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Abstract. Driver sleepiness has become one of the main reasons for
traffic accidents. Previous studies have shown that two alpha-related
phenomena - alpha blocking phenomenon and alpha wave attenuation-
disappearance phenomenon - respectively represent two different sleepi-
ness levels: the relaxed wakefulness and the sleep onset. Thus, we pro-
posed a novel model to detect those two alpha-related phenomena based
on EEG and EOG signals so as to determine sleepiness level. EOG and
EEG signals inherently have temporal dependencies, and the sleepiness
level transition is also a temporal process. Correspondingly, continuous
wavelet transform represents physiological signals well, and LSTM is
capable of handling long-term dependencies. Thus, our proposed dec-
tection model utilized continuous wavelet transform and LSTM neural
network for detecting driver sleepiness. The performance of our detection
model are twofold: the recall and precision for detecting start and end
points of alpha waves are generally high, and the LSTM classifier reaches
a mean accuracy of 98.14%.
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1 Introduction

Lacking sleeping, numerous drivers have reported that they actually fell asleep
while driving [10]. This phenomenon indicates that some drivers tend to ignore
the early signs of drowsiness, and are consequently unaware of the following
period of sleep onset [1,7]. Therefore, developing a reliable method to evaluate
driver sleepiness is of urgent need and of great importance.

Although there are many ways to evaluate sleepiness level, such as self eval-
uation and vehicle-based evaluation, using physiological signals to detect driver
sleepiness is one of the most reliable ways [2,12]. Shabani et al. used RQA of
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EEG to differentiate alert to drowsy with 90.6% accuracy [11]. From our previ-
ous research, a new alpha wave attenuation-disappearance phenomenon has been
proven to be a general pattern for predicting the entry of sleep during simulated
driving in daytime [8]. Besides this phenomenon, we also observed the typical
alpha blocking phenomenon in the simulated driving process. Accroding to [4,5],
it refers to the alpha rhythm activity which appears when eyes are closed under
the relaxed wakefulness, and it disappears when eyes are reopened. Thus, alpha
blocking phenomenon and alpha wave attenuation-disappearance phenomenon
represent two different sleepiness levels: the relaxed wakefulness and the sleep
onset.

In our previous work, we combined continuous wavelet transform with SVM
to detect two different alpha-related phenomena [9]. However, the sleepiness
level transition is a temporal process, and physiological signals like EOG have
inherent temporal dependencies [14]. Our previous model didn’t take temporal
information into account. Thus, we introduced LSTM network to deal with those
temporal dependencies in this paper. Being a special form of recurrent neural
networks, LSTM has the ability to capture temporal dependency property. And
it has achieved great successes in the field of machine translation and speech
recognition. Meanwhile, continuous wavelet transform represents physiological
signals well. Therefore, we proposed a novel model based on continuous wavelet
transform and LSTM network to detect the change of alpha waves and to dis-
tinguish those two alpha-related phenomena.

2 Two Experiments and Their Settings

We conducted two different types of experiments for each subject: the eye-closure
experiment and the simulated driving experiment. These two experiments aim
to obtain EEG and EOG signals under two different sleepiness levels: the relaxed
wakefulness and the sleep onset. In total, 12 healthy subjects (4 females and 8
males with an average age of 22) who have siesta habit for more than a year
were recruited from Shanghai Jiao Tong University (Fig. 1).

Fig. 1. Procedures for simulated driving experiments and eye-closure experiments
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2.1 Eye-Closure Experiment

This experiment aims to obtain the subject’s EEG and EOG signals under the
relaxed wakefulness. The subject closed and opened his/her eyes according to
our instructions, and only alpha blocking phenomenon appeared during the eye
closure period.

Every subject participated in the eye-closure experiment once, and the exper-
iment lasted for 60 min. We can get an averaged 250 periods of closing and
reopening eyes from it. A portion of the data obtained from this experiment was
used as the training data.

2.2 Simulated Driving Experiment

This experiment aims to induce the sleepiness level change of the subject from
relaxed wakefulness to sleep onset during a simulated driving process. In this
experiment, we can observe both alpha blocking phenomenon and alpha wave
attenuation-disappearance phenomenon.

Every subject participated in the simulated driving experiment during the
siesta time, and the experiment lasted for about 90 min. When the experiment
began, the subject first kept the eyes closed and opened for one minute respec-
tively. We defined those two periods as CLOSE and OPEN, which were used to
calculate wavelet energy threshold later. Then, the subject started to do simu-
lated driving. If a subject’s higher sleepiness level was not induced during the
experiment, the subject would participate in this experiment again.

2.3 Data Recording

As shown in Figs. 2 and 3, we used 6 electrodes to obtain EEG and EOG signals,
including one reference electrode and one ground electrode placed behind the
ears, two occipital EEG electrodes (O1 as an alternative if O2 is noisy), two EOG
electrodes (Vu and Vd) placed above and under the left eye. All the signals were
recorded at an 1000 Hz sampling rate using ESI NeuroScan System. Meanwhile, a
camera was placed behind the steering wheel to moniter the state of the subject.
The video from the camera and the signals displayed on Scan software window
were sychronously recorded into a file, so that we can review after the experiment
and investigate the relevance between eye movements and EEG or EOG signals.

3 Driver Sleepiness Detection Model

The purpose of our detection model is to track the change of alpha waves in O2
signal and to detect two alpha-related phenomena based on this change, so that
we can detect driver sleepiness. We used offline processing to simulate the real-
time driver sleepiness detection on signals from simulated driving experiments,
and the sliding window was the key to our simulation. As depicted in Fig. 4, we
first utilized a sliding window to calculate alpha wavelet energy threshold Eth
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Fig. 2. EEG electrode placement Fig. 3. EOG electrode placement

on O2 signal during CLOSE and OPEN periods. Then, Eth was used to detect
the start and end points of alpha waves on O2 signal from the simulated driving
process, whose alpha wavelet energy was also calculated using a sliding window. If
the detected point was an end point, we extracted features from its corresponding
VEOG signal and put those features into the trained LSTM classifier. Finally, the
classifier determined whether the detected end point was the end point of alpha
waves in alpha blocking phenomenon or alpha wave attenuation-disappearance
phenomenon.

In terms of the training of the LSTM classifier, we used VEOG signals from
the two experiments as the training data. The detection of end points was sen-
sitive to the alpha wavelet energy threshold Eth: the detected end point might
deviate from the actual end point. Thus, we utilized LSTM network so that it
could take information from previous sequences into account, yielding a better
classification performance.

Fig. 4. The flowchart of the detection model

3.1 Visual Marking for Two Alpha-Related Phenomena

As mentioned in [9], an eye closure event (ECE) was defined as the period
between the end of the upward trend line caused by closing eyes and the end of
the downward trend line caused by reopening eyes in VEOG signal. In Fig. 5, we
can see that two kinds of eye closure events, ECE1 and ECE2, exist alternately
in simulated driving experiments.

ECE1 is the eye closure event corresponding to alpha blocking phenomenon.
This phenomenon refers to the alpha rhythm activity which appears when eyes
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are closed and disappears when eyes are reopened, indicating the relaxed wake-
fulness. In Fig. 5, experts visually marked the start point s1 and the end point
e1 of alpha waves on O2 signal, and this continuous alpha wave represents alpha
blocking phenomenon. Those two points are equivalent to the start point and
end point of ECE1 on VEOG signal.

ECE2 is the eye closure event corresponding to alpha wave attenuation-
disappearance phenomenon. The visually marked split point p2 divides ECE2

into two phases: alpha wave attenuation phase and alpha wave disappearance
phase. When the subject closes his/her eyes, the amplitude of alpha waves on
O2 signal attenuates until alpha waves disappear. This phenomenon indicates
the sleep onset, which means the subject has a high sleepiness level. Experts
also marked the start point s2 and end point p2 of alpha waves in the alpha
attenuation phase on O2 signal. Those two points are equivalent to the start
point and split point of ECE2 on VEOG signal. Besides, similar to the marking
of end point e1 in ECE1, the end point of ECE2 on VEOG signal was also
visually marked according to the downward trend line.

Therefore, the two different alpha-related phenomena have different repre-
sentations on O2 and VEOG signals, and indicate two different sleepiness levels.

Fig. 5. Visual marks for two different alpha wave phenomena

3.2 Calculating Alpha Wavelet Energy Threshold Eth

Similar to the feature extraction method in [9], continuous wavelet transform
(CWT) was applied to O2 signal during OPEN and CLOSE periods in simulated
driving experiments to calculate wavelet threshold Eth. Complex Morlet wavelet
was selected to do CWT because it is geometrically similar to alpha waves. We
picked the scales corresponding to alpha frequency band (F = [8,12] Hz) from
range [1, 1024]. Wavelet energy w(t) was thus calculated according to wavelet
coefficients on those scales and was further averaged in time window T . Here, T
was set to 1 s, and the sliding step of the time window was set to 0.1 s. Thus, we
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got numerous 1 s alpha wavelet energy values for OPEN and CLOSE periods,
respectively. Eth is the mean of alpha wavelet energy distribution’s minimum
during CLOSE period and its maximum during OPEN period.

3.3 Detecting Start and End Points of Alpha Waves

Eth was used to detect the start and end points of alpha waves on O2 signal,
and it was calculated for each subject. We used Complex Morlet wavelet to do
CWT on O2 signal of the testing data. As mentioned in 3.2, the time window
length was set to 1 s, and the sliding offset was 0.1 s. Thus, we can get an alpha
wavelet energy curve on O2 signal, as depicted in Fig. 6. As soon as the current
wavelet energy was higher than Eth, the current time point was considered as the
start point s′ of alpha waves. Afterwards, if the wavelet energy was continuously
higher than Eth, these time points were the proof for the persistent presence
of alpha waves. Until the wavelet energy was lower than Eth, the current time
point was the end point of alpha waves.

Fig. 6. Wavelet energy curve of O2 signal

3.4 LSTM Classifier

The key to distinguishing the two types of alpha-related phenomena is to differ-
entiate the end point e1 in ECE1 from the split point p2 in ECE2. Thus, we
defined e1 as negative, and p2 as positive. Besides, We used a leave-one-subject-
out cross validation method, which took data from 11 subjects as the training
data, and the remaining one subject as the testing data.
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Feature Extraction of VEOG Signals. We used Haar wavelet to do CWT
for VEOG signals, which is similar to the method used in [9], because its mother
wavelet has a similar shape to the waveform in VEOG signals. CWT with Haar
wavelet scaling from 1 to 128 was applied to the 0.5 s VEOG signal, which was
either [e1−0.5 s, e1 s] or [p2−0.5 s, p2 s]. As the LSTM classifier has the sequence
length concept, the 0.5 s time window was moved forward for 0.125 s and 0.25 s,
and backward for 0.125 s and 0.25 s. Finally, we can get five 128-dimensional Haar
wavelet feature vectors for each training sample, corresponding to the sequence
length 5 of the LSTM classifier. When labeling the training data, we labeled all
5 feature vectors for each p2 as positive and those for each e1 as negative.

LSTM Neural Neworks. As the input features have temporal dependencies,
we introduced Long Short Term Memory (LSTM) neural network to incorporate
this information [6]. Being an RNN using LSTM cells, LSTM neural network is
capable of preventing vanishing gradient problems [3]. Moreover, in practice,
LSTM neural networks handle long-term dependencies well. Cell state Ct, which
is propagated over time, is the key to LSTM neural networks. At every time
step, Ct is updated as follows:

ft = σ(Wf · [ht−1, xt] + bf )
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC) (1)
Ct = ft ∗ Ct−1 + it ∗ C̃t

where xt is the current input, ht−1 is the previous output of the LSTM network,
ft and it denote the forget gate and the input gate, respectively, C̃t denotes the
candidate value, Wf , Wi and WC are weight matrices, bf , bi and iC are biases,
and σ is the sigmoid function.

The forget gate controls the information to be thrown away from the cell
state, while the input gate decides the information to be stored in the cell state.
Then, we can get the ouput of LSTM blocks as follows:

ot = σ(Wo · [ht−1, xt] + bo) (2)
ht = ot ∗ tanh(Ct)

where ot denotes the output gate, and Wo and bo are weight matrix and bias,
respectively. So, ht is a filtered version of the cell state, regulated by the output
gate.

Our classification model is depicted in Fig. 7. Dropout is applied to the ouput
of LSTM layer, so that the model is more robust. After that, there is one classi-
fication layer, which uses hinge loss with L2-regularization as the objective loss
function. Therefore, we can consider it as a linear kernel SVM [13].

3.5 Using the LSTM Classifier for Classification

When an end point of alpha waves was detected, we found its corresponding point
on VEOG signal and utilized Haar wavelet to do CWT. As mentioned in Sect. 3.4,
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Fig. 7. LSTM classifier

five 128-dimensional feature vectors were extracted. They were further put into
the LSTM classifier to determine whether this end point is the end point e′ of
ECE1 or the split point p′ of ECE2. This is equivalent to determining whether
this end point is the end point of alpha waves in alpha blocking phenomenon or
in alpha wave attenuation-disappearance phenomenon.

Actually, we get one label, which is the bigger one in the two output labels,
for each of the five feature vectors in the input sequence, while we only need
one label to determine whether the detected end point is the end point of alpha
waves in alpha blocking phenomenon or in alpha wave attenuation-disappearance
phenomenon. To solve this nonuniformity, we design a mapping function to map
the five output labels to one final label. That is, we choose the label which is
the most frequent among the five output labels as the final label of the detected
end point.

4 Experimental Results

4.1 Training Details

For the training of the classifier, we used data from the two experiments of the
11 subjects. According to our observation, there were very few eye closure events
during the early stage of the simulated driving experiment. During the late stage,
as the subject became more sleepy, ECE1 and ECE2 appeared alternately and
frequently. Thus, for each subject, we picked a 30-min period from the late stage
of his/her simulated driving experiment. Besides, due to the approximately bal-
anced amount of e1 and p2 in simulated driving experiments, we only marked
part of the e1 in eye-closure experiments as negative, so that the whole training
set wouldn’t be significantly unbalanced. After the training of the LSTM classi-
fier, the whole model was tested on the simulated driving experiment from the
one subject which was left out. And we used the averaged result to evaluate our
model.
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Training the LSTM Classifier. The whole classifier network was trained
using Adam optimizer. For each training and testing set, we randomly selected
tens of sets of hyper-parameters within a given range to train the model. As
shown in Table 1, the hyper-parameters include the size of the hidden layer, the
dropout probability, the L2 regularization strength and the learning rate. 10-fold
cross validation was used to choose the best set of hyper-parameters.

Table 1. The hyper-parameters and their range of the LSTM classifier

Hyper-parameter Range

Hidden size 16 ∼ 128

Dropout probability 0.2 ∼ 0.9

log10(L2 regularization strength) −7 ∼ −2

log10(learning rate) −5 ∼ −1

Training SVM and k-NN. For linear SVM, we used sklearn package in
Python to do the training, and adjusted the parameter C to achieve the best
performance. For k-NN, we set k to 1, because it had the best performance in
the range [1, 5] on our training data.

4.2 Performance of Detecting Alpha Wave Start and End Points

If the detected start point s′ or end point e′ fell into the range of [s1(s2) − 0.5 s,
s1(s2) + 0.5 s] or [e1 − 0.5 s, e1 + 0.5 s], the point was considered as a correctly
detected point by the model. Similarly, if the detected split point p′ fell into the
range of [p2 − 0.8 s, p2 + 0.8 s], it was considered as a correctly detected point.
Due to the greater subjective bias for marking the split point, we defined a larger
time range of 0.8 s.

To evaluate how well our detection model detects the start and end points of
alpha waves, we introduced True Positive (TP), False Positive (FP) and False
Negative (FN) to show the performance of detecting start and end points of alpha
waves. Here, TP and FP refered to the number of start and end points that were
correctly detected and wrongly detected, while FN was the number of those
which were visually marked but not detected by the model. Meanwhile, recall,
precision and F1 score were used to investigate the performance of detecting
start and end points. From Table 2, we can see that the recall, precision and
F1 score for detecting start and end points of ECE1 are generally high across
different subjects with mean values of 96.3%, 93.9%, 95.2% and 95.0%, 95.1%,
94.8%, respectively. Similarly, those three metrics for detecting start and split
points of ECE2 are also generally high with mean values of 96.0%, 95.7%, 95.8%
and 94.5%, 94.3%, 94.6%, respectively, as shown in Table 3.
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Table 2. ECE1 detection performance

Subject #ECE1 Start point End point

Recall (%) Precision (%) F1 (%) Recall (%) Precision (%) F1 (%)

1 34 94.1 97.0 95.5 100.0 97.1 98.6

2 28 100.0 96.6 98.2 96.4 93.1 94.7

3 22 100.0 91.3 95.5 90.9 95.2 93.0

4 20 95.0 82.6 88.4 95.2 90.9 93.0

5 26 100.0 96.3 98.1 92.3 92.3 92.3

6 28 92.9 89.7 91.2 89.3 96.2 92.6

7 28 100.0 96.6 98.2 96.4 100.0 98.2

8 27 96.3 92.9 94.5 96.3 92.9 94.5

9 23 95.7 95.7 95.7 91.3 95.5 93.3

10 21 90.5 100.0 95.0 95.2 100.0 97.6

11 25 96.0 96.0 96.0 100.0 92.6 96.2

12 26 100.0 92.9 96.3 92.3 96.0 94.1

Mean± SD 96.3± 3.0 93.9± 4.6 95.2± 2.8 95.0± 3.7 95.1± 2.9 94.8± 2.2

Table 3. ECE2 detection performance

Subject #ECE2 Start point Split point

Recall (%) Precision (%) F1 (%) Recall (%) Precision (%) F1 (%)

1 24 100.0 96.0 98.0 100.0 92.3 96.0

2 35 100.0 100.0 100.0 97.1 97.1 97.1

3 30 93.3 96.6 94.9 96.7 96.7 96.7

4 27 88.9 92.3 90.6 85.2 92.0 88.5

5 24 95.8 95.8 95.8 95.8 100.0 97.9

6 26 92.3 92.3 92.3 92.3 88.9 90.6

7 27 96.3 92.9 94.5 88.9 96.0 92.3

8 28 100.0 90.3 94.9 100.0 93.3 96.6

9 26 96.2 100.0 98.0 96.2 89.3 92.6

10 23 100.0 95.8 97.9 95.7 95.7 95.7

11 29 96.6 100.0 98.2 93.1 96.4 94.7

12 28 92.9 96.3 94.5 92.9 100.0 96.3

Mean± SD 96.0± 3.6 95.7± 3.2 95.8± 2.7 94.5± 4.3 94.3± 3.4 94.6± 2.9

4.3 Comparison of Three Classifiers

To make the comparison simpler, we only took into account those end points
which were correctly detected by the detection models. As shown in Table 4, the
LSTM classifier achieves the best accuracy of 98.14% among the three classifiers,
and it has the smallest standard deviation of 0.75%, which makes it more robust.
In contrary, k-NN is the worst at doing classification, and it is the most unstable
one. Although the mean accuray of linear SVM is close to that of the LSTM
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classifier, its performance is unstable across different subjects. We think the
stableness of the LSTM classifier owes to its recurrent structure which uses
information from previous sequences to do classification. Even if the information
carried in one of the 5 input feature vectors is incomplete or inaccurate, the
classifier is able to give the correct label with the help of temporal information.
Meanwhile, if the detected end point deviates slightly from the visually marked
end point, the vital part around the end point can still fall into the range of the
five sliding windows in LSTM. This ability of integrating all the information in
previous sequences makes LSTM better at classifying the end points.

Table 4. Accuracies and standard deviations of different classifiers

Subject k-NN SVM LSTM

1 90.34 93.44 96.90

2 86.56 95.74 98.03

3 86.53 95.92 98.78

4 90.70 97.21 98.14

5 85.11 95.74 97.87

6 87.76 96.33 99.18

7 89.80 92.16 98.43

8 90.74 92.96 96.67

9 93.48 95.22 97.83

10 92.86 95.71 98.57

11 88.85 95.77 98.46

12 89.60 94.80 98.80

Average accuracy 89.35 95.08 98.14

SD 2.54 1.49 0.75

5 Conclusion

In this paper, we have introduced a driver sleepiness detection model to detect
the change of alpha waves and classify two different alpha-related phenomena.
This method utilized continuous wavelet transfrom to extract features from EEG
and EOG signals, and used an LSTM classifier to do classification based on
temporal information. The experimental result indicates that the recall, precision
and F1 score for detecting start and end points of alpha waves are generally high.
Meanwhile, the proposed LSTM classifier achieves a mean accuracy of 98.14%.
Thus, our proposed method, which places few electrodes on subjects and has
satisfying results, is both feasible and practical for detecting driver sleepiness.
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