσ2),

was extracted on the five frequency bands of EEG.
They are δ(1-3Hz), θ(4-7Hz), α(8-13Hz), β(14-30Hz) and
γ(31-50Hz). Short-time Fourier transform with 1s non-
overlapping Hanning window was used to calculate the
average DE features of each channel on these bands. Each
band has 62 channels and thus 310 dimensional features
were obtained for each sample. Since the effective exper-
imental time lasted for 57 minutes, we finally got 3400
samples for each session. Linear dynamic system was used
to remove the rapid changes of EEG features and get more
reliable samples [57]. We chose 2000 samples as training
set and the remainder in the same session as test set.

4.2.2. Experimental results

According to our previous research [55, 58], β and γ

band features are more relevant to the emotion than the
others. Therefore, we only report the results of different al-
gorithms on β, γ and all frequency bands features to avoid
a too large table. The number of hidden neurons in ELMs
is set as three times of input dimension. The combination
of (k1, k2) in DMELM is (20,20). The other involved pa-
rameters (C in SVM, λ in RELM, (λ1, λ2) in GELM and
DMELM) are searched from {2−10, 2−9, . . . , 210} and then
the best results are reported. Table 7 shows the EEG-
based emotion recognition results of different algorithms

on the six subjects. The best results across different al-
gorithms with each frequency band feature are shown in
boldface. Obviously, DMELM consistently performs bet-
ter the other algorithms in most cases. The average result-
s of different algorithms are presented in Table 8. When
using all frequency band features, the average accuracy
across all subjects of DMELM (81.01%) gets nearly 1%
improvement w.r.t. GELM (80.25%), which suggests the
effectiveness of exploiting local discriminative information.
As an effective and efficient algorithm, RELM (78.10%)
obtains 1.5% improvement w.r.t. SVM (76.62%) but with
much less time cost. The performance of ordinary ELM is
inferior to that of SVM which may be caused by the singu-
larity problem in calculating the matrix inverse. Similar
results can be found when using β and γ frequency bands
features.

Table 8: Average results (%) of different algorithms on EEG-based
emotion recognition.

Freq. Band
Mean±Std

β γ total

SVM 75.24±14.00 76.84±12.76 76.62±13.12
ELM 72.96±12.61 73.51±12.02 72.71±12.23
RELM 77.79±12.79 78.17±13.02 78.10±12.72
GELM 79.07±12.94 79.93±13.24 80.25±11.92
DMELM 80.59±12.17 80.82±12.66 81.01±12.24

Figure 8 show the average confusion matrices of the five
algorithms based on 310 DE features. We can see that
the positive and neutral states are much easier to be rec-
ognized while the negative state is difficult to estimate.
The DMELM can respectively obtain 5% and 7% accura-
cy improvements when estimating the negative state w.r.t.
GELM and SVM.

5. Conclusion

In this paper, we have proposed a discriminative man-
ifold extreme learning machine, termed DMELM, which
simultaneously takes the discriminative information and
manifold structure of data into account. We construct-
ed the within-class graph and between-class graph to de-
pict the discriminative information in local neighborhood
around each data point. DMELM was formulated by in-
corporating a graph regularizer into ELM objective, which
is based on a unified graph Laplacian matrix of both graph-
s. Our experimental results demonstrated that our pro-
posed DMELM achieves excellent performance in both im-
age classification and EEG-based emotion recognition.

Most existing ELM models are focusing on supervised
learning scenarios while little effort was made to extend
ELM into unsupervised learning field. Thus, for our future
work, it is of great significance to put ELM into learning
applications with only unlabeled data.
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Table 7: EEG-based emotion recognition results (%) of different models on six subjects.

Subject A
Session 1 Session 2 Session 3

β γ total β γ total β γ total

SVM 84.10 81.50 82.59 65.46 67.27 75.65 57.15 59.54 59.90
ELM 80.71 79.12 81.50 63.15 63.29 65.90 59.39 58.09 57.37
RELM 84.39 82.23 83.96 66.47 69.51 70.16 64.96 61.56 61.78
GELM 85.19 86.64 84.39 66.18 75.07 70.09 66.26 61.92 63.95
DMELM 85.19 88.01 85.26 68.71 75.87 72.40 68.93 65.32 65.39

Subject B
Session 1 Session 2 Session 3

β γ total β γ total β γ total

SVM 90.17 89.52 88.15 69.44 70.66 65.82 78.97 77.24 71.82
ELM 84.61 86.63 82.59 68.42 65.25 65.39 80.20 72.11 69.94
RELM 88.08 90.17 88.15 69.73 67.77 68.28 81.65 77.46 73.92
GELM 88.08 90.90 89.45 69.65 69.22 69.15 82.30 77.75 79.48

DMELM 89.96 91.19 92.63 71.89 69.73 72.47 84.39 79.55 79.33

Subject C
Session 1 Session 2 Session 3

β γ total β γ total β γ total

SVM 77.24 76.37 76.52 90.03 89.45 91.11 58.60 59.18 61.20
ELM 74.93 71.46 71.97 86.56 82.73 81.79 51.81 57.15 55.35
RELM 77.67 76.81 79.34 90.46 90.32 91.04 52.53 58.82 59.54
GELM 79.19 80.92 82.37 90.75 89.96 92.99 54.62 58.45 67.85

DMELM 78.25 77.82 83.53 92.34 90.46 93.14 59.61 60.26 60.48

Subject D
Session 1 Session 2 Session 3

β γ total β γ total β γ total

SVM 92.99 90.68 96.68 88.09 91.98 91.04 97.18 96.32 97.25
ELM 92.34 91.91 89.67 86.78 90.03 89.02 87.64 87.93 92.70
RELM 95.30 94.08 96.60 92.70 93.35 95.88 95.16 95.59 97.11
GELM 96.89 96.60 96.68 95.30 96.89 96.89 96.82 95.74 96.53
DMELM 97.18 96.89 97.11 95.74 97.25 96.82 96.82 96.32 97.54

Subject E
Session 1 Session 2 Session 3

β γ total β γ total β γ total

SVM 67.12 76.89 70.01 53.90 70.66 60.19 63.08 63.29 73.99
ELM 67.05 75.79 68.14 57.95 68.35 61.85 61.99 61.85 66.84
RELM 72.54 78.18 71.39 72.25 72.54 73.05 70.52 64.02 70.09
GELM 74.64 80.35 73.19 74.35 73.92 73.19 73.77 66.98 74.57

DMELM 76.37 81.36 75.94 75.07 76.66 75.43 75.65 68.14 71.10

Subject F
Session 1 Session 2 Session 3

β γ total β γ total β γ total

SVM 73.19 69.80 73.19 59.25 58.82 56.50 88.29 93.86 87.50
ELM 73.27 68.35 73.48 55.78 56.36 52.46 80.78 86.71 82.80
RELM 78.90 86.05 77.17 57.95 56.58 58.82 88.95 91.98 89.60
GELM 80.20 85.98 84.32 57.88 57.08 59.25 91.18 94.29 90.10
DMELM 81.72 87.14 85.55 59.32 59.39 62.28 93.43 94.08 91.76
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