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Abstract. Emotion is a subjective, conscious experience when people
face different kinds of stimuli. In this paper, we adopt Deep Canonical
Correlation Analysis (DCCA) for high-level coordinated representation
to make feature extraction from EEG and eye movement data. Param-
eters of the two views’ nonlinear transformations are learned jointly to
maximize the correlation. We propose a multi-view emotion recognition
framework and evaluate its effectiveness on three real world datasets. We
found that DCCA efficiently learned representations with high correla-
tion, which contributed to higher emotion classification accuracy. Our
experiment results indicate that DCCA model is superior to the state-
of-the-art methods with mean accuracies of 94.58% on SEED dataset,
87.45% on SEED IV dataset, and 88.51% and 84.98% for four classifica-
tion and two dichotomies on DEAP dataset, respectively.
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1 Introduction

Emotion recognition is important for communication, decision making, and
human-machine interface. Since emotions are complex psycho-physiological phe-
nomena associated with many nonverbal cues, it is difficult to build robust emo-
tion recognition models using only one single modality. Signals from different
modalities can represent different aspects of the emotions, and the complemen-
tary supplemental information from different modalities can be integrated to
build a more robust emotional recognition model. Emotion recognition based on
electroencephalography (EEG) and eye movement data have attracted increas-
ing interest. Integrating different features with fusion technologies is important
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to construct robust emotion recognition models [1]. The combination of signals
from the central nervous system, EEG, and external behaviors, eye movement,
has been a remarkable method for utilizing the complementarity of different
modes of features [1–3].

In recent years, various deep neural networks have been introduced to affec-
tive computing and their attractive results showed the superior performance of
such networks compared with the conventional shallow methods [13]. And various
multimodal deep architectures have been proposed to leverage the advantages
of two modalities, which can be concluded into two categories of representation:
joint and coordinated [4]. The joint representation combines the unimodal sig-
nals into the same representation space, while the coordination representation
processes the unimodal signals separately, enforces some similarity constraints
on them, and brings them to the coordination space. Multimodal emotion recog-
nition intends to distinguish emotions using different forms of physiological data
collected at the same time, where complementary features of different modal-
ities can be employed [2,3,12]. Deep neural networks have also been used for
multimodal emotion recognition in an end-to-end method. Lu et al. used both
EEG data and eye movement data to classify three kinds of emotions [3]. Liu et
al. furthermore used Bimodal Deep AutoEncoder to extract high level represen-
tation features [5]. Tang et al. adopted the Bimodal-LSTM model to recognize
multimodal emotions [6], and achieved better results than [5]. However, all the
achievements above are based on joint representations and few coordinated based
methods have been studied.

Coordinated representations first enforced similarity between representa-
tions. For example, the similarity models try to minimize distance between differ-
ent modalities. With the rapid development of neural networks, they have shown
the ability to reconstruct coordinated representations when learning jointly in
an end-to-end manner [7]. What’s more, structure coordinated space added more
constrains between the modality representations [8]. Order-embedding is another
example of a structured coordinated representation, which was proposed by Ven-
drov et al., enforcing a dissimilarity metric and implementing the notion of par-
tial order in the multimodal space [9]. Canonical correlation analysis (CCA)
based structured coordinated is another case, where CCA computes the linear
projection and maximizes the correlation between two modalities. CCA based
models have been widely used for cross-modal retrieval and signal analysis. Ker-
nel canonical correlation analysis (KCCA) uses reproducing kernel Hilbert spaces
for projection but shows poor performance on large real-world datasets [10].
Deep canonical correlation analysis (DCCA) was introduced with deep network
extension to optimize the correlation over the representations and showed better
performance [11].

In this paper, we adopt DCCA to extract multimodal features for emotion
recognition and achieved remarkable results. DCCA is a deep network based
extension of canonical correlation analysis. It can learn separate representations
nonlinearly for each modality, and coordinate them through a constraint. In this
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paper, we use deep networks to learn the nonlinear transformation of two views
into a highly correlated space.

The main contributions of this paper are as follow:

(1) We first took coordinated representation of multimodal signals to recog-
nize emotions, which means extracting more correlated high-level represen-
tations.

(2) We proposed a multi-view framework to deal with multimodal emotion
recognition problem and achieved better classification accuracy than the
state-of-the-art methods.

2 Deep Canonical Correlation Analysis

2.1 Background

Canonical correlation analysis can learn linear transformation of two vectors in
order to maximize the correlation between them, which is widely used in eco-
nomics, medical studies, and meteorology [21]. Lai et al. designed Colin’s CCA,
which performed Canonical Correlation Analysis with Artificial Neural Network
[21]. With rapid development of deep learning, Andrew et al. proposed Deep
Canonical Correlation Analysis (DCCA) with deep networks extension, which
is a non-linear version of Canonical Correlation Analysis (CCA) that uses neu-
ral networks as the mapping functions [15]. DCCA calculates the representation
of two views by multiplying them through stacked layers that are non-linearly
transformed. Hossain et al. proposed a novel FS method based on Network of
Canonical Correlation Analysis, NCCA, which is a robust method to acquisition
noise and ignores mutual information computation based on Colin’s CCA [21].
CCA is a standard statistical technique to find linear projections of two random
vectors that are maximally correlated, while in Colin’s CCA network [21], acti-
vation is fed forward from each input to the corresponding output through the
respective weights to maximise the correlation. In Deep Canonical Correlation
Analysis, deep networks are used for feature extraction with back propagation
applied to maximise the correlation between two views.

2.2 Our Model

We use DCCA for feature transformation, fuse the features after extraction,
and apply SVM as the classifier. The model is shown in Fig. 1, and the model
contains three parts: non-linear feature transformation (L2 and L3 in Fig. 1),
CCA calculation (CCA layer in Fig. 1), and feature fusion and classification.
EEG features and eye movement features are separated into two views denoted
as L1 in Fig. 1, and we set two views’ input features as X1, and X2.

Nonlinear Feature Transformation. In the deep networks, for simplicity, we
assume that each intermediate layer in the network for the first view has c1 units,
and the output layer has o units, as shown in Fig. 1 as ‘View 1’. Let x1 ∈ Rn1 be
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an instance of the first view, and the outputs of the first layer in the hidden layers
for the instance x1 are h1 = s(W 1

1 x1+b11) ∈ Rc1 , where W 1
1 ∈ Rc1×n1 is a matrix

of weights, b11 ∈ Rc1 is a vector of biases, and s(·) is a non-linear function applied
componentwise. The outputs h1 can then be used to compute the outputs of the
next one in hidden layers as h2 = s(W 1

2 x1 + b12) ∈ Rc1 , and so on until the final
representation in the hidden layers f1(x1) = s(W 1

d hd −1+b1d) ∈ Ro is computed,
for a network with d layers.

Given an instance x2 of the second view, as shown in Fig. 1 as ‘View 2’,
the representation f2(x2) is computed the same way, with different parameters
W 2

l and b2l (and potentially different architectural parameters c2), here l is the
number of layers in the View 2 network, and the total network function is defined
as f1 and f2, from L1 to L2, for building two neural networks to transform
features non-linearly, respectively. The layer sizes of both views are the same,
including input layer L1, hidden layers L2, and output layer L3 with each layer’s
nodes fully connected. The two views’ output features are defined as H1 and
H2, respectively. We use back propagation to update parameters of each view to
acquire higher correlation in the CCA layer.

Fig. 1. Our Deep Canonical Correlation Analysis model, including deep networks
(input layer, hidden layers and output layer), Canonical Correlation Analysis layer,
and classifier SVM.

CCA Calculation. The goal is to jointly learn parameters for both views W i
l

and bi
l, where i = {1, 2}, such that corr(f1(X1), f2(X2)) is as high as possible.

Let θ1 be the vector of all parameters W 1
l and b1l of the first view for l = 1, . . . , d,

where d is the number of hidden layers, and similarly for θ2. The optimization
function is:

(θ∗
1 , θ

∗
2) = arg max corr(H1,H2) = arg max

θ1,θ2

corr(f1(X1; θ1), f2(X2; θ2)) (1)
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According to [15], the correlation of two views’ transformed features (H1 and
H2) can be calculated as follows:

corr(H1,H2) = corr(f1(X1), f2(X2)) = ||T ||tr = tr(T ′T )1/2 (2)

where

T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22

Σ̂11 =
1

m − 1
H1H

′
1 + r1I,

Σ̂22 =
1

m − 1
H2H

′
2 + r2I,

Σ̂12 =
1

m − 1
H1H

′
2.

The H1 and H2 are the centered data matrixes:

H1 = H1 − 1
m

H11, H2 = H2 − 1
m

H21 (3)

and r1, r2 are the regularization constants. To update the weighs of networks, we
calculate the gradients. If the singular value decomposition of T is T = UDV ′,
then

∂corr(H1,H2)
∂H1

=
1

m − 1
(2∇11H1 + ∇12H2), (4)

where

∇11 = −1
2
Σ̂

−1/2
11 UDU ′Σ̂−1/2

22 , ∇12 = Σ̂
−1/2
11 UV ′Σ̂−1/2

22 .

Feature Fusion and Classification. We take weighted average of two views’
extracted features. DCCA is used for feature extraction, and linear SVM is used
as classifier to recognize emotions. The fusion function is defined as follows:

Ffusion = αH1 + βH2 (5)

where Ffusion is fusion features, H1 and H2 are extracted features of EEG and
eye movement, respectively, and α and β are the fusion weights. In our experi-
ment, in order to balance the composition of features, we set α = β = 0.5.

3 Experiment Settings

3.1 Dataset

We evaluate the performance of our approach on three real world datasets, the
SEED1 dataset, the SEED IV (See footnote 1) dataset, and the DEAP2 dataset.
1 http://bcmi.sjtu.edu.cn/∼seed/.
2 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

http://bcmi.sjtu.edu.cn/~seed/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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• SEED. The SEED dataset contains EEG data with three emotions (happy,
neutral, and sad) of 15 subjects, and all subjects’ data were collected when
they watching 15 four-minute-long emotional movie clips, where first 9 movie
clips were used as training data and the rest were used as test data. The
EEG signals were recorded with ESI NeuroScan System at a sampling rate
of 1000 Hz with a 62-channel electrode cap. The eye movement signals were
recorded with SMI ETG eye tracking glasses. To compare with the existing
work, we used the same data, which contained 27 experiment results from 9
subjects.

• SEED IV. The SEED IV dataset contains EEG and eye movement features
in total of four emotions (happy, sad, fear, and neutral) [16]. A total of 72
movie clips were used for the four emotions, and forty five experiments were
taken by participants to evaluate their emotions while watching the movie
clips with keywords of emotions and ratings out of ten points for two dimen-
sions: valence and arousal. The valence scale ranges from sad to happy, and
the arousal scale ranges from calm to excited.

• DEAP. The DEAP dataset contains EEG signals and other peripheral physi-
ological signals from 32 subjects. These data were collected when participants
were watching emotional music videos, which was one-minute-long each. We
chose 5 as a threshold to divide the trials into two classes according to the
rated levels of arousal and valence. We used 10-fold cross validation to com-
pare our results with Liu et al. [5], Yin et al. [12], and Tang et al. [6] (Fig. 2).

Fig. 2. The EEG electrode layout and SMI ETG eye tracking glasses.

3.2 Feature Extraction

For the SEED and SEED IV datasets, we extracted Differential Entropy (DE)
features [19] from each EEG signal channel in five frequency bands: δ (1–4 Hz), θ
(4–8 Hz), α (8–14 Hz), β (14–31 Hz), and γ (31–50 Hz). So at each time step, the
dimension of EEG features is 310 (5 bands × 62 channels). As for eye movement
features, we used the same features as Lu et al. 2015 [3], which were listed in
Table 1. At each time step, there were 39 dimensions of pupil diameters in total,
including both Power Spectral Density (PSD) and DE features. The extracted
EEG features and eye movement features were scaled between 0 and 1.
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For the DEAP dataset, because a 4–45 Hz bandpass frequency filter was
applied during pre-processing, so we extracted DE features from EEG signals in
four frequency bands: θ (4–8 Hz), α (8–14 Hz), β (14–31 Hz), and γ (31–45 Hz).
Then in total, the dimension of extracted 32-channel EEG features is 128 (4
bands × 32 channels). As for peripheral physiological signals, six time-domain
features were extracted to describe the signals in different perspective, includ-
ing minimum value, maximum value, mean value, standard deviation, variance,
and squared sum. So the dimension of peripheral physiological features is 48 (6
features × 8 channels).

Table 1. The details of the extracted eye movement features.

Eye movements parameters Extracted features

Pupil diameter (X and Y) Mean,standard deviation, DE in four bands
(0–0.2 Hz, 0.2–0.4 Hz, 0.4–0.6 Hz, 0.6–1 Hz)

Disperson (X and Y) Mean, standard deviation

Fixation duration (ms) Mean, standard deviation

Blink duration (ms) Mean, standard deviation

Saccade Mean, standard deviation of saccade duration (ms)
and saccade amplitude

Event statistics Blink frequency, fixation frequency, fixation
dispersion total, fixation duration maximum,
fixation dispersion maximum, saccade frequency,
saccade duration average, saccade latency average,
saccade amplitude average

3.3 Parameter Details

In this paper, we build subject-specific models. We use grid search to find optimal
hyperparameters, including learning rate, batch size, regulation parameters, and
layer nodes. Taking several experiment results and time consuming into account,
we choose learning rate as 1e3, batch size as 100, and regulation parameter as
1e7. The hidden units in our models are presented in Table 2.

Table 2. Layer’s framework of different datasets in our experiments

Dataset Layers

SEED 400 ± 40, 200 ± 20, 150 ± 20, 120 ± 10, 60 ± 10, 20 ± 2

SEEC IV 400 ± 40, 200 ± 20, 150 ± 20, 120 ± 10, 90 ± 10, 60 ± 10, 20 ± 2

DEAP 1500 ± 50, 750 ± 50, 500 ± 25, 375 ± 25, 130 ± 20, 65 ± 20, 30 ± 20



228 J.-L. Qiu et al.

4 Experimental Results

4.1 Results on Different Datasets

Table 3 shows the comparison results of different approaches on the SEED
dataset, different feature extraction methods are listed in the first line and SVM
is used as classifier for all methods. From Table 3, DE Feature fusion tested on
SVM achieved higher classification accuracy and less std than the CCA method,
which directly used CCA on EEG and eye movement features. BDAE used RBM
pre-training to build a multimodal autoencoder model performed a better result
of 93.19% [5]. Tang et al. used Bimodal-LSTM to make fusion by consider-
ing timing and classification layer parameters and achieved the state-of-the-art
performance [6]. In our DCCA model, we extracted highly correlated features,
bringing closer these high-level representations, and achieved better results with
test classification accuracy of 94.58% and std of 6.16.

Table 3. Average accuracies (%) and standard deviation of different approaches for
three emotions classification on the SEED dataset

CCA DE features BDAE [5] Bimodal-LSTM [6] DCCA

Accuracy(%) 40.35 81.21 93.19 93.97 94.58

Std 16.38 12.51 8.23 7.03 6.16

Comparison results on the SEED IV dataset is shown in Table 4. We regard
Zheng et al.’s deep learning results as our baseline [16]. We compare our DCCA
model with different existing feature extraction methods. Table 4 presents that
BDAE achieved better results than DE features. Compared with CCA based
approach and other methods, we conclude that DCCA model coordinating high-
level features achieves the best results.

Table 4. Average accuracies (%) and standard deviation of different approaches for
four emotions classification on the SEED IV dataset

CCA DE features BDAE [16] DCCA

Accuracy (%) 49.56 75.88 85.11 87.45

Std 19.24 16.14 11.79 9.23

Tables 5 and 6 demonstrate comparison results of different feature extraction
methods on the DEAP dataset, which are for two dichotomous classification
and four categories classification, respectively, while SVM is used as classifier.
For two dichotomous classification, Liu et al.’s multimodal autoencoder model
achieved 2% higher than AutoEncoder. Yin et al. used an ensemble of deep
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classifiers, making higher-level abstractions of physiological features [12]. Then
Tang et al. used Bimodal-LSTM and achieved the state-of-the-art accuracy for
two dichotomous classification [6]. For four categories classification, Tripathi
achieved accuracy of 81.41% [18]. As for our DCCA method, we learned high-
level correlated features and achieved better results than the state-of-the-art
method with mean test accuracies of 84.33% and 85.62% for arousal and valence
classification and 88.51% for four categories classification.

Table 5. Comparison of average accuracies (%) of different approaches on the DEAP
dataset for two dichotomous

CCA AutoEncoder [3] Liu et al. [5] Yin et al. [12] Tang et al. [6] DCCA

Arousal (%) 61.25 74.49 80.5 84.18 83.23 84.33

Valence (%) 69.58 75.69 85.2 83.04 83.82 85.62

Table 6. Comparison of average accuracies (%) of different approaches on the DEAP
dataset for four categories

Method CCA KNN+RF [17] Tripathi et al. [18] DCCA

Accuracy (%) 40.35 70.04 81.41 88.51

4.2 Discussion

The shortcoming of the existing feature-level fusion and multimodal deep learn-
ing methods is very difficult to relate the original features in one modality to
features in other modality [14]. Moreover, the relations across various modali-
ties are deep instead of shallow. In our DCCA model, we can learn coordinated
representation from high-level features and make two views of features become
more complementary, which in return improves the classification performance.

Fig. 3. Confusion matrices of DCCA outputs on the SEED dataset of single modality
and feature fusion methods. Each row of the confusion matrices represents the target
class and each column represents the predicted class. The element (i, j) is the per-
centage of samples in class i that is classified as class j. (a) EEG features; (b) Eye
movement features; and (c) Fusion features.
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Figure 3 shows the confusion matrices of SEED feature classification. The
EEG features have classification accuracy of 0.86 while eye movement features’
of 0.81, and the fusion feature has classification accuracy of 0.94. We can draw
a conclusion from the confusion matrices that EEG features and eye movement
features are complementary.

Fig. 4. t-SNE 3D visualization of extracted features on the SEED dataset, where blue
for negative emotion, red for neutral emotion, and green for positive emotion. (a) EEG
features; (b) Eye movement features; and (c) Fusion features. (Color figure online)

To find out the distribution of fusion features, we use t-SNE to make dimen-
sionality reduction of the high-dimensional extracted features for visualization
[20]. Figure 4 presents high-dimensional input features which are reduced to three
dimensions for visualization. Comparing the EEG features, eye movement fea-
tures, and fusion features, we can directly conclude that the fusion features are
more reasonable and have better distribution than single-model of EEG and eye
movement features, which are beneficial for classification.

5 Conclusion

In this paper, we have used Deep Canonical Correlation Analysis to extract
highly correlated high-level features of two views on three real world datasets.
The experimental results show that canonical correlation analysis with deep net-
works extension can achieve higher classification accuracy of emotion recogni-
tion when higher correlation is acquired. The deep networks with nodes’ weights
updated by back propagation can extract better features, which are more cor-
related of two views. Our work first put coordinated representation into multi-
modal emotion recognition and indicated a new way of multimodal representa-
tion in high-level fusion features.
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