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Abstract. The change of emotions is a temporal dependent process.
In this paper, a Bimodal-LSTM model is introduced to take tempo-
ral information into account for emotion recognition with multimodal
signals. We extend the implementation of denoising autoencoders and
adopt the Bimodal Deep Denoising AutoEncoder modal. Both models
are evaluated on a public dataset, SEED, using EEG features and eye
movement features as inputs. Our experimental results indicate that the
Bimodal-LSTM model outperforms other state-of-the-art methods with
a mean accuracy of 93.97%. The Bimodal-LSTM model is also examined
on DEAP dataset with EEG and peripheral physiological signals, and it
achieves the state-of-the-art results with a mean accuracy of 83.53%.

Keywords: Multimodal emotion recognition · EEG · Deep neural net-
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1 Introduction

Automatic emotion recognition has drawn increasing attention due to its poten-
tial applications to human computer interaction. There are many modalities that
contain emotion information, such as facial expression, voice, electroencephalog-
raphy (EEG), eletrocardiogram (ECG), pupillary diameter (PD), and so on.
However, since emotions are complex and associated with many nonverbal cues,
it’s difficult to recognize emotions robustly based on a single modality. Saneiro
et al. detected emotions in educational scenarios from facial expressions and
body movements [8]. Koelstra et al. built an emotion recognition system based
on EEG and peripheral physiological signals [5]. Lu et al. used both EEG sig-
nals and eye movement signals to recognize three types of emotions and revealed
that EEG features and eye movement features were complementary to emo-
tion recognition [7]. Liu et al. furthermore used Bimodal Deep AutoEncoder to
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extract high level representation features and achieved competitive results on
both SEED1 and DEAP2 datasets [6].

Most of the existing methods treated features at each time step as indepen-
dent samples, and ignored the temporal dependency property of emotions [11].
Recurrent Neural Networks (RNNs) are powerful tools for modeling sequential
data and have the ability to extract temporal information from input signals.
Moreover, Long Short Term Memory (LSTM) neural network [4], which is a
gated RNN with linear self-loop, has been successfully used to capture tem-
poral dependency property in many fields, such as speech recognition [13] and
machine translation [12]. In this paper, to reveal the effect of temporal infor-
mation in emotion recognition, we introduced a Bimodal-LSTM (Long Short
Term Memory) model, which could use both the temporal information and the
frequency-domain information to discriminate emotion states. Specifically, the
Bimodal-LSTM model consists of two LSTM encoders, for features from EEG
and other modalities respectively, and one classification layer. We also extended
the implementation of denoising autoencoders in the field of multimodal emotion
recognition and introduced the Bimodal Deep Denoising AutoEncoder (BDDAE)
model. We evaluated our proposed models on two public multimodal datasets
called SEED and DEAP for emotion recognition and achieved the state-of-the-
art performance.

2 Bimodal Deep Denoising AutoEncoders

2.1 Denoising Autoencoders

An autoencoder is an unsupervised model, which can be used for dimensionality
reduction, data compression, and feature learning [2,3]. Classical autoencoders
map the input to its hidden representation with an encoder function and then
use a decoder function to map the hidden representation to the reconstruction
of input. The reconstruction errors are minimized to train autoencoders.

The denoising autoencoder, which is an extension of the classical autoen-
coder, reconstructs the input from a corrupted version of it [10]. It can pre-
vent the autoencoder from learning the identity function when the encoder and
decoder are given too much capacity. And denoising autoencoders can learn more
robust hidden representation.

The Bimodal Deep Denoising AutoEncoder (BDDAE) model consists of two
networks, the autoencoder network and the classifier network. The autoencoder
network is used to pre-train the encoders’ weights. And the classifier network
predicts emotion labels using EEG features and other modalities’ features.

The autoencoder network of BDDAE, as illustrated in Fig. 1(a), contains one
corruption layer, three encoders, and three decoders. The corruption layer ran-
domly sets some of the inputs to zeros according to the dropout probability. The
encoders and decoders, whose form is an affine mapping followed by a sigmoid

1 http://bcmi.sjtu.edu.cn/∼seed/.
2 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.
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function, are mirror images of each other. There are two encoders for EEG fea-
tures and other modalities’ features, respectively. The encoded features are then
concatenated together, and another encoder is used to extract the combined
high-level features. Mean squared error criterion is used to train the network.
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Fig. 1. The structure of BDDAE’s autoencoder network and classifier network

The classifier network of BDDAE is depicted in Fig. 1(b). It also contains
three encoders, which are the same as the autoencoder network. Moreover, the
last layer can be considered as a linear kernel Support Vector Machine (SVM),
since the loss function the network uses is L2-regularized hinge loss [9].
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2.2 Training

We firstly pre-trained the encoders’ weights, WEEG, WOther, W by training the
autoencoder network. Moreover, to adapt encoders to the specific task (emo-
tion recognition), we attached the SVM layer to the encoder layers and trained
the classifier network. In detail, the pre-trained encoders’ weight matrices as in
Fig. 1(a) were used to initialize the corresponding encoders’ weight matrices in
the classifier network, as in Fig. 1(b). The encoder layers’ learning rate was set to
one percent of the last classification layer’s learning rate, so that the classification
layer was trained mostly, while the encoder layers were fine-tuned.

3 Bimodal-LSTM

3.1 LSTM Neural Networks

To incorporate the temporal dependency information of features, we introduce
Long Short Term Memory (LSTM) neural networks as a temporal encoder.
LSTM neural network, which is a RNN using LSTM blocks, can prevent the
vanishing (and exploding) gradient problem [1] and has the ability to learn infor-
mation from long sequences. Each LSTM block contains memory cell states ct

propagated over time. At every time step, the states of memory cells ct are
updated according to the input of current time step xt and the output of the
previous time step ht−1 as follows:

ft = σ(Wf [ht−1, xt] + bf )
it = σ(Wi[ht−1, xt] + bi) (1)
gt = tanh(Wg[ht−1, xt] + bg)
ct = ct−1 ∗ ft + it ∗ gt,

where σ denotes the sigmoid function, ft, it denotes the forget gate and input
gate, gt denotes the candidate of cell states, Wf ,Wi,Wg denotes the weight
matrices, bf , bi, bg denotes the biases and ct and ht are the memory cell states
and the output of LSTM block, respectively. The forget gate controls the process
of forgetting information by multiplying the cell states by real numbers between
zero and one. Similarly, the input gate controls the process of remembering
information. The output of LSTM blocks ht is a filtered version of memory cell
states, as follows:

ot = σ(Wo[ht−1, xt] + bo) (2)
ht = ot ∗ tanh(ct).

where Wo and bo denotes the weight matrix and the bias for the output gate ot.
The output gate controls the process of output.

As depicted in Fig. 2, the Bimodal-LSTM network contains one classification
layer and two LSTM encoders. Two LSTM encoders are for EEG features and
other modalities’ features, respectively. The network also uses L2-regularized
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hinge loss as the objective function to minimize, so the classification layer can
be considered as a linear kernel SVM. Dropout is applied to the output of LSTM
blocks to obtain more robustness.
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Fig. 2. The structure of Bimodal-LSTM

3.2 Training

We firstly trained the network thoroughly using Adam optimization algorithm.
To further minimize the loss of the network after training it thoroughly, we
trained a SVM classifier, which minimized the same loss function as the Bimodal-
LSTM network. In detail, we used the trained LSTM encoders to extract high-
level features from EEG features and features from other modalities at each time
step. And then the extracted features were multiplied by the dropout probability
to simulate the effect of dropout layer at test time. We used the liblinear pack-
age3 to implement the SVM classifier and trained it using the scaled high-level
features.

To minimize the same loss function as in the Bimodal-LSTM network, we
optimized the primal problem by setting the option ‘−s’ to 2 and set the cost of
the SVM classifier equal to 1

2λ , where λ denotes the L2 regularization strength
used when training the network thoroughly. After training the SVM classifier, we
copied the trained weights back into the last classification layer of the Bimodal-
LSTM network to produce the final classifier.

4 Experiment Settings

4.1 The Datasets

The SEED dataset contains EEG signals and eye movement signals of three
emotions (positive, neutral, and negative) from 15 subjects . All subjects were
watching 15 four-minute-long emotional movie clips while their signals were col-
lected. The EEG signals were recorded with ESI NeuroScan System at a sampling
rate of 1000 Hz with a 62-channel electrode cap. The eye movement signals were
recorded with SMI ETG eye tracking glasses. To compare with our previous work
3 http://www.csie.ntu.edu.tw/∼cjlin/liblinear/.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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[6,7], we used the same data, which contained 27 experiments from 9 subjects.
Signals recorded while the subject watching the first 9 movie clips were used as
training datasets for each experiment and the rest were used as test datasets.

The DEAP dataset contains EEG signals and peripheral physiological signals
of 32 participants. Signals were collected while participants were watching one-
minute-long emotional music videos. And participants were asked to rate the
levels of arousal, valence, like/dislike, dominance and familiarity for each video.
We chose 5 as the threshold to divide the trials into two classes according to the
rated levels of arousal and valence. Then the tasks can be treated as two binary
classification problems, namely high or low arousal and valence. We used 10-fold
cross validation to compare with [6,15].

4.2 Feature Extraction

For SEED dataset, we extracted Differential Entropy (DE) features from each
EEG signal channel in five frequency bands: δ (1–4 Hz), θ (4–8 Hz), α (8–14
Hz), β (14–31 Hz), and γ (31–50 Hz). The size of Hanning window used when
extracting EEG features was 4 s. At each time step, there were totally 310 (5
bands × 62 channels) dimensions for EEG features. As for eye movement data,
the same features as in [6] were used. There were totally 41 dimensions including
both Power Spectral Density (PSD) and DE features of pupil diameters at each
time step. The features were rescaled between 0 and 1 when used as the inputs
of the BDDAE model. Before training the BLSTM model, the features were
normalized to zero mean and unit variance and then split into small sequences
of length 60.

For DEAP dataset, we extracted DE features from EEG signals in four fre-
quency bands: θ (4–8 Hz), α (8–14 Hz), β (14–31 Hz), and γ (31–50 Hz), since a
bandpass frequency filter from 4 - 45 Hz was applied during pre-processing. The
size of Hanning windows was 2 s. Then there were totally 128 (4 bands × 32
channels) dimensions of extracted 32-channel EEG features. As for peripheral
physiological signals, time-domain features were extracted to describe the sig-
nals in different perspective, including maximum value, minimum value, mean
value, standard deviation, variance and squared sum. So there were totally 48
(6 features × 8 channels) dimensions of extracted peripheral physiological fea-
tures. Features were rescaled to [0, 1] before fed into the BDDAE model. And
we also standardized the features and split them into sequences of length 5 to
train the Bimodal-LSTM model.

4.3 Parameter Details

We trained different models for different experiments. For each experiment, we
randomly selected some sets of hyper-parameters within a given range to train
the model. The hyper-parameters of the BDDAE model include the hidden
units’ number of three encoders, the dropout probability, the L2 regularization
strength, and the learning rate for the autoencoder network and the classifier
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network. The hyper-parameters and their corresponding range of the Bimodal-
LSTM model for SEED and DEAP datasets are shown in Table 1.

Both models were implemented using tensorflow4. All weights were initialized
from a Gaussian distribution with a mean of 0 and a standard deviation of 0.001.
All biases were initialized to zero. And the initial hidden states and cell states
of LSTM blocks were set to zero. The Adam optimization algorithm was used
to train networks. EarlyStopping was also adopted to stop training when the
accuracy had not increased 0.1% in the last 120 epochs.

Table 1. The hyper-parameters and their corresponding range of the Bimodal-LSTM
model for SEED and DEAP datasets

Model Hyper-parameter SEED range DEAP range

Bimodal-LSTM EEG hidden size 16 to 256 32 to 256

Other modalities’ hidden size 8 to 64 16 to 256

Dropout probability 0.3 to 0.99 0.2 to 0.9

log10(L2 regularization strength) −9 to 0 −4.5 to −1

log10(learning rate) −4 to −1.5 −2.5 to −0.5

5 Experiment Results

For SEED dataset, we randomly selected 200 sets of hyper-parameters within a
given range for each experiment. We compared our models with two other state-
of-the-art approaches [6,14] and the baseline method, which uses SVM directly
as the classifier. As shown in Fig. 3, Bimodal-LSTM achieves the best accuracy
(93.97%), which is about 2% points higher than the state-of-the-art approaches,
and the smallest standard deviation (7.03%).

For DEAP dataset, we randomly selected 15 sets of hyper-parameters and
tuned the parameters using 10-fold cross validation. The Bimodal-LSTM model
was compared with one baseline method and two state-of-the-art approaches
[6,15]. Liu et al. used Bimodal Deep AutoEncoder to extract high level features
and used the preprocessed data as inputs. Yin et al. proposed a multiple-fusion-
layer based ensemble classifier of stacked autoencoder to recognize emotions, and
also estimated the accuracy by 10-fold cross validation. The baseline method
used the same features as the Bimodal-LSTM model and used linear kernel
SVM as the classifier. As shown in Table 2, Bimodal-LSTM obtains state-of-the-
art performance on both arousal and valence classification tasks, with the mean
accuracies of 83.23% and 83.83%, respectively.

4 https://www.tensorflow.org/

https://www.tensorflow.org/
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Fig. 3. Results of different models on SEED dataset. Feature Fusion denotes the model
using directly concatenated features as inputs and using SVM with a radial basis
function (RBF) kernel as the classifier. Liu et al. denotes the best result in [6], which
uses the Bimodal Deep AutoEncoder model. And Yang et al. denotes the best result
in [14].

Table 2. Average accuracies (%) and standard deviations of different approaches on
DEAP dataset

Feature fusion Liu et al. [6] Yin et al. [15] Bimodal-LSTM

Arousal (%) 65.43/7.79 80.5/- 84.18/- 83.23/2.61

Valence (%) 65.29/7.93 85.2/- 83.04/- 83.82/5.01

6 Conclusion

In this paper, we have introduced two models to predict emotions based on EEG
features and features from other modalities. The first is an extension of denois-
ing autoencoders, called BDDAE, and the second is the Bimodal-LSTM model,
which can use both the temporal information and frequency-domain information
of features. Compared with other existing methods, the Bimodal-LSTM model
has achieved the best performance with a mean accuracy of 93.97% on SEED
dataset. For DEAP dataset, the Bimodal-LSTM model has achieved the state-
of-the-art results with mean accuracies of 83.23% and 83.83% for arousal and
valence classification tasks, respectively.
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