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Abstract By representing a test sample with a linear combination of training samples,
sparse representation-based classification (SRC) has shown promising performance in
many applications such as computer vision and signal processing. However, there are
several shortcomings in SRC such as 1) the l2-norm employed by SRC to measure the
reconstruction fidelity is noise sensitive and 2) the l1-norm induced sparsity does not
consider the correlation among the training samples. Furthermore, in real applications,
face images with similar variations, such as illumination or expression, often have higher
correlation than those from the same subject. Therefore, we correspondingly propose to
improve the performance of SRC from two aspects by: 1) replacing the noise-sensitive
l2-norm with an M-estimator to enhance its robustness and 2) emphasizing the sparsity in
terms of the number of classes instead of the number of training samples, which leads to
the structured sparsity. The formulated robust structured sparse representation (RGSR)
model can be efficiently optimized via alternating minimization method under the half-
quadratic (HQ) optimization framework. Extensive experiments on representative face
data sets show that RGSR can achieve competitive performance in face recognition and
outperforms several state-of-the-art methods in dealing with various types of noise such
as corruption, occlusion and disguise.
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1 Introduction

Sparse representation [6, 27] is an efficient statistical signal modeling tool which has become a
promising model in many machine learning and computer vision applications [8, 19, 31, 35].
When applied to image clustering or classification, sparse representation codes an image using
a small number of atoms parsimoniously chosen out of an over-complete dictionary. The
original definition of sparsity is based on the l0-norm, which directly counts the number of
non-zero elements in a vector. As the closest convex surrogate, the l1-norm is widely used as
an alternative to measure the sparsity of the representation coefficient, which makes the
optimization much more efficient. Yang et al. [31, 35] reviewed several fast approaches to
the optimization of these l1-norm minimization based sparse representation models.

Recently, many studies [1, 37] have shown that the l1-norm induced sparse models perform
well in low-correlation settings. However, if samples from the same class or manifold are
highly correlated, the l1-norm minimization will encounter the stability problems [12]. Gen-
erally, it tends to randomly select a single representative data point and ignore other correlated
points. This leads to a sparse solution but misses the correlated information in data, which
often causes sub-optimal performance. Specifically, for face recognition task in uncontrolled
environment, the variation information such as illumination and expression may be more
significant than the identity [18]. In this case, it is possible that face images from different
subjects with similar variations could have higher correlation than those from the same subject
but with different variations. Therefore, it is of great necessity to consider the label information
of training samples and emphasize the sparsity of the number of classes instead of the number
of training samples, which leads the structured sparsity.

Moreover, for most real-world data sets, they are usually noisy or grossly corrupted. The
original sparse representation and most of its variants use the sum of squared error or the l2-norm
error function to measure the quality of signal reconstruction, which implicitly assumes that the
noise follows the Gaussian distribution. However, it is not the case for real world problems
which do not conform to the assumptions made by the model. The least-squares error is sensitive
to outliers, which will greatly degrade the quality of approximation if there is a single corrupted
point. Therefore, it is necessary to replace the quadratic form of residuals by lowering down the
weight of noisy or corrupted region of samples. Instead of minimizing the non-quadratic and
possibly non-convex loss function, we propose to use theM-estimator technique [17], which can
be optimized by HQ minimization. The HQ optimization [25] is a unified framework for both
error correction and detection [16]. By utilizing robustM-estimators under HQ, the robustness of
certain models can be greatly improved. The maximum correntropy criterion [21], which is
essentially theWelschM-estimator, has been widely used for enhancing the robustness of sparse
representation [14, 15], low-rank matrix recovery [14, 15], NMF [7] and least square [22]. Other
M-estimators, such as l1-l2 [14, 15], Huber [17] and BFair^ [16], can also be used in such settings.

By conducting extensive experiments on representative face data sets, the results show that
RGSR achieves competitive performance in face recognition. RGSR outperforms several state-
of-the-art methods in dealing with various types of noise such as corruption, occlusion and
disguise.

The remainder of this paper is organized as follows. In Section 2, we give a brief overview
of SRC, M-estimator and the HQ minimization. The proposed RGSR model will be presented
in Section 3. In Section 4, we conduct experiments to evaluate the effectiveness of RGSR. In
section 5, we give a brief discussion on the connection between the proposed method and He’s
work [16]. Section 6 concludes the paper.
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2 Related work

We summarize the notations and definition of norms used in this paper. Matrices are written as
boldface uppercase letters. Vectors are written as boldface lowercase letters. Given a matrixM,
mij is its element in the i-th row and j-th column. The l1-, l2-norm of a vector v are defined as

‖v‖1 =∑i|vi| and vk k2 ¼
ffiffiffiffiffiffiffiffi
vTv

p
respectively. ‖M‖1 =∑ij|mij|, ‖M‖2

2 =∑ijmij
2.

2.1 Sparse representation-based classification

SRC method was proposed in [30] for application on face recognition. Generally, the dictio-
nary matrix A= [A1, A2,⋯, Ac] is formed by stacking the training samples together, where Ai

is the subset of training samples from class i and c is the number of classes. For each test
sample y, the sparse representation coefficient α can be obtained via optimizing the following
l1-norm regularized minimization problem

α̂ ¼ argmin
α

y−Aαk k22 þ λ αk k1; ð1Þ

where λ is a trade-off parameter to control the sparsity of α; then the classification is made by

identity yð Þ ¼ argmin
i

errorif g; ð2Þ

where errori ¼ y−Aiα̂ik k2, α̂ ¼ α̂1; α̂2;⋯; α̂c½ � and α̂i (i=1, 2, ⋯, c) is the coefficient
vector associated with the i-th class. It was claimed in [30] that the success of SRC is mainly
caused by the l1-norm sparsity imposed on the representation efficient. However, this l1-norm
induced sparsity treats each element in α equally, which does not consider the correlation of
columns in dictionary A. Therefore, it performs well only when A is under low-correlation
settings. In this paper, we use training data X∈ℝd × n (d, n respectively denote the dimension-
ality and number of training samples) as dictionary other than some existing studies which use
learned dictionary [26, 33].

It is usually to introduce an identity matrix I as a dictionary to code the outlier pixels (e.g.,
corrupted or occluded pixels), which lead to the following unconstrained Lagrangian function.

min
α;β

y− A; I½ �⋅ α;β½ �k k22 þ λ α;β½ �k k1: ð3Þ

It assumes that the error β has a sparse representation. Such type of SRC method shows
high robustness to face occlusion and corruption.

2.2 M-estimators

M-estimator [17] is a class of popular robust learning technique in statistics, which are
generalized maximum likelihood estimation to the minimization of the sums of functions of
the data. M-estimators have been widely used in machine learning and computer vision fields
for improving the models’ robustness. In robust regression, iteratively reweighted least squares
(IRLS) is often used to solve M-estimators. Another common used technique is the half-
quadratic optimization [25]. By the multiplicative or additive half-quadratic reformulation of
M-estimator, the original problem can be solved by alternately minimizing an augmented
objective function.
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There are some popular M-estimators such as l1-l2 function, Fair function, log-cosh
function, Welsch function, Huber function and l1function. Figure 1 shows these loss functions
and their corresponding weight functions in multiplicative half-quadratic form, which provides
a better understanding to their properties.

Generally, M-estimators have the following properties: 1) all loss functions are less
increasing and give less punishment to large fitting errors and all weight functions
(except l1) are upper bounded by 1 for small error and lower bound by 0 for large
error; 2) the l1 norm is often used to pursue robustness, but the corresponding weight
1/|e| is not upper bounded, so the objective function would be dominated by the data
points with near-zero fitting errors which leads to the singularity problem [5]; 3)
Welsch function, behaves like the l2 norm on small errors, like the l1 norm on relative
larger errors, and approaching l0 norm with further increasing of errors; 4) Huber
function behaves like the l2 norm on small errors and like l1 norm on large errors,
controlled by cutoff parameters.

2.3 The half-quadratic minimization

This section briefly reviews the background of half-quadratic modeling based on conjugate
function theory [9, 10] for convex or non-convex minimization. The detailed introduction can
be found in [16].

Given a differentiable function f(v): S⊆ℝn→ℝ, the conjugate function f*(p): ℝn→ℝ of
the function f(⋅) is defined as [3]

f * pð Þ ¼ inf
v∈S

pTv− f vð Þ: ð4Þ

The domain of f*(p) is bounded above on S [3]. f*(p) is the pointwise supremum of a family
of convex functions of p, which is also a convex function. Based on conjugate function theory,
a loss function in image restoration and signal recovery can be defined as [2, 4, 25]

f vð Þ ¼ min
p

ψ v; pð Þ þ φ pð Þf g; ð5Þ

where f(⋅) is a potential loss function such as a certain M-estimator, v is a set of adjustable
parameters of a linear system, p is an auxiliary variable in HQ optimization, ψ(v, p) is a
quadratic function, and φ(⋅) is the dual potential function of f(⋅).

For face recognition application, we use the multiplicative form quadratic function of ψ(v,
p) as ψ(v,p)≐∑ipivi

2, where vi is the coding residual for each pixel and pi is the learned weight

Fig. 1 Some popular loss functions (left) and the corresponding weight functions (right)
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for such pixel. pi will be a small value to alleviate its influence if this pixel is corrupted.
Therefore, the learned p can adjust the influence of each pixel according to its corruption level.

3 Robust structured sparse representation

3.1 Robustness improvement

Specifically, using structured sparse representation with respect to a test sample y, we have

ϕ eð Þ ¼ min
w

ψ e;wð Þ þ φ wð Þf g; ð6Þ

where e≜Xα− y∈ℝd is the coding residual and w∈ℝd is the corresponding pixel-level
weight for face image. In this paper we only consider to use the multiplicative form of ψ as
ψ(e,w) =∑i=1

d wiei
2, which plays the role as error detection [16].

The first term in (1) which uses the l2-norm to measure the coding residual can be
easily dominated by a few outliers with large errors. This can be illustrated by Fig. 2,
where the l2-norm induces more penalty for large fitting errors than the l1-norm and
Logistic loss function (one type of M-estimator we will use in this paper). Accordingly,
the l2-norm loss function uses a constant weight for both small and large errors, that is,
it actually does not consider whether the pixel is corrupted or not. However, M-
estimator can learn the weight w to adapt the corruption level, which can greatly
alleviate the influence of outliers. In general, M-estimator uses small weight wi for
large ei to make learning models robust to outliers.

Therefore, by replacing the l2-norm with M-estimator ϕ(⋅), we can obtain the following
objective

min
α

ϕ Xα−yð Þ þ λℜ αð Þ; ð7Þ

where ℜ(α) is the structured sparsity regularizer to be explained in the following subsection.
Using the multiplicative form of ψ as

Fig. 2 Potential loss functions (left) and the corresponding weight functions (right) of l2-norm, l1-norm and
Logistic function
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ψ Xα−y;wð Þ ¼
Xd
i¼1

wi yi−
Xn
j¼1

xi jα j

 !2

; ð8Þ

we have the following minimization of the augmented objective.

min
α;w

X
i

wi yi−
X

j

xi jα j

 !2

þ φ wið Þ
0
@

1
Aþ λℜ αð Þ: ð9Þ

We will use J(α,w) to denote the above objective function. Following the HQ optimization
framework [16, 25], a local minimizer (α,w) to J(α,w) can be alternately calculated by
executing the following rules.

wtþ1
i ¼ ω yi−

X
j

xi jαt
j

 !
; ð10Þ

αtþ1 ¼ argmin
α

W1=2 y−Xαtð Þ�� ��2
2
þ λℜ αtð Þ; ð11Þ

Where αt is an estimated coefficient vector in the t-th iteration, ω(⋅) is the weight function
derived from the conjugate of ϕ(⋅). ω(⋅) satisfies that

ψ ei;ω eið Þð Þ þ φ ω eið Þð Þ≤ψ ei;wið Þ þ φ wið Þ: ð12Þ
Here, W is a diagonal matrix with each entry on the diagonal as (W)ii=wi

t+1. The
optimization of αt + 1 can be rewritten as the following regularized quadratic problem

αtþ1 ¼ argmin
α

X̂αt−ŷ
��� ���2

2
þ λℜ αtð Þ; ð13Þ

where X̂ ¼ ffiffiffiffiffi
W

p
X and ŷ ¼ ffiffiffiffiffi

W
p

y. The robust improvement of structured sparse representation
is given in Algorithm 1.

Based on the HQ framework [16, 25], we use the Logistic weight function to determine w
for fair comparison with the robust sparse coding (RSC) [34], whose loss function ϕ(⋅) and
weight function ω(⋅) as shown in Fig. 3 are respectively defined as

Fig. 3 The Logistic weight function ω relevant to the multiplicative form of HQ for corresponding potential loss
function ϕ
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ϕ eið Þ ¼ −1
2μ

ln
1þ exp μδ−μe2i

� �
1þ exp μδð Þ ; ð14Þ

ω eið Þ ¼ exp μδ−μe2i
� �

1þ exp μδ−μe2ið Þ ð15Þ

The logistic M-estimator shown is parameterized by (μ, δ). μ controls the decreasing rate of
weight and δ is the demarcation point. When δ is small, this function behaves like l1-norm on
small errors and l0-norm on large errors, which give less punishment on large outliers than l1 M-
estimator. The weight is bounded by 0 and 1.

3.2 Structured sparsity

Considering α ¼ α1
1;⋯;α1

S1j j;⋯;α Scj j
1 ;⋯;α Scj j

Scj j
h i

, where{Sk}, k=1, 2,⋯, c is the partition of

training samples from different classes and |Sk| is the number of samples in the k-th class, the
RGSR model can be reformulated as

min
α;w

X
i

wi yi−
X

j

xi jα j

 !2

þ φ wið Þ
0
@

1
Aþ λ

X
Sk

αSkk k2: ð16Þ
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Obviously, (13) has the following specific form

αtþ1 ¼ argmin
α

X̂α−ŷ
��� ���2

2
þ λ

X
Sk

αSkk k2: ð17Þ

Set its derivative with respect to α to zero and we can obtain a simple method to updateαt + 1 as

α̂ ¼ X̂
T
X̂þ λL

� �−1

X̂
T
ŷ; ð18Þ

where L is defined as

L ¼

1

2 αS1k k2
I S1j j ⋯ 0

⋮ ⋱ ⋮
0 ⋯

1

2 αSck k2
I Scj j

2
6664

3
7775: ð19Þ

The whole procedure of optimizing the RGSR model is summarized in Algorithm 2. The
stop criteria for the outer loop and inner loop are respectively defined as

wtþ1−wt
�� ��

2
= wtk k2≤ε1; ð20Þ

objkþ1−objk
�� ��

2
= objk
�� ��

2
≤ε2; ð21Þ

where obj is the objective value of (17), ɛ1 and ɛ2 are small positive values (0.05 and
0.001 in following experiments). k here is the index of iteration in the inner loop. The

Fig. 4 The diagram of RGSR model. For an occluded test sample, RGSR learns the weight map which can mask
the corresponding area of training samples shown in red rectangle. The learned coefficients for intra-class
samples are measured by l2-norm, while that for inter-class samples are measured by l1-norm. This results in
the structured sparsity
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diagram of RGSR is shown in Fig. 4. The convergence analysis of Algorithm 2 will
be given below.

Lemma 1 [24] For arbitrary two non-zero vectors u and v, the following inequality holds

uk k2−
uk k22

2 vk k2
≤ vk k2−

vk k22
2 vk k:

Theorem 2 The alternating optimization of objective J(α,w) in (16) by Algorithm 2 converges.

Proof First we show that the inner loop for optimizing α decreases the objective of (17). In
the t+1-th iteration, once the feature weight vector wt+1, we need to optimize αt + 1 by solving
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the following objective

αtþ1 ¼ argmin
α

X̂αt−ŷ
��� ���2

2
þ λ αtð ÞTLαt: ð22Þ

Obviously, we have

X̂αtþ1−ŷ
��� ���2

2
þ λ αtþ1

� �T
Lαtþ1≤ X̂αt−ŷ

��� ���2
2
þ λ αtð ÞTLαt: ð23Þ

Based on Lemma 1, we have

λ
X
Sk

αtþ1
Sk

�� ��
2
−λ
X
Sk

αtþ1
Sk

�� ��2
2

2 αt
Sk

�� ��
2

≤
X
Sk

αt
Sk

�� ��
2
−λ
X
Sk

αt
Sk

�� ��2
2

2 αt
Sk

�� ��
2

;

which is equivalent to

λ
X
Sk

αtþ1
Sk

�� ��
2
−λ αtþ1
� �T

Lαtþ1≤λ
X
Sk

αt
Sk

�� ��
2
−λ αtð ÞTLαt: ð24Þ

Add both sides of inequalities (23) and (24) together and we can obtain

X̂αtþ1−ŷ
��� ���2

2
þ λ

X
Sk

αtþ1
Sk

�� ��
2
≤ X̂αt−ŷ
��� ���2

2
þ λ

X
Sk

αt
Sk

�� ��
2
; ð25Þ

which means that the solution to optimize α satisfies J(αt + 1,wt + 1)≤ J(αt,wt + 1).
According to the property of weight function ω(⋅) shown in inequality (12), for a fixed αt +

1, we have J(αt,wt + 1) ≤ J(αt,wt). Combine with the above conclusion J(αt + 1,wt +

1)≤ J(αt,wt + 1), and we can get

J αtþ1;wtþ1
� �

≤ J αt;wtþ1
� �

≤ J αt;wtð Þ: ð26Þ
Thus, the objective value series {⋯, J(αt,wt), J(αt,wt + 1), J(αt + 1,wt + 1),⋯} generated by

Algorithm 2 converges as t→∞.

4 Experimental studies

In this section, we conduct experiments to show the effectiveness of the proposed RGSR
model.

Fig. 5 Sample images of two subjects in AR data set
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4.1 Experimental settings

We conduct experiments under two settings: (1) face recognition without occlusion but with
variations such as illumination and expression changes and (2) face recognition with three
types of occlusions: random pixel corruption, random block occlusion and real disguise.

There are three parameters involved in RGSR model: the regularization parameter λ and the
Logistic weight function related parameters (μ, δ). In this paper, λ is set as 0.001 by default.
According to the properties of (μ, δ), smaller δ (larger μ) is encouraged if the image is grossly
corrupted, which can group more pixels into outliers. For a corrupted image, the squared error
vector is π= [e1

2, e2
2,⋯, ed

2] (ei is the coding residual with respect to the i-th pixel) and its
ascending sorted version is πa. We set δ as πa (⌊τd⌋) andμ= c/δ. Thus, two new parameters (c,
τ) are introduced to build the tight connection to the corruption level instead of using (μ, δ)
directly [34]. In our experiments, the corruption level for the second setting is higher than the
first one and smaller τ is preferred; thus we set (c, τ) respectively as (8,0.8) and (8,0.6) for both
settings.

4.2 Face recognition without occlusion

In this section, we compare RGSR with state-of-the-art methods such as nearest neighbor
(NN), nearest subspace (NS), linear support vector machine, SRC [30], collaborative repre-
sentation based classification (CRC) [36] and RSC [34].

Similar to general face recognition methods, we perform experiments in PCA subspace in
which the Eigenface [28] features are used as input. By applying PCA to the training data, (17)

will become Pk X̂α−ŷ
� �k 2

2 þ λ∑Sk αSkk k 2, where P is the projection matrix.

Three benchmark face data sets: AR [23], Extended Yale B [11, 20] and CMU Multi-PIE
[13] are used in the following experiments.

Table 1 Face recognition rates on AR data set

AR #30 #54 #120 #300

NN 62.5 % 68.0 % 70.1 % 71.3 %

NS 66.1 % 70.1 % 75.4 % 76.0 %

SVM 66.1 % 69.4 % 74.5 % 76.0 %

SRC [30] 73.5 % 83.3 % 90.1 % 93.3 %

CRC-RLS [36] 64.4 % 80.5 % 90.0 % 93.4 %

RSC [34] 71.4 % 86.8 % 94.0 % 96.0 %

RGSR 73.7 % 87.7 % 94.4 % 96.7 %

Fig. 6 Sample images of two subjects in Extended Yale B data set
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1) AR: As in [30], a subset with only illumination and expression changes which contains
50 males and 50 females was chosen from the AR data set. In our experiments, for each
subject, the seven images from Session 1 were used for training, and the other seven images
from Session 2 for testing. The image size is cropped to 60×43 pixels. Figure 5 shows some
sample images of two subjects in AR data set.

The comparison of RGSR and its competing methods is given in Table 1. RGSR achieves
the best results among all methods in all dimensions. RGSR consistently performs better than
RSC because the structured sparsity is encouraged than the l1-norm induced flat sparsity.

2) Extended Yale B: The Extended Yale B data set contains 16,128 face images of 38 human
subjects under 9 pose and 64 illumination conditions. A subset contains about 2414 frontal face
images from 38 individuals is selected. We used the cropped and normalized 54×48 images,
which were taken under varying illuminations. We randomly split the database into two halves.
One half (about 32 images per subject) was used as training samples, and the other half for
testing. Figure 6 shows some sample images of two subjects in Extended Yale B data set.

Table 2 shows the recognition rates versus feature dimension by the competing methods.
RSGR has much performance improvement in higher dimensions. In this experiment, the
training samples from each class are sufficient (about 32) and they are more uncorrelated in
lower dimensional subspace when comparing with AR data set; thus the l1-norm is more
appropriate to regularize the representation of samples with big variations. RGSR has limited
improvement over RSC in higher dimensional subspace.

3) Multi-PIE: The CMU Multi-PIE data set contains face images of 337 subjects taken in
four sessions with simultaneous variations in pose, expression, and illumination. Among these

Table 2 Face recognition rates on Extended Yale B data set

Extended Yale B #30 #84 #150 #300

NN 66.3 % 85.8 % 90.0 % 91.6 %

NS 63.6 % 94.5 % 95.1 % 96.0 %

SVM 92.4 % 94.9 % 96.4 % 97.0 %

SRC [30] 89.1 % 95.1 % 96.8 % 97.9 %

CRC-RLS [36] 74.0 % 92.9 % 96.5 % 98.0 %

RSC [34] 91.3 % 98.1 % 98.4 % 99.4 %

RGSR 88.2 % 96.4 % 98.6 % 99.6 %

(a) Training samples with only illumination variations.  

(b) Test samples with smile (1-4), squint (5-8) and surprise (9-12) expressions and illumination 

Fig. 7 Sample images of one subject in Multi-PIE data set. (a) Training samples with only illumination
variations. (b) Test samples with smile (1–4), squint (5–8) and surprise (9–12) expressions and illumination
variations
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337 subjects, all the 249 subjects in Session 1 are used as training set. Four subsets with both
illumination and expression variations in Session 1, 2 and 3 are used for testing. We select the
seven frontal images with extreme illuminations {0,1,7,13,14,16,18} as in [29, 34] and neutral
expression to form the training set. Four typical frontal images with illuminations {0,2,7,13}
and different expressions (smile in Session 1 and 3, squint and surprise in Session 2) are used
to form the testing set. Figure 7 shows the training and testing samples of one subject in Multi-
PIE data set. All face images are cropped into 64x64 pixels. We use the eigenface with
dimensionality of 300 as the face feature.

Table 3 shows the recognition rates in four testing sets by the competing methods. From
Table 3, we can see that RGSR achieves the best performance in all tests, and RSC holds the
second place. All the methods obtain their best results when Smile-S1 is used for testing because
the training samples are also from Session 1. The highest recognition rate of RGSR on Smile-S1 is
98.3 %. From testing set Smile-S1 to Smile-S3, the recognition rate of RGSR drops by 21.2 %
because of the longer data acquisition time interval. For testing sets Surprise-S2 and Squint-S2,
the recognition rates of RGSR are respectively 1.6 and 2.1 % higher than those of RSC. This
reflects the insights from two aspects: 1) the robustness improvement is effective for removing the
influence of illuminations and expression variations. Both RGSR and RSC outperform the
remaining methods. 2) The label information in sparse coding stage is important. The flat sparsity

Table 3 Face recognition rates on Multi-PIE data set

Multi-PIE Smile-S1 Smile-S3 Surperise-S2 Squint-S2

NN 88.7 % 47.3 % 40.1 % 49.6 %

NS 89.6 % 48.8 % 39.6 % 51.2 %

SVM 88.9 % 46.3 % 25.6 % 47.7 %

SRC [30] 93.7 % 60.3 % 51.4 % 58.1 %

CRC_RLS [36] 92.1 % 58.7 % 52.3 % 57.9 %

RSC [34] 97.8 % 75.0 % 68.8 % 64.6 %

RGSR 98.3 % 77.1 % 70.4 % 66.7 %

‘Smile-S1’ means that the test samples with smile expressions are from Session 1; ‘Surperise-S2’ means that the
test samples with surprise expressions are from Session 2; ‘Squint-S2’ means that the test samples with squint
expressions are from Session 2

Fig. 8 Recognition rates versus
different percentages of pixel
corruption
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does not consider label information of training samples in coding stage, which leads to the slightly
weak performance of RSC in comparison with RGSR.

4.3 Face recognition with occlusion

In this section, we test the robustness of RGSR to different types of occlusions including
random pixel corruption, random block occlusion and real disguise.

1) Face Recognition with Random Pixel Corruption: Identical to the experimental settings
in [30], we used Subsets 1 and 2 (717 images, normal-to-moderate lighting conditions) of
Extended Yale B for training, and used Subset 3 (453 images, more extreme lighting conditions)
for testing. The face images are resized to 96×84 pixels. For each test image, we replaced a
certain percentage of its pixels by uniformly distributed random values within [0,255]. The
corrupted pixels were randomly chosen from test image and the locations are unknown.

We compare RGSR with SRC, CRC, correntropy-based sparse representation (CESR) [14,
15] and RSC. Figure 8 shows the results of different models under the corruption level from 0
to 90 %. All the models except CRC perform well when the corruption level is lower than
60 %. However, when the percentage is more than 60 %, the performance of SRC was greatly

Fig. 9 An example of face recognition with random pixel corruption (80 % level). First-row: the original image,
corrupted image, weight maps obtained via RSC and RGSR, reconstructed images via RSC and RGSR; Second-
row: learned coefficients via RSC and RGSR

Fig. 10 Recognition rates versus
different percentages of block
occlusion
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reduced. Even with 90 % pixels corrupted, RGSR still obtains an acceptable accuracy
(55.85 %). A representative example of RSC and RGSR with 80 % random pixel corruption
is shown in Fig. 9. The corrupted face image is difficult to recognize even for human; however,
both RSC and RGSR can accurately estimate the weight map and recover the clean image.
Both the corrupted pixels and shadow region are reflected in the learned weight maps. The
reconstructed images are faithful to the original image but with better visual quality. From the
learned coefficients, we find only one sample from the correct class plays a main role in
reconstruction for RSC; while for RGSR, all the samples from the correct class have large
coefficients. Therefore, the reconstructed face image by RGSR is cleaner than that by RSC
especially for the right half face (lower illumination). The coefficients obtained by RGSR have
obvious grouping effect and are smoother than those of RSC.

2) Face Recognition with Block Occlusion: In this part, we test the robustness of RGSR
model to block occlusion. We also used the same experimental settings as in [30], i.e., Subsets
1 and 2 of Extended Yale B for training and Subset 3 for testing. The images were resized to
96×84 pixels. We compare RGSR with SRC, CRC, Gabor-SRC (use Gabor features to
construct the occlusion dictionary) [32], CESR and RSC. Figure 10 shows the change trend
of different models under the level of the occluded area from 0 to 50 %. Obviously, RGSR gets
promising results even if the occlusion level is high. Figure 11 gives a representative example
under 40 % random block occlusion.

Fig. 11 An example of face recognition with block occlusion (40 % level). First-row: the original image,
occluded image, weight maps obtained via RSC and RGSR, reconstructed images via RSC and RGSR; Second-
row: learned coefficients via RSC and RGSR

Table 4 Recognition rates on AR with disguise occlusion

Algorithms Sun-glasses Scarves

SRC [30] 87.0 % 59.5 %

CRC-RLS [36] 68.5 % 90.5 %

GSRC [32] 93.0 % 79.0 %

CESR [14, 15] 99.0 % 42.0 %

RSC [34] 98.5 % 96.5 %

RGSR 100 % 97.5 %
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From the coefficients learned by RSC, we can find that many training samples from the
wrong classes contribute to the reconstruction, which blurs the area around the lip in the
reconstructed image. There are only three non-zero values w.r.t. the samples from correct class,
which means that the l1-norm sparsity encourages selecting representative samples when they
are highly correlated.

For RGSR, the reconstruction is mainly achieved by the training samples from the correct class
because they have similar non-zero values and samples fromwrong classes have near-zero values.

3) Face Recognition with Real Disguise: A subset from AR data set is used in this
experiment, which consists of 2,599 face images from 100 subjects (about 26 samples per

Table 5 Recognition rates on AR with sunglasses or scarves in Session 1 and Session 2

Algorithms Sg-s1 Sc-s1 Sg-s2 Sc-s2

SRC [30] 89.3 % 32.3 % 57.3 % 12.7 %

CRC-RLS [36] 43.7 % 30.7 % 17.7 % 13.7 %

GSRC [32] 87.3 % 85.0 % 45.0 % 66.0 %

CESR [14, 15] 95.3 % 38.0 % 79.0 % 20.7 %

RSC [34] 94.7 % 91.0 % 80.3 % 72.7 %

RGSR 99.0 % 93.0 % 86.7 % 76.7 %

Fig. 12 An example of face recognition with disguise. First-row: the face image without disguise, sunglass
disguised test image, weight maps obtained via RSC and RGSR, reconstructed images via RSC and RGSR;Mid-
row: learned coefficients associated with each training sample via RSC and RGSR; Third-row: residuals of each
class via RSC and RGSR
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subject), 50 males and 50 females. We conduct two tests: one follows the experimental settings
in [30], while the other follows [34] and is more challenging. The images are resized to
42×30 pixels.

In the first test, 800 images (8 samples per subject) of non-occluded frontal views with
various facial expressions in Session 1 and 2 were used for training, while two separate subsets
(with sunglasses and scarves) of 200 images (1 sample per subject per Session, with neutral
expression) for testing. The recognition rates of different models are listed in Table 4. RGSR
achieves 100 % recognition rate under the sunglass disguise and 97.5 % under the scarf
disguise, which are respectively 13 and 38 % improvements w.r.t. SRC. Though RSC performs
well on both disguises, RGSR still has respectively 1.5 and 1 % improvement over it.

In the second test, we usemore complex disguises (disguise with variations of illumination and
longer data acquisition interval). 400 images (4 neutral images with different illuminations per
subject) of non-occluded frontal views in Session 1 were used for training, while the disguise
images (3 images with various illuminations and sunglasses or scarves per subject per Session) in
Session 1 and 2 for testing. Table 5 shows the results of different competing models. RGSR
obtains much improvement w.r.t. RSC, about 4.3 % (Session 1) and 6.4 % (Session 2) for the
sunglass disguise; for the scarf disguise, the improvements are respectively 2 % (Session 1) and
4 % (Session 2). Figure 12 illustrates the classification process of RGSR on a representative
example. Compared to RSC, the reconstructed image by RGSR has better visual quality around
the eye corner for the disguised test image, which can easily remove the sunglass disguise. The
coefficients learned by RGSR have obvious grouping effect, which enforces training samples
from the same class have similar coefficients. And there are samples from only a few wrong
classes which have large values. But for RSC, the coefficients have large values across each class
and correspondingly the coding residual for each class has similar variation tendency.

For validating the convergence of RGSR, Fig. 13 shows the convergence curves w.r.t. the
outer loop for optimizing the feature weight vector and inner loop for optimizing the
representation coefficient in Algorithm 2, which reflects that even under gross corruption,
RGSR can converge in a few iterations (about 10). Under moderate corruption, usually 5
iterations are sufficient.

5 Discussions

In this section,wegivediscuss on the connection aswell as differencebetween reference [16] andourwork.
In [16], the authors compare three types of sparse representation: 1) standard sparse

representation models which are not robust to outliers, 2) robust sparse representation models

Fig. 13 The convergence of the outer loop for optimizing the feature weight vector (left) and inner loop for
optimizing the representation coefficient (right) of Algorithm 2
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which are robust to outliers and 3) using the M-estimator to measure the coding residual of
sparse representation. The experimental results show that the M-estimator in multiplicative
form can greatly enhance the robustness of sparse representation model. Therefore, we can
easily find the connections as well as differences between [16] and our work. Both methods
use M-estimator via half-quadratic optimization to enhance the model’s robustness. However,
He et al. uses the M-estimators such as Welsch and Huber while the Logistic loss function is
employed in our work. He’s work considers more sparse representation models (Eqs. (41)-(49)
in [16]) while we consider one representative non-robust sparse representation model (Eq. (1)
in our work, which is equivalent to (42) in [16]) and one representative robust sparse
representation model (Eq. (3) in our work, which is equivalent to (48) in [16]).

Moreover, taking Welsch and Huber M-estimators as an example, we conduct experiments
to show the performance differences for both methods. The potential function of Welsch and
Huber estimators are respectively shown as follows:

ϕW eið Þ ¼ 1−exp −
e2i
σ2

� �
ð27Þ

ϕH eið Þ ¼
e2i =2; jeij≤λ
λjeij− λ2

2
; jeij > λ

8<
: ð28Þ

Accordingly, the corresponding weight functions in multiplicative form are respectively
defined as

ωW eið Þ ¼ exp −
e2i
σ2

� �
ð29Þ

ωH eið Þ ¼
1; jeij≤λ
λ
jeij ; jeij > λ

8<
: ð30Þ

The involved parameter kernel size σ in Welsch estimator is determined by σ2 ¼ 0:5

�mediani yi−∑
n
j¼1xi jα

t
j

� 	�
2Þ and the threshold parameter λ in Huber estimator is deter-

mined by λ ¼ 0:8� mediani yi−∑
n
j¼1xi jα

t
j




 


� 	
[16]. We conduct pairwise comparison be-

tween RSGR and He’s method by using the above two M-estimators in two experimental
settings: face recognition with random pixel corruption and block occlusion. The data sets are
the same as those described in Section 4.3. Here we consider the Welsch and Huber M-
estimators and their corresponding weight functions in multiplicative form.

1) Face recognition with random pixel corruption. In this experimental setting, each test
image was corrupted by replacing a set of randomly selected pixels with a random pixel
value which follows a uniform distribution over [0,255]. We vary the percentage of
image pixels that suffer corruptions from 10 to 80 %. Figure 14 shows the recognition
accuracy of both methods, as a function of the level of corruption. From this figure, we
have two findings: 1) the RGSR-based methods are basically better than He’s work [16].
The reason accounting for this may be caused by the incorporation of structured sparsity
which directly considers the label information in sparse coding phase. 2) The perfor-
mance of Welsch M-estimator-based methods is better than that of Huber M-estimator-
based methods, which is consistent with the results in [16].

8876 Multimed Tools Appl (2017) 76:8859–8880



2) Face recognition with block occlusion. Figure 15 shows the recognition rates of both
methods, as a function of the level of occlusion. We can see that both methods show excellent
performance across different percentages of occlusion. The results via Welsch M-estimator are
slightly better than those obtained via Huber M-estimator. The proposed RGSR on Welsch M-
estimator achieves the best recognition rate, which is nearly 88% even when the occlusion level
is 50 %. It is about 3 % higher than that of He’s work [16]. This reflects that both the robustness
improvement and the structured sparsity are beneficial for learning more effective sparse codes.

6 Conclusion

This paper proposed the robust group sparse representation-based classifier by improving SRC from
two aspects: using robust M-estimator to measure the representation fidelity and the group sparsity
constraint on the coefficients. The optimizationmethod to proposedRGSRmodel is efficient andwe
provide its convergence analysis. The RGSR model was evaluated under different conditions,
including variations of illuminations, expressions, occlusion and combined corruption. Our exper-
imental results demonstrated that RGSR performs well especially under high-dimensional cases and
outperforms many state-of-the-art methods including robust sparse coding.

Fig. 15 Recognition rates in terms
of different percentage of block
occlusion: RGSR vs. He’s work

Fig. 14 Recognition rates in terms
of different percentage of random
pixel corruption: RGSR vs. He’s
work
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