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Abstract—Previous studies on EEG-based last-night sleep
quality estimation mainly focus on evaluation with data from
laboratory experiments. However, due to the reality gap con-
stituted with device performance, subject groups, experiment
settings and controlled conditions, the models trained solely on
laboratory data cannot generalize well to real scenarios. In this
work, we investigate the sleep quality estimation for high-speed
train drivers as an instance of real-scenario application. Domain
adaptation models are adopted to deal with the individual
differences across subjects when modeling and testing with the
real-scenario data. As it is usually difficult and costly to acquire
data and annotate them in real scenarios, the high-quality data
in laboratory conditions are used for model trainings. Knowledge
from simulation is transferred to reality with domain adaptation
methods. A novel approach called Domain Adversarial Neural
Network (DANN) is adopted. DANN learns domain independent
features through deep networks with an adversarial architecture.
The experimental results indicate that DANN outperforms other
state-of-the-art methods and achieves 19.55% and 23.50% im-
provements in terms of accuracy on the cross-subject and cross-
scenario tasks, respectively, in comparison with the baseline SVM
model.

I. INTRODUCTION

Sleep has always been an important topic, no matter in
research field or in daily life. Insufficient sleep may lead to
serious impairment in daytime performance, increase the risk
of driving and occupational accidents and result in dimin-
ished life quality [1]. Akerstedt et al. studied the relation-
ship between sleepiness and accidents in transport operation.
They concluded that sleepiness causes 15% to 20% of all
accidents, surpassing alcohol- or drug-related incidents in all
modes of transportation, becoming the largest identifiable and
preventable cause of accidents [2]. Besides, driver sleepiness
has also become a major threat to the railway safety. Bad sleep
quality affects drivers’ attention, judgment and execution,
which may trigger railway fatalities and gravely damage the
security of people’s lives and properties [3]. Therefore, a
reliable measurement of sleep quality, especially last-night
sleep quality, becomes necessary.

Currently, there are subjective approaches judging sleep
quality by self-evaluation via questionnaires, interviews and
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sleep dairy. These self-evaluation approaches usually require
the participants to consider their sleep habits of the recent
times. Pittsburgh Sleep Quality Index (PSQI) [4] and Epworth
Sleep Scale (ESS) [5] are representative ones widely adopted
by sleep researchers. PSQI limits the time interval to the
last month and ESS refers to the participant’s usual way
of life in recent times. Taking considerably long time into
account makes the measurement more precise and robust in
distinguishing patients from healthy people. However, these
subjective approaches would fail when evaluating the last-
night sleep quality due to the constrains of taking a relatively
long period into account.

Various objective approaches have been proposed to
precisely measure the sleep quality over a single night.
Polysomnography (PSG) [6] is a typical objective method of
this kind. The PSG monitors body functions including brain,
eye movements, muscle activity, skeletal muscle activation
and heart rhythm during sleep. The recorded signals are then
analyzed by a doctor who is capable of judging the sleep
quality. This approach requires a PSG device attached to the
subject during the whole sleeping process, which makes it not
an applicable choice in real scenarios. For instance, if PSG
is applied to high-speed train driver sleep quality checking,
the company would have to purchase a PSG device for
every driver, which would be rather expensive, and the sleep
quality checking procedure would also be time-consuming
and inefficient. Therefore, a cheaper and easier method is in
demand.

With the rapid development of wearable electroencephalog-
raphy (EEG) signal acquiring devices, EEG-based last-night
sleep quality measurement is considered as a feasible choice.
This approach does not require EEG during the whole sleep
process, but only acquires EEG in a short time after the subject
wakes up. Ideally, these EEG data would be containing infor-
mation of the subject’s last-night sleep quality. Most EEG-
based sleep studies are done in the laboratory environment
with precisely controlled sleep duration or sleep deprivation.
With different controlled conditions, such as restricting sleep
time to be 4, 6 or 8 hours [7], the subjects would be in totally
different mental states, which makes it easier to distinguish



between different sleep quality with EEG signals. These
studies achieved promising results on restricted laboratory
environments. However, to the best of our knowledge, no
studies under real scenarios has been performed yet.

In this paper, we aim to apply the EEG-based last-night
sleep quality estimation approach to real scenarios. To acquire
real-scenario data, we perform experiments on high-speed
train drivers with different last-night sleep qualities at their
workplace. We first perform a cross-subject task on real-
scenario data. Domain adaptation (DA) methods are adopted
to reduce the individual difference across subjects. As the data
collection and annotation in real scenarios are usually costly
and difficult, using only the real-scenario data to train models
is not practicable. We introduce the laboratory data used our in
previous work and perform a cross-scenario task in which we
train models on laboratory data and test them on real-scenario
data. DA methods are also adopted to narrow the reality
gap between these two scenarios. Among the adopted DA
methods, the Domain Adversarial Neural Network (DANN)
method performs the best in terms of classification accuracy
with considerable improvement over the other methods.

II. RELATED WORK

Sleep has been a hot research topic for decades. In the
early days, sleep is defined as a human maitaining a specific
body gesture and behavioral quiescence with elevated arousal
threshold and state reversibility after stimulation [8].

Since the development of technology to amplify and record
spontaneous EEG signals, it has been demonstrated that there
is a strong correlation between EEG and sleep. Hori et
al. proposed a nine-stage EEG-based system for identifying
successive EEG changes throughout the sleep onset period
which represents the greatest advance in understanding the
sleep onset process yet achieved [8]. Wolpert et al. proposed
a sleep stage character system depending on brain waves [9],
in which a distinct and typical EEG and physiologic patterns
for alert, REM sleep and each stage of NREM has been found.
Therefore, researchers in sleep field have always been paying
close attention to EEG signals.

In the last decade, the differences and changes of EEG
under different sleep qualities have been investigated. Li et
al. tried to study how lack of sleep influences the event-
related potentials under stimulation [10]. Audio stimulation
was given to subjects in both cases of sufficient sleeping and
lack of sleep and event-related potentials of the subjects were
analyzed with the parallel factor analysis method. They found
that when subjects are lack of sleep, event-related potentials
activities of the subjects tend to appear near to the forehead
and Gamma frequency band delay and attenuation would
occur. Na et al. investigated effects of sleep deprivation on the
connection between cerebral hemisphere. They conducted a
mutual information analysis on the EEG acquired from normal
sleep and sleep deprived subjects and concluded that the
connection between cerebral hemisphere was weaker in case
of sleep deprivation [11]. Tassi et al. focused on the correlation

between partial sleep deprivation and the EEG activity after-
ward. The spectral analysis applied on the waking EEG during
cognitive performance testing shows that alpha activities were
increased in both deprived and normal subjects but theta power
increased only in the sleep deprived group [12]. The studies
mentioned above mainly focus on the comparison between
controlled experiment of two cases: the deprived group and the
normal group. They usually analyze EEG data in a statistical
manner and achieve qualitative conclusions.

In recent years, a minority of researchers take up research
into quantitative last-night sleep quality estimation with ma-
chine learning methods. Wang et al. attempt to measure
last-night sleep quality from resting EEG signals [3]. They
designed an experiment collecting resting EEG signals from
subjects under three discrete sleep conditions: 8 hours sleep,
6 hours sleep, and 4 hours sleep, according to which the EEG
data are labeled as three categories. To correctly classify the
EEG data, they introduced discriminative graph regularized
extreme learning machine together with minimal-redundancy-
maximal-relevance feature selection algorithm and achieved a
mean accuracy of 83.5% in a leave-one-subject-out validation
manner [3]. Zhang et al. followed that work and modified
the EEG acquisition procedure, which we discuss in the
experiment section [7]. They extracted subject independent
features with three domain adaptation methods and feed them
into SVM to make comparisons. With considerable model per-
formance improvement, they concluded that domain adaptation
approaches do have the capability to reduce the differences of
EEG data across subjects and sessions [7].

In this work, we focus on last-night sleep quality estimation
in real scenarios. In our previous work [3] [7], EEG signals are
acquired with wet-electrode devices, which is not applicable
to real scenarios due to the laborious preparation process and
poor portability of wet-electrode devices. Therefore, we use a
dry-electrode device to perform EEG acquiring experiments on
high-speed train drivers. We also adapt our experiment settings
to the real-scenario conditions. Differences of devices, subject
groups, experiment settings and controlled conditions lead to
a giant reality gap between laboratory and real-scenario data,
making the last-night sleep quality estimation in real scenario
a much more challenging task than in laboratory conditions.
To address the domain difference problem, we adopt not only
traditional DA methods but also a novel DANN method with
the capability of learning domain independent features through
deep neural networks with an adversarial architecture. DANN
outstandingly outperforms other models and turns out to be
stable and robust according to our experimental results.

III. METHODS

A. Feature Extraction

EEG signals can be divided into five different frequency
bands: Delta (1∼4 Hz), Theta (4∼8 Hz), Alpha (8∼13 Hz),
Beta (13∼30 Hz) and Gamma (30∼50 Hz) bands [13]. The
feature extraction procedure converts the time domain signals
to the frequency domain and then extracts useful information
for the five frequency bands. Differential entropy (DE) features



are commonly used for its reflecting the energy change of
EEG signals [14]. We extracted DE features from the 18-
channel EEG signals in 5 frequency bands, which add up to a
feature vector of length 90. Since the extracted features contain
fluctuations caused by noise, we use the linear dynamical
system to remove those fluctuations [15].

B. Domain Adaptation models

Domain adaptation helps to transfer knowledge from a
source domain to a different but related target domain, even
though these domains may have different distributions. Most
existing DA methods aim at finding a new feature represen-
tation reducing the difference between the distributions of the
source and target domains, meanwhile preserving the data
properties of the source and target domains. In this work,
we would apply DA methods to transfer knowledge from our
laboratory experiments to the real-scenario (high-speed train
drivers) experiments. Below, we introduce the eight methods
adopted in this work.

1) Transfer Component Analysis (TCA) [16]: TCA aims to
learn a transformation that reduces the distance between the
marginal distributions and preserves the important properties
of both domains. TCA empirically measures the distance
between the source and target distributions by the distance be-
tween the empirical means of the two domains in Reproducing
Kernel Hilbert Space (RKHS) . Besides, to preserve the main
properties of both domains, the TCA chooses to maximally
preserve their variance.

2) Information-Theoretical Learning (ITL) [17]: ITL as-
sumes that in a latent feature space induced by a linear
transformation L ∈ Rd×D, data in source and target domains
are clustered according to their labels and the clusters from
two domains that possess the same label are geometrically
close . Then a k-nearest neighbors model is used to estimate
the label of each sample in the target domain. The negated
mutual information between the target data and the estimated
label is used to approximate the classification error, which is
to be minimized. Another k-nearest neighbors model is used
to estimate the domain label of each sample in both domains.
To express the desideratum that clusters possessing the same
label are geometrically close, the negated mutual information
between samples and domain labels is maximized.

3) Geodesic Flow Kernel (GFK) [18]: GFK parameterizes
the process of the source domain smoothly changing to the
target domain with a geodesic flow Φ(t), where t ∈ [0, 1].
Φ(t) smoothly changes from the basis of subspace for the
source domain to that of the target domain when t gradually
changes from 0 to 1. GFK then expands the original feature
x by projecting it onto all these subspaces, which gives us an
infinite-dimensional feature vector z∞. Then the inner product
in this infinite dimensional space would be

〈z∞i , z∞j 〉 =

∫ 1

0

(
Φ(t)Txi

)T (
Φ(t)Txj

)
= xTi Gxj . (1)

This is a “kernel trick”, and the matrix G has a closed form
solution.

4) Joint Distribution Adaptation (JDA) [19]: JDA hopes
to find projection matrix A that adapts the joint distributions
and the conditional distribution of features x and labels y
simultaneously. Since there is no labeled data in the target
domain, it uses a classifier f to generate pseudo target label
as an approximation of actual label. In order to achieve more
accurate approximation, an iterative pseudo label refinement
strategy is introduced to refine the transformation and the
classifier.

5) Subspace Alignment (SA) [20]: SA represents the source
and target domains as subspaces described by eigenvectors.
It then seeks a mapping function that aligns the source and
target subspaces as a domain adaptation solution. Using PCA,
it selects d eigenvectors for each domain as their correspond-
ing source (XS) and target (XT ) subspaces. Then, a linear
transformation matrix M is used to align XS with XT . M is
learned by minimizing the Bregman matrix divergence.

6) Transfer Joint Matching (TJM) [21]: TJM proposes to
adapt domains with a transformation T that (a) minimize the
Maximum Mean Discrepancy distance between the source and
target domains, and (b) reweight the source instances through
a structured sparsity. TJM works in RKHS to match both first-
and high-order statistics. As there is a row-sparsity regularizer
in the optimization objective, TJM solves the problem by an
iterative approach.

7) Maximum Independence Domain Adaptation (MIDA)
[22]: MIDA shares the same intuition with TCA. It aims
at minimizing the domain difference while preserving the
data properties with transformation Φ. With kernel trick, the
kernel K matrix can be easily induced. A projection matrix
W̃ is used to transform the kernel map. MIDA assumes that
W̃ = Φ(X)W. MIDA measures the dependence between
projected samples and domain features by Hilbert-Schmidt
independence criterion (HISC). Besides, MIDA preserves the
properties of data by keeping the variance in the transformed
feature space.

8) Domain Adversarial Neural Network (DANN) [23]:
DANN is a domain adaptation approach with deep architec-
tures that can be trained with labeled source domain data
and unlabeled target domain data. Its adaptation behavior is
achieved by augmenting a normal feed-forward model with
a few standard layers that work as a domain discriminator
and a gradient reversal layer that makes the model be trained
procedure in an adversarial manner. Figure 1 depicts the
architecture we adopt in this work.

DANN estimates the dissimilarity of domains in feature
representation f by looking at the loss of domain classifier
Gd. Therefore, at training time, DANN seeks the parameters
θf that maximize the loss of Gd and meanwhile, seeks for the
parameters θd that minimize the loss of Gd. By introducing a
gradient reversal layer (GRL) Rλ(·) between the feature f and
the domain classifier Gd, one can define GRL as a pseudo-
function by its forward- and back-propagation behaviors:

Rλ(f) = f (2)
∂Rλ(f)

∂f
= −λI, (3)



where λ is a tradeoff parameter. The objective function can
then be optimized with statistic gradient descent (SGD) and
also other optimization methods based on SGD.
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Fig. 1. The DANN model with three components: a feature extractor Gf , a
label predictor Gy and a domain classifier Gd. The feature extractor maps the
input x to a feature vector f ∈ Rm with all of its layer parameters denoted
as θf , i.e. f = Gf (x; θf ). The label predictor maps f to a predicted label
ŷ with all of its layer parameters denoted as θy . The domain classifier maps
f to a predicted domain mark d̂ with parameters denoted as θd.

IV. EXPERIMENTS

Since we aim at transferring knowledge from the laboratory
to the real scenario, it is necessary to have data from both
scenarios. The laboratory data used in this work are acquired
in our previous studies of sleep quality estimation [7], and in
this work, we collected the real-scenario data from high-speed
train drivers. Here, for comparison between these two types of
experiments and easy understanding of how different the real-
scenario data is from the laboratory ones, we will describe both
of them in details. The data are preprocessed after acquisition
and DE features are extracted from the preprocessed data.
We then perform the cross-subject and cross-scenario tasks
on the extracted features. A baseline SVM model and eight
DA methods are then adopted in both tasks.

A. Laboratory Sleep Experiment

The Laboratory experiment aims at collecting resting EEG
after sleep of different quality. Each experiment consists of
two parts: sleep and EEG acquisition. 10 subjects (six males
and four females, age range: 21-26, mean: 23.57, std: 1.62)
were recruited for the experiments. At the night before EEG
acquisition, the subject was required to sleep for a specified
amount of time: 4, 6 or 8 hours corresponding to a good,
normal or poor sleep quality [3]. To ensure that the subject
slept for the time as required, a smart band was attached
to them monitoring their wrist motions, which can rarely be
detected when human fall asleep [7]. After the subject woke
up, the EEG acquisition procedure started in less than an hour
and lasted for 30 minutes. The EEG signals were recorded
with a 62-channel wet electrode cap using the ESI NeuroScan
system. Electrodes on the cap are placed according to the

(a) Laboratory environment while
aquiring EEG for student subjects

(b) Real-scenario experiment envi-
ronment while aquiring EEG for
high-speed train drivers

(c) Wet electrodes EEG cap (d) Dry electrodes DSI-24 headset
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Fig. 2. Experiment details of laborotary (left column) and real-scenario (right
column) experiments.

higher-resolution international 10-20 system. The left column
of Figure 2 shows the experiment scene and the wet electrode
device. During the data acquisition procedure, the subjects
were required to stare at a green dot on the screen and count
silently to keep a peaceful and concentrated state [7].

B. Real-Scenario Sleep Experiment

TABLE I
SLEEP DURATION AND CORRESPONDING SLEEP QUALITY

Sleep time Sleep quality Subjects

(2, 5] h Poor 10
(5, 7] h Normal 24
(7, 10] h Good 36

The real-scenario experiments are performed to record the
EEG data for subjects from a specific group. The subjects
should be going through their daily routine and not be re-
stricted by any condition set by the experiment. In this work,



we performed our experiment on the high-speed train drivers
right before they start to work. 70 subjects (70 males, age
range: 25-49, mean: 37.10, std: 4.69) are recruited. At the night
before EEG acquisition, the sleep time of the subjects were not
controlled. Before the experiments began, the subjects were
required to fill out a questionnaire about their sleep last night.
The questions investigated sleep duration, dreams and current
feelings. In this work, we use the sleep duration as an index
of subjects’ sleep quality, as shown in Table I.

The EEG acquisition procedure is performed 30 minutes
right before the subjects went to work. During EEG recording,
the subject was required to stare at a green dot on the screen
for 1 minute and close for another 1 minute alternately for 3
times. During the whole session, the subjects were required to
count silently to keep a peaceful and concentrated state. The
EEG signals were recorded with an 18-channel dry electrode
cap using the DSI-24 device at a sampling rate of 300 Hz.
Electrodes on the cap are placed according to the international
10-20 system. The experiment environment and dry electrode
DSI-24 device are shown in the right column of Figure 2.

C. Differences between experiments

In order to keep the nature of the real scenario, instead of
imposing restrictions on subjects, we adapt our experiment to
the limitations in the real world, thus making the real-scenario
experiments vary from the laboratory ones in many different
ways. In order to keep our experiment short to fit the time
limitation, we shrink our actual EEG recording time from 30
minutes to 6 minutes. In laboratory experiments, 64-channel
wet electrode devices are used to record the EEG signals.
However, these devices require laborious setup processes,
therefore do not meet the demand of frequent acquisition
of EEG signals in the real scenario. This demand is well
addressed with the dry electrode device DSI-24 headset, which
is more convenient to use. Moreover, we do not control the
subjects’ sleep time and experiment start time, so that the
mental states of subjects during the experiments are close to
those in their daily lives. For the ease of understanding, we
summarized the difference between experiments in different
scenarios as Table II.

D. Preprocessing

Some of the hardware induced difference can be eliminated
by preprocessing methods. Preprocessed data in both scenarios
would be sharing the same format and we can apply same
subsequent processing procedures to them.

1) Electrodes Selection: In the laboratory, a wet electrodes
cap with 62 channels was used and in the real scenario, a
dry electrodes headset with 18 channels was used. The former
one’s electrodes are placed according to the higher-resolution
international 10-20 system and the later according to the
normal international 10-20 system. As a matter of fact, extra
electrodes in higher resolution 10-20 system are added using
the 10% division, which fills in intermediate sites halfway
between those of the existing 10-20 system. In other words,
if we remove the extra electrodes in the higher resolution
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Fig. 3. Electrodes selection on laboratory device. Those electrodes marked
red are selected ones mathching electrodes on DSI-24 headset. The CMF
electrode on DSI-24 headset dose not record any signal, so the correponding
PZ electrode is not marked.

system, the electrodes left would match perfectly with the
normal system. We selected the corresponding electrodes from
the laboratory device, as shown in Figure 3.

2) Resetting Reference: As shown in Table II, the EEG data
recorded with different devices have inconsistent references.
The real-scenario data use the mean of A1 and A2 electrodes
as references. However, the laboratory data use a specific REF
electrode as the reference. Besides, the wet-electrode cap we
used does not have any of the A1 or A2 electrodes, and also
the DSI-24 headset does not have a REF electrode. To address
the inconsistency, we decided to use the mean signal of all 18
electrodes as reference [7].

E. Modeling

We extract DE features for EEG signals in both scenarios
with time window set to 1s. For the laboratory data, we collect
EEG signals for 10 subjects with 3 experiments per subject
and each experiment lasts about 30 minutes. Therefore, we
have 58172 laboratory samples. For the real-scenario data, we
collected EEG signals for 70 subjects with 1 experiment per
subject and the valid time of each experiment is 3 minutes
exactly. Therefore, we have 12600 real-scenario samples.

We mainly perform two modeling tasks in this work: (a)
training and testing on real-world data, and (b) training on
laboratory data but testing on real-world data. While perform-
ing the first task, the model performance is evaluated in a
5-fold cross validation manner. The real-world data is split
into 5 parts, each containing 14 subjects and no subject’s data
should appear in multiple validation parts. Therefore, in the
following discussion we refer to the first task as the Cross-
Subject one and the second as the Cross-Scenario one. For
the ease of comparison between two tasks, we split the real-
scenario data into 5 parts in the same way as the cross-subject
task while evaluating on the cross-scenario task.

After the feature extraction, We use the LIBLINEAR [24]
SVM with default parameters as the baseline model on both



TABLE II
DIFFERENCES BETWEEN LABORATORY AND REAL-SCENARIO EXPERIMENTS

Categories Specifications Laboratory Real-scenario

Subjects

Age 21-26 25-49
Sex-distribution 4 males, 6females 70 males
Occupation Students High-speed train drivers
Experiments per subject 3 1

Controlled conditions
Sleep time 4,6,8 hours Not controlled
Monitoring sleep Yes No
Head Cleaning Yes No
Experiment Starts ≤1 hour after wake up 1-10 hour after wake up

Experiment settings
Experiment duration 30 min 6 min
Task Eyes open Eyes open and close
Environment Quite and isolated Noisy

Devices

Electrods type Wet electrodes Dry electrodes
Resolution 62 channels 18 channels
Reference REF(Between CPZ and PZ) A1 and A2 (On the ears)
Common Mode Follower 0 1 (CMF)
Sample rate 1000 Hz 300 Hz

tasks. In the cross-subject task, while performing a 5-fold
cross-validation, we view the fold held out as the target domain
and the other 4 folds together as the source domain. In the
cross-scenario task, we consider the whole real-world dataset
as the target domain and the laboratory dataset as the source
domain. TCA, ITL, GFK, JDA, SA, TJM and MIDA are run
on all data as dimensionality reduction step and then SVM
classifier is trained on transformed labeled source domain
data and tested on the transformed target domain data. To
boost the performance of these models, we pick the best
subspace dimension parameter from the range {10,...,80}. The
DANN model was trained with labeled source domain data and
unlabeled target domain data, and the target domain labels can
only be seen in evaluation steps. The tradeoff parameter λ of
the GRL in DANN is set to 0.01. In the following discussions,
we refer to the DA models except for DANN as the baseline
DA models and refer to the baseline model as the baseline
SVM model.

V. RESULTS AND DISCUSSION

We first compare DANN with baseline DA methods and
also the baseline SVM model in terms of classification accu-
racy. The classification accuracies of cross-subject and cross-
scenario models are summarized as Table III and IV.

DANN achieves much better performance than baseline DA
models on both tasks. The average classification accuracy of
DANN on cross-subject task is 73.72%. The performance im-
proved 6.97% compared to MIDA (best baseline DA model),
and 19.55% compared to the baseline SVM model. On the
cross-scenario task, the accuracy of DANN model is 65.29%,
which is 7.83% and 23.50% higher than the MIDA (best
baseline DA model) and the baseline SVM model, respectively.
We also observed that the standard deviation of DANN test
accuracy across the 5 folds is lower than all the baseline
DA models. Especially on the cross-scenario task, the lowest
standard deviation of baseline DA models is 10.6%, while

DANN achieves a standard deviation of 3.80%. This suggests
that DANN is more stable than baseline DA models.

TABLE III
ACCURACY (%) OF CROSS-SUBJECT TASK

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean±Std

SVM 59.57 48.41 57.42 55.71 49.74 54.17±4.87
TCA 58.37 72.98 63.77 69.48 53.85 63.69±7.82
ITL 66.07 66.79 57.14 76.43 56.71 64.63±8.13
GFK 59.41 66.79 53.73 58.45 58.49 59.37±4.70
JDA 59.41 59.52 76.11 60.44 55.91 62.28±7.92
SA 77.42 67.38 60.36 70.68 46.47 64.46±11.7
TJM 65.91 74.72 58.73 62.22 59.37 64.19±6.53
MIDA 71.35 69.76 66.91 69.21 56.51 66.75±5.94
DANN 67.50 74.64 71.23 76.98 78.25 73.72±4.38

TABLE IV
ACCURACY (%) OF CROSS-SCENARIO TASK

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean±Std

SVM 43.86 40.35 42.18 38.98 43.59 41.79±2.10
TCA 54.60 61.19 38.89 67.34 56.87 55.60±10.6
ITL 53.69 63.10 24.68 60.71 49.41 50.32±13.7
GFK 49.64 62.46 40.99 70.95 49.25 54.66±11.9
JDA 47.70 61.43 35.71 66.11 66.94 55.58±13.5
SA 42.74 62.54 37.50 61.23 54.17 51.64±11.1
TJM 41.67 60.28 38.97 59.88 60.60 52.28±10.9
MIDA 56.47 66.35 38.69 68.93 56.87 57.46±11.9
DANN 69.10 64.68 60.79 62.6296 69.25 65.29±3.80

We can also see that all the transfer learning methods
achieved a better classification accuracy than the baseline
SVM model on both tasks. With domain adaptation, the mean
accuracy is improved at least 5.20% and 9.85% on cross-
subject and cross-scenario, respectively. We can see that the
DA methods do eliminate the difference between the source
and target domain. However, the major limitation of baseline
DA models is that they use predefined functionalities to
measure the domain difference and transform the data in a
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Fig. 4. The effects of adaptation on cross-scenario task (Best viewed in color). The figure shows t-SNE [25] visualizations of features. (a) shows features
with no adaptation; (b)-(h) show features after transformation by baseline DA methods; (i) shows the feature transformed by the feature extractor of DANN.
Blue dots correspond to the source domain examples, while green triangles represent the target domain ones. The source and target domain features after
transformation are much closer in DANN than baseline DA models
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Fig. 5. The confusion matrix of DA models on cross-scenario task. The vertical axis represents the labels marked by sleep duration according to Table I; The
horizontal axis represents the predicted label of each DA model. The number on each block reprensents the percentage of samples with that the true label
(vertical ones) being classified to the predicted label (horizontal ones).

predetermined way, which is rather rigid compared to the
DANN method. DANN represents both the domain difference
and the transformation with multilayer neural networks and
can be trained in an adversarial manner with SGD based
methods, which makes it easier to reduce the domain discrep-
ancy between source and target domains. Figure 4 shows how
DANN succeeded at aligning feature distributions on the cross-
scenario task. Another drawback of the insufficient adaptation
of baseline DA methods is that it may cause negative transfer
in some components of the target domain. We can observe
this phenomenon in Table IV, where negative transfer occurs
in Fold 3 on TCA, ITL, JDA, SA and TJM models, and yet
DANN shows no negative transfer in all 5 Folds.

It is noteworthy that the real-scenario data is severely un-
balanced, with 1800 poor-sleep-quality samples, 4320 normal-
sleep-quality samples and 6480 good-sleep-quality samples.
Thus the classifiers may benefit from biased predictions. For
a simple example, if one classifies all samples to be of
good sleep quality, it would achieve over 50% classification
accuracy. With that in mind, we visualize the confusion matrix
of each model on cross-scenario task to see whether the models
have made biased predictions (see Figure 5). We observed
that TJM and JDA do suffer from the biased prediction
problem. TJM achieved a classification accuracy of 60.94% on
good-sleep-quality samples while its accuracy drops sharply
to 39.61% on poor-sleep quality-samples, which is close to



a random prediction result. In contrast, DANN’s prediction
preserves a 54.33% classification accuracy on poor-sleep-
quality samples.

Lastly, we compare the performance of models on different
tasks. All models perform with a relatively lower classification
accuracy on the cross-scenario task compared to the cross-
subject task, which is predictable as the former is more
challenging. As we have illustrated in Table II, the cross-
scenario task is dealing with the reality gap constituted with
differences of four categories. The intersubject variation that
the cross-subject task focuses on is merely one of these
categories. Therefore, the baseline SVM model performs with
a low accuracy (41.79%) on cross-scenario task. In spite of
the difficulties, DANN achieves remarkable improvement over
baseline DA methods, which shows that DANN performs more
robustly on difficult domain adaptation tasks than baseline DA
models.

VI. CONCLUSION

We have studied last-night sleep quality estimation in real
scenarios. To acquire the real-scenario data, we have per-
formed EEG acquisition for high-speed train drivers without
changing their work schedules. In order to meet the demand
of practical application, we have introduced a dry electrode
device to collect the EEG signals. To estimate the sleep quality
of the drivers, we have evaluated two tasks: the cross-subject
one and the cross-scenario one. Eight DA methods have
been adopted to both tasks to reduce the domain discrepancy
between source and target domains. In this work, we have
adopted a novel DANN approach, which is based on neural
networks with an adversarial architecture. The results have
shown that DANN approach considerably outperforms base-
line models on both tasks in terms of classification accuracy.
Moreover, we have also analyzed the models from various
perspectives and concluded that the DANN approach is also
stable and robust on the challenging cross-scenario task.
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