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Abstract—In this paper, we present a multimodal emotion
recognition framework called EmotionMeter that combines brain
waves and eye movements. To increase the feasibility and wear-
ability of EmotionMeter in real-world applications, we design
a six-electrode placement above the ears to collect electroen-
cephalography (EEG) signals. We combine EEG and eye move-
ments for integrating the internal cognitive states and external
subconscious behaviors of users to improve the recognition accu-
racy of EmotionMeter. The experimental results demonstrate
that modality fusion with multimodal deep neural networks can
significantly enhance the performance compared with a single
modality, and the best mean accuracy of 85.11% is achieved for
four emotions (happy, sad, fear, and neutral). We explore the
complementary characteristics of EEG and eye movements for
their representational capacities and identify that EEG has the
advantage of classifying happy emotion, whereas eye movements
outperform EEG in recognizing fear emotion. To investigate the
stability of EmotionMeter over time, each subject performs the
experiments three times on different days. EmotionMeter obtains
a mean recognition accuracy of 72.39% across sessions with the
six-electrode EEG and eye movement features. These experimen-
tal results demonstrate the effectiveness of EmotionMeter within
and between sessions.

Manuscript received September 4, 2017; revised November 24, 2017;
accepted January 17, 2018. Date of publication February 7, 2018; date of
current version February 14, 2019. The work of W.-L. Zheng, W. Liu, Y.
Lu, and B.-L. Lu was supported in part by the National Key Research and
Development Program of China under Grant 2017YFB1002501, in part by
the National Natural Science Foundation of China under Grant 61673266,
in part by the Major Basic Research Program of Shanghai Science and
Technology Committee under Grant 15JC1400103, in part by the ZBYY-
MOE Joint Funding under Grant 6141A02022604, in part by the Technology
Research and Development Program of China Railway Corporation under
Grant 2016Z003-B, and in part by the Fundamental Research Funds for the
Central Universities. The work of A. Cichocki was supported in part by the
Ministry of Education and Science of the Russian Federation under Grant
14.756.31.0001, and in part by the Polish National Science Center under Grant
2016/20/W/N24/00354. This paper was recommended by Associate Editor
H. A. Abbass. (Corresponding author: Bao-Liang Lu.)

W.-L. Zheng, W. Liu, Y. Lu, and B.-L. Lu are with the Center for Brain-Like
Computing and Machine Intelligence, Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, also
with the Key Laboratory of Shanghai Education Commission for Intelligent
Interaction and Cognitive Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China, and also with the Brain Science and Technology
Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: blu@cs.sjtu.edu.cn).

A. Cichocki is with Nicolaus Copernicus University, Torun 87-100, Poland,
also with the Skolkovo Institute of Science and Technology (Skoltech),
Moscow 143026, Russia, and also with RIKEN Brain Science Institute,
Wako 351-0198, Japan.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2018.2797176

Index Terms—Affective brain-computer interactions, deep
learning, EEG, emotion recognition, eye movements, multimodal
deep neural networks.

I. INTRODUCTION

EMOTION plays an important role in human-human
interactions in our everyday lives. In addition to log-

ical intelligence, emotional intelligence is considered to be
an important part of human intelligence [1]. There is an
increasing focus on developing emotional artificial intelligence
in human–computer interactions (HCIs) [2]. The introduc-
tion of affective factors to HCIs has rapidly been devel-
oped as an interdisciplinary research field called affective
computing [3], [4]. Affective computing attempts to develop
human-aware artificial intelligence that has the ability to per-
ceive, understand, and regulate emotions. Specifically, emotion
recognition is the critical phase in this affective cycle and has
been a primary focus of HCI researchers. Moreover, many
mental diseases are reported to be relevant to emotions, such as
depression, autism, attention deficit hyperactivity disorder, and
game addiction [5], [6]. However, due to the limited knowl-
edge of the neural mechanisms underlying emotion processing,
an efficient quantified measure for emotions with convenient
setups to provide active feedback with evaluations for disease
treatments is still lacking [2]. One of the twenty big questions
about the future of humanity reported by Scientific American
is whether we can use wearable technologies to detect human
emotions.1 Smart wearable devices have a high potential for
enhancing HCI performance and treating psychiatric diseases.

Emotions are complex psycho-physiological processes that
are associated with many external and internal activities.
Different modalities describe different aspects of emotions
and contain complementary information. Integrating this infor-
mation with fusion technologies is attractive for constructing
robust emotion recognition models [7], [8]. However, most
studies have focused on combining auditory and visual modal-
ities for multimodal emotion recognition [9]. In contrast,
the combination of signals from the central nervous system,
e.g., EEG, and external behaviors, e.g., eye movements, has
been reported to be a promising approach [7], [10], [11].
Recent studies have attempted to identify emotion-specific
neural markers to understand the nature of emotions [12], [13].
Affective brain-computer interfaces (aBCIs) aim to detect

1http://www.scientificamerican.com/article/20-big-questions-about-the-
future-of-humanity/
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Fig. 1. Framework of our proposed approach. EEG and eye tracking data are simultaneously recorded while subjects watch emotional film clips as stimuli.
The multimodal features are extracted from raw EEG and eye movement signals. The extracted features are used to feed the multimodal deep neural networks
for learning high-level shared representations. The emotion predictions are given with the affective models based on the shared representations.

emotions from brain signals [14]. Compared to brain signals,
eye movement signals convey important social and emotional
information for context-aware environments [15], [16].

In this paper, to integrate the internal brain activities
and external subconscious behaviors of users, we present
a multimodal framework called EmotionMeter to recognize
human emotions using six EEG electrodes and eye-tracking
glasses. The framework of our proposed approach is shown in
Fig. 1. The main contributions of this paper are as follows.

1) We developed a novel design of six symmetrical tempo-
ral electrodes that can easily be embedded in a headset or
spectacle frames for implementing EEG-based emotion
recognition.

2) We performed experiments for recognizing four emo-
tions (happy, sad, fear, and neutral emotions) to evaluate
the efficiency of the proposed design.

3) We revealed the complementary characteristics of EEG
and eye movements for emotion recognition, and we
improved the performance by using multimodal deep
neural networks.

4) We investigated the stability of our proposed framework
using training and test datasets from different ses-
sions and demonstrated its stability within and between
sessions.

The remainder of this paper is organized as follows.
Section II briefly reports the related work in emotion recogni-
tion using EEG and eye movements. The experimental setup
is presented in Section III. Section IV introduces the details

of preprocessing, feature extraction, classification methods,
and multimodal deep neural networks. Section V presents
the experimental results and discussion. The conclusions and
future work are summarized in Section VI.

II. RELATED WORK

A. Emotion Recognition Systems

Various wearable emotion perception and feedback pro-
totypes have been developed and evaluated. For example,
MacLean et al. [17] presented a real-time biofeedback
system called MoodWings, where a wearable butterfly can
respond to users’ arousal states through wing actuation.
Williams et al. [18] designed a wearable device called SWARM
that can react to emotions. Valtchanov et al. presented a system
called EnviroPulse for automatically determining the expected
affective valence of surrounding environments to individu-
als [19]. Recently, Hassib et al. [20] presented EngageMeter
for implicit audience engagement sensing using the commer-
cial NeuroSky MindWave headset in real-world evaluations.
However, only one-channel EEG was collected from the
frontal cortex (FP1) with EngageMeter, and the information
was limited to calculating only the engagement index rather
than the emotion index.

Facial expression is one of the popular modalities for emo-
tion recognition. By studying facial expression of different
cultures, Ekman and Friesen [21] proposed the concept “basic
emotions” including fear, anger, surprise, disgust, joy, and
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sadness that are universal across cultures. Based on this find-
ing, many approaches to emotion recognition using facial
expressions have been proposed in the past decades [4], [22].
Although emotional recognition has long focused on facial
expression, there is a growing interest in many other modali-
ties like touch and EEG. Tsalamlal et al. [23] presented a study
of combining facial expressions and touch for evaluating emo-
tional valence. Schirmer and Adolphs [24] compared different
modalities for emotion perception, including facial expression,
voice, and tactile, and these data are usually analyzed with
behavioral statistics, EEG and fMRI studies. They reviewed
the similarities and differences of these modalities for emotion
recognition and proposed multisensory integration during dif-
ferent stages. Koelstra [25] proposed a multimodal approach to
fusing facial expressions and EEG signals for affective tagging
using feature-level and decision-level fusion strategies and
presented the performance improvement. These results indi-
cated that facial expressions and EEG contain complementary
information.

Recently, Alarcao and Fonseca [26] presented a detailed sur-
vey about emotion recognition using EEG signals, including
stimuli, feature extraction, and classifiers. Mühl et al. [14]
presented the idea of aBCIs and discussed the limitations
and challenges in this research field. Jenke et al. [27]
performed a systematical comparison of feature extraction
and selection methods for EEG-based emotion recognition.
Daly et al. [28] presented the demonstration of affective brain
computer music interface to detect users’ affective states.
Petrantonakis and Hadjileontiadis [29] proposed a new feature
extraction method using hybrid adaptive filtering and higher
order crossings for classifying six basic emotions with EEG.
We adopted the combination of deep belief networks and hid-
den markov model to classify two emotions (positive and
negative) using EEG signals in our previous study [30].

B. Wearable EEG Devices

Since emotions have many indicators inside and outside
our body, various modalities have been adopted for construct-
ing emotion recognition models, such as facial expressions,
voices, and gestures [4]. Among these approaches, EEG-
based methods are considered to be promising approaches
for emotion recognition because many findings in neuro-
science support the hypothesis that brain activity is associated
with emotions [2], [12], [13] and that EEG allows for the
direct assessment of the “inner” states of users [27]. The
existing studies have shown the effectiveness and feasibil-
ity of EEG [14], [27], [31], [32]. However, most of these
studies attach many wet electrodes (some with as many as
62 electrodes). In addition to the substantial time costs for
mounting the electrodes, the irrelevant channels may introduce
noise and artifacts in the systems, and therefore, degrade the
performance. The HCI community calls for convenient setups
and easy, user-friendly usage for affective brain-computer
interactions.

Fortunately, with the rapid development of wearable devices
and dry electrode techniques [33], [34], it is now possible to
develop wearable EEG devices from laboratories to real-world

applications. In fact, wearable EEG devices have many poten-
tial applications. For example, a pilot wearing such a device
can adjust his/her emotions to enhance flying safety if the
device detects that he or she is in an extremely emotional state.
A medical rehabilitation system with emotional intelligence
can adjust its rehabilitation training plan according to the emo-
tional fluctuations of the patients. Computer games, which can
change the content and scene according to the player’s emo-
tions, will have a richer user experience. The most popular
commercial wearable EEG device is the Emotiv EPOC wire-
less headset [35]. Previous studies have assessed the feasibility
of emotion recognition using the Emotiv EPOC [36], [37].
However, its design of 14 electrode placements may still be
inconvenient or even inappropriate for emotion recognition.
For example, the Emotiv EPOC provides only three main
affective scores, namely, excitement, engagement, and frustra-
tion, which are not included in the classical emotion category.
A new wearable EEG device with easy setups for emotion
recognition is attractive in HCI. To achieve this goal, sev-
eral open questions, such as the best electrode placements in
terms of wearability and feasibility, need to be further inves-
tigated. In this paper, we utilize a considerably lower number
of electrodes for EEG recordings compared with the Emotiv
EPOC.

C. Eye Movement Experiments

Humans interact with their surrounding environments, and
each evoked emotion has its specific context [19]. Therefore,
Ptaszynski et al. [1] proposed the need to apply contextual
analysis to emotion precessing. Eye movements have long
been studied as an approach to users’ behaviors and cogni-
tive states in HCI [38]. Specifically, previous studies have
reported that pupil response is associated with cognitive and
emotional processes [39], [40]. Zekveld et al. [41] reported
the neural correlates of pupil size as a measure of cognitive
listening load and proposed the eye as a window to the listen-
ing brain. Moreover, other eye movements, such as fixation,
saccade, and blink, provide important cues for context-aware
environments [42]–[44], which reveal how a user interacts
with their surroundings and what attracts a user’s attention. At
the Consumer Electronics Show 2016 in Las Vegas, Looxid
Labs presented a prototype that combines eye tracking and
two-electrode frontal EEG into one headset for device con-
trol and attention monitoring.2 Soleymani et al. [7] presented
a subject-independent emotion recognition approach using
EEG, pupillary response and gaze distance. They achieved
the best classification accuracies of 68.5% and 76.4% for
three labels of valence and arousal, respectively. The combi-
nation of brain signals and eye movements has been shown
to be a promising approach for modeling user cognitive
states. Recently, Langer et al. [45] presented a multimodal
dataset that combines EEG and eye tracking from 126 subjects
for assessing information processing in the developing brain.
Wang et al. [46] proposed investigating vigilance fluctuation
using fMRI dynamic connectivity states. Using eye-tracking

2http://looxidlabs.com/



ZHENG et al.: EmotionMeter: MULTIMODAL FRAMEWORK FOR RECOGNIZING HUMAN EMOTIONS 1113

techniques, they were able to observe spontaneous eyelid clo-
sures as a nonintrusive arousal-monitoring approach. However,
few studies have discussed the complementary characteristics
between them and the stability across sessions.

Eye movements and facial expressions have different char-
acteristics for emotion recognition. The popular approach
using facial expressions enjoys some advantages of nonin-
trusive setups, low-cost hardware, and reasonable accuracy.
Despite the great progress in the development of facial
expression-based emotion recognition, current systems have
the following limitations: 1) most systems are evaluated with
posed facial expressions rather than naturalistic facial expres-
sions, and sometimes facial expressions can be subjectively
controlled due to social nature of emotion; 2) the performance
of computer vision systems are usually degraded due to the
illumination variations and occlusion in real-world scenarios;
and 3) although emotion can never be divorced from context,
most facial expression systems do not consider the contextual
cues [4]. In contrast, eye movements provide an effective tool
to observe users’ behaviors in a natural way. Eye movements
contain not only physiological signals, e.g., pupil response,
but also important contextual clues for emotion recognition. In
comparison with facial expressions, eye movements are also
nonintrusive and accurate despite higher cost for calibration
setups. Moreover, eye tracking can be well embedded in recent
popular user-centered wearable technologies, e.g., virtual real-
ity devices. Therefore, eye movements have received more and
more attention in affective computing field.

D. Multimodal Approaches

In our previous studies, we applied the feature-level fusion,
decision-level fusion, and bimodal deep autoencoder to clas-
sify three emotions (positive, neutral, and negative) using
EEG and eye movements [10], [11], [47], [48]. Our previous
experimental results indicated that eye movements contain
complementary information for emotion recognition. However,
these studies investigated 62 electrodes all over the entire brain
areas and did not consider the wearability in real-world appli-
cations. In this paper, we dramatically simplify the EEG setup
with only six electrodes placed over the ears, and we attempt
to classify four emotion categories: 1) happy; 2) sad; 3) fear;
and 4) neutral emotions.

The studies of internal consistency and test-retest stability
of EEG can be traced back to many years ago [49], [50].
However, the stability of emotion recognition systems has
received very limited attention [51]. The fluctuation in
performance for emotion recognition systems over time is
still unclear for the development of real-world applications.
Lan et al. [52] presented a pilot study on the stability of
features in emotion recognition algorithms. In their stability
assessment, the same features derived from the same channel
from the same emotion class of the same subject were grouped
together to compute the correlation coefficients. In contrast to
their statistical approach, we investigate the stability of our
method in a machine learning framework with cross-session
evaluations.

In recent years, deep neural networks have achieved sub-
stantial state-of-the-art performance in various research fields,
such as object detection, speech recognition, and natural
language processing, with the ability to learn different rep-
resentations of data with multiple layer training [53]. Some
researchers introduced deep neural networks to EEG process-
ing, and their experimental results demonstrated the superior
performance of such networks compared with the conventional
shallow methods [30], [54]–[57]. To leverage the advantages
of two modalities, various multimodal deep architectures have
been proposed. Ngiam et al. [58] proposed learning effec-
tive shared representations over multiple modalities (e.g.,
audio and video) with multimodal deep learning. Recently,
Tzirakis et al. [9] proposed end-to-end multimodal emotion
recognition with auditory and visual modalities. They utilized
a convolutional neural network and a deep residual network to
construct the speech network and visual network, respectively.
The outputs of the two networks were concatenated as the
input of a two-layer LSTM to capture the contextual informa-
tion. Despite the above promising and successful applications
of multimodal deep neural networks to auditory and visual
data, they remain largely unexplored in the multimodal neu-
roimaging domain, particularly for combining EEG and eye
movements for emotion recognition.

III. EXPERIMENTAL SETUP

To elicit specific emotions in the experimental environ-
ment, we used carefully selected film clips as the stimuli. The
reliability of film clips with audiovisual stimuli in eliciting
emotions has been studied in the literature [59]–[61]. In our
preliminary study, we collected film clips with highly emo-
tional contents and ensured the integrity of the plot within the
clips. The criteria for clip selection were as follows: 1) the
length of the videos should not be too long to cause visual
fatigue; 2) the videos should be understood without explana-
tion; and 3) the videos should elicit a single desired target
emotion.

There were 168 film clips in total for four emotions (happy,
sad, fear, and neutral) in our material pool, and forty-four par-
ticipants (22 females, all college students) were asked to assess
their emotions when watching the film clips with keywords of
emotions (happy, sad, neutral, and fear) and ratings out of
ten points (from -5 to 5) for two dimensions: 1) valence and
2) arousal. The valence scale ranges from sad to happy. The
arousal scale ranges from calm to excited. The mean rating
distributions of the different film clips are shown in Fig. 2. As
shown in this figure, there are significant differences between
the conditions in terms of the ratings of valence and arousal,
reflecting the successful elicitation of the targeted emotions in
the laboratory environments.

Finally, 72 film clips were selected from the pool of mate-
rials that received the highest match across participants. The
stimuli of these selected clips generally resulted in the elici-
tation of the four target emotions. The duration of each film
clip was approximately two minutes. To avoid repetition, each
film clip was presented only once. To investigate the stability
of our model over time, we designed three different sessions
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Fig. 2. Mean rating distributions of the different film clips on the arousal-
valence plane for four emotions. The ratings are clustered into four classes:
happy, sad, fear, and neutral emotions.

Fig. 3. Protocol of our designed emotion experiments.

for each participant on different days. Each session consisted
of 24 trials (six trials per emotion), and the stimuli for the
three sessions were completely different. Fig. 3 presents the
detailed protocol of our designed emotion experiments. Each
film clip had a 5 s hint for starting and a 45 s self-assessment
with the PANAS scales [62] after each clip. The participants
were asked to watch the emotional clips and elicit the cor-
responding emotions. The ratings of the subjects were based
on how they actually felt while watching the clips rather than
what they thought the film clips should be. According to the
feedback, if the participants failed to elicit the correct emo-
tions or the arousal emotions were not strong enough, the data
were discarded.

The data recording experiments included a total of
15 healthy, right-handed participants (eight females) aged
between 20 and 24 years. Prior to each experiment, the par-
ticipants were informed of the purpose and procedure of the
experiment and of the harmlessness of the equipment. Each
participant participated in the experiment three times on dif-
ferent days, and a total of 45 experiments were evaluated. The
dataset (SEED-IV) used in this paper will be freely available
to the academic community as a subset of SEED.3

Motivated by our previous findings of critical brain areas for
emotion recognition [55], [63], we selected six symmetrical
temporal electrodes above the ears, which are FT7, FT8, T7,
T8, TP7, and TP8 of the international 10–20 system shown in
Fig. 4, as the critical channels for EEG-based emotion recog-
nition in terms of wearability and feasibility in real-world

3http://bcmi.sjtu.edu.cn/∼seed

Fig. 4. EEG electrode layout of 62 channels. Six symmetrical temporal
electrodes (FT7, FT8, T7, T8, TP7, and TP8) are selected in EmotionMeter.

Fig. 5. Setup for the EmotionMeter hardware. The six symmetrical temporal
electrodes above the ears are used for EEG recordings. The eye movement
parameters are extracted from the wearable eye-tracking glasses.

applications. These electrodes can easily be embedded in a
wearable headset or spectacle frames. Although the frontal
asymmetry has been found to correlate with emotional valence
in [64] and [65], we found that the frontal electrodes did
not greatly contribute to enhancing classification performance
with the temporal electrodes from our previous study [55].
Therefore, the frontal electrodes were not included in this
paper.

For comparison, we also simultaneously recorded
62-channel EEG data according to the international 10–20
system. The raw EEG data were recorded at a 1000 Hz
sampling rate using the ESI NeuroScan System.4 Eye
movements were also simultaneously recorded using SMI
ETG eye-tracking glasses.5 Fig. 5 presents the setup for
the EmotionMeter hardware, where the left-hand side of the
placement of these six electrodes is shown.

4http://compumedicsneuroscan.com/
5https://www.smivision.com/eye-tracking/product/eye-tracking-glasses/
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IV. METHODS

A. Preprocessing

Eye movement data from eye-tracking glasses provide var-
ious detailed parameters, such as pupil diameters, fixation
details, saccade details, blink details, and event statistics.
Although the pupil diameter is associated with emotional
processing, it can easily be affected by the environmental
luminance [40]. Based on the observations that the changes
in the pupil responses of different participants to the same
stimuli have similar patterns, we applied a principal compo-
nent analysis (PCA)-based method to estimate the pupillary
light reflex [7].

Suppose that Y is an M × N matrix that represents pupil
diameters to the same video clip from N subjects and M sam-
ples. Then, Y = A + B + C, where A is luminance influences
that are prominent, B is emotional influences that we want,
and C is noise. We used PCA to decompose Y and com-
puted the first principle component as the estimate of the light
reflex. Let Yrest be the emotion-relevant pupil response. We
define Yrest = Y − Y1. After subtracting the first principle
component, the residual part contains the pupil response that
is associated only with emotions. For EEG, a band-pass filter
between 1 and 75 Hz was applied to filter the unrelated arti-
facts. We resampled the EEG and eye movement data to reduce
the computational complexity and align these two modalities.

B. Feature Extraction

After preprocessing the EEG data, we extracted two
types of features proposed in our previous studies,
namely, power spectral density (PSD) and differential
entropy (DE) [55], [66], [67], using short-term Fourier trans-
forms with a 4 s time window without overlapping. The DE
feature is defined as follows:

h(X) = −
∫ ∞

−∞
1√

2πσ 2
exp

(x − μ)2

2σ 2
log

1√
2πσ 2

exp
(x − μ)2

2σ 2
dx = 1

2
log 2πeσ 2 (1)

where X submits the Gaussian distribution N(μ, σ 2), x is a
variable, and π and e are constants. DE is equivalent to the
logarithmic PSD for a fixed-length EEG sequence in a certain
band. In contrast to PSD features, the DE features have the
balance ability of discriminating EEG patterns between low-
and high-frequency energy.

We computed the PSD and DE features in five frequency
bands for each channel: 1) delta: 1–4 Hz; 2) theta: 4–8 Hz;
3) alpha: 8–14 Hz; 4) beta: 14–31 Hz; and 5) gamma:
31–50 Hz. The dimensions of the PSD and DE features are 10,
20 and 30 for two electrodes (T7 and T8), four electrodes (T7,
T8, FT7, and FT8), and six electrodes (T7, T8, FT7, FT8, TP7,
and TP8), respectively. We applied the linear dynamic system
approach to filter out noise and artifacts that were unrelated
to the EEG features [68].

For eye movements, we extracted various features from dif-
ferent detailed parameters used in the literature, such as pupil
diameter, fixation, saccade, and blink [7], [11]. The details
of the features extracted from eye movements are shown in

TABLE I
DETAILS OF THE EXTRACTED EYE MOVEMENT FEATURES

(a) (b)

(c) (d)

(e)

Fig. 6. Illustration of various eye movement parameters: pupil diameter,
fixation dispersion, saccade amplitude, saccade duration, and blink.

Table I. The total number of dimensions of the eye movement
features is 33. Fig. 6 illustrates five eye movement parameters.

C. Classification Methods

As a baseline classification method, we used support vector
machine (SVM) with a linear kernel as the classifier. We used
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Fig. 7. Deep neural network architectures adopted in this paper. (a) Two RBMs were constructed using EEG and eye movement features as input. (b) Two
hidden layers of EEG RBM and eye RBM were concatenated, and an upper RBM was trained above them. (c) Stacked RBMs were unfolded into a BDAE,
and the shared representations of both modalities were learned from the neural networks.

the Liblinear toolbox to implement SVM [69]. For training, we
searched the parameter space 2[−10:10] for C to find the optimal
value. The feature extraction and SVM used in this paper are
implemented in MATLAB. We used both the accuracy and
standard deviation for evaluation. We adopted feature-level
fusion as a baseline for modality fusion. The feature vectors
of EEG and eye movements were directly concatenated into
a larger feature vector as the inputs of the classifiers. For the
experimental evaluations of a single modality and multiple
modalities, we separated the data from one experiment into
training data and test data, where the first 16 trials are the
training data, and the last eight trials containing all emotions
(each emotion with two trials) are the test data. To analyze
the performance consistency across sessions, the data of one
session are used as the training data, and the data of another
session are used as the test data.

D. Multimodal Deep Learning

To enhance the recognition performance, we adopted a
bimodal deep auto-encoder (BDAE) [58] to extract the shared
representations of both EEG and eye movements. Fig. 7
depicts the deep neural network architectures designed for our
proposed approach. In contrast to the conventional approaches,
where the direct concatenation of both feature vectors from
different modalities are simply fed to a neural network,
we train individual networks for different modalities. Two
restricted Boltzmann machines (RBMs) called EEG RBM and
eye RBM were constructed using EEG and eye movement
data, respectively. An RBM is an undirected graph model with
a visible layer and a hidden layer. There are no visible-visible
connections and no hidden-hidden connections.

The visible and hidden layers each have a bias vector, a and
b, respectively. In an RBM, the joint distribution p(v, h; θ)

over the visible units v and hidden units h, given the model
parameters θ , is defined in terms of an energy function
E(v, h; θ) of

P(v, h; θ) = exp(−E(v, h; θ))

Z
(2)

where Z = ∑
v
∑

h exp(−E(v, h; θ)) is a normalization factor,
and the marginal probability that the model assigns to a visible
vector v is

P(v; θ) =
∑

h exp(−E(v, h; θ))

Z
. (3)

For a Bernoulli (visible)—Bernoulli (visible) RBM, the
energy function is defined as

E(v, h; θ) = −
I∑

i=1

J∑
j=1

wijvihj −
I∑

i=1

bivi −
J∑

j=1

bjhj (4)

where wij is the symmetric interaction term between visible
unit vi and hidden unit hj, bi, and aj are the bias terms, and I
and J are the numbers of visible and hidden units, respectively.
W denotes the weights between visible and hidden layers.
The conditional probabilities can efficiently be calculated as
follows:

P
(
hj = 1|v; θ

) = σ

(
I∑

i=1

wijvi + aj

)
(5)

P
(
vj = 1|h; θ

) = σ

⎛
⎝ J∑

j=1

wijhj + bi

⎞
⎠ (6)

where σ(x) = 1/(1 + exp(x)).
Taking the gradient of the log likelihood log p(v; θ), we can

derive the update rule for the RBM weights as

�wij = Edata
(
vihj

)− Emodel
(
vihj

)
(7)

where Edata(vihj) is the expectation observed in the training
set and Emodel(vihj) is the same expectation under the dis-
tribution defined by the model. The contrastive divergence
algorithm [70] is adopted to train RBMs using Gibbs sampling
since Emodel(vihj) is intractable.

As shown in Fig. 7, two hidden layers of EEG RBM and
eye RBM were further concatenated as the input of the upper
RBM. The stacked RBMs were unfolded into a BDAE, and
an unsupervised back-propagation algorithm was used to fine
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Fig. 8. Visualization of the DE features and the corresponding labels in one experiment. Here, labels with 0, 1, 2, and 3 denote the ground truth, neutral,
sad, fear, and happy emotions, respectively. The numbers 1, 2, 3, 4, and 5 in the vertical coordinates, respectively, denote the five frequency bands: 1) δ; 2) θ ;
3) α; 4) β; and 5) γ . The dynamic neural patterns in high frequency bands (α, β, and γ ) have consistent changes with the emotional labels during the whole
experiment.

tune the weights. Using this approach, the shared representa-
tions of both modalities were extracted, and linear SVMs were
trained using the new shared representations as the inputs.
The input features of EEG and eye movements for the RBMs
were normalized to the range from zero to one. The num-
bers of neurons in the hidden layers were fixed to be the
same for the three RBMs when training and were tuned in
[200, 150, 100, 90, 70, 50, 30, 20, 15, 10] units using cross-
validation. The learning rate was set to 0.001. The mini-batch
size was 100. The multimodal deep models were implemented

in Python using the deep learning libraries Keras6 and
Tensorflow.7

V. EXPERIMENTAL RESULTS

A. EEG-Based Emotion Recognition

First, we evaluated the performance of EmotionMeter
regarding accuracy for different setups of EEG recordings. Our

6https://keras.io/
7https://www.tensorflow.org/
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objective was to investigate how the performance varies with
the number of attached electrodes. We designed three setups
for EEG recordings: 1) T7 and T8; 2) T7, T8, FT7, and FT8;
and 3) T7, T8, FT7, FT8, TP7, and TP8. The mean accuracies
and the standard deviations of all 45 experiments for different
features obtained from separated and total frequency bands are
presented in Table II. “Total” denotes the direct concatenation
of five frequency bands. We compared the performance of the
PSD and DE features in recognizing four emotions. As shown
in this table, the DE features outperformed the PSD features
with higher accuracies and lower standard deviations in most
cases. The beta and gamma bands performed slightly better
than the other frequency bands in general. These results gave
a further verification on our previous work [71]. The visual-
ization of the DE features and the labels in one experiment
are shown in Fig. 8, which presents the dynamic neural pat-
terns in high-frequency bands. In Fig. 8, the DE features of
the delta band does not show significant changes, whereas the
gamma and beta responses have consistent changes with the
emotional labels. These results indicate that the alpha, beta,
and gamma bands contain the most discriminative informa-
tion. For neutral and happy emotions, the neural patterns have
significantly higher beta and gamma responses than for the
sad and fear emotions, whereas the neural patterns of neutral
emotions have higher alpha responses compared to the other
emotions.

Moreover, the electrode placements with two, four, and six
electrodes can achieve relatively good performance for the
four emotions. As shown in Table II, the best mean accuracies
and their standard deviations of two, four, and six electrodes
are 64.24%/15.39%, 67.02%/15.87%, and 70.33%/14.45%,
respectively. The setup with only six electrodes can achieve
comparable performance with a slightly lower mean accu-
racy compared with 62 electrodes (70.33% versus 70.58%).
Although the system can achieve slightly higher accuracies
with more electrodes as expected, the computational complex-
ity and calibration time used are also considerably increased.
In real-world applications, considering the feasibility and
comfort, fewer electrodes will be preferred. These results
demonstrate the efficiency of our design using only six EEG
electrodes.

B. Analysis of Complementary Characteristics

For emotion recognition using only eye movements, we
obtained an average accuracy and standard deviation of
67.82%/18.04%, which was slightly lower than that obtained
using only EEG signals (70.33%/14.45%). For modality
fusion, we compare two approaches: 1) feature-level fusion
and 2) multimodal deep learning. For feature-level fusion,
the feature vectors of EEG and eye movements are directly
concatenated into a larger feature vector as the inputs of
SVMs. Table III shows the performance of each single modal-
ity (eye movements and EEG) and of the two modality fusion
approaches, and Fig. 9 presents the box plot of the accura-
cies using different modalities. The average accuracies and
standard deviations of the feature-level fusion and multimodal
deep learning were 75.88%/16.44% and 85.11%/11.79%,

TABLE II
MEAN ACCURACY RATES (%) OF DIFFERENT SETUPS (TWO

ELECTRODES: T7 AND T8; FOUR ELECTRODES: FT7, FT8, T7, AND T8;
SIX ELECTRODES: FT7, FT8, T7, T8, TP7, AND TP8; AND 62

ELECTRODES) FOR THE TWO DIFFERENT FEATURES OBTAINED FROM

THE SEPARATE AND TOTAL FREQUENCY BANDS. HERE, SVMS WITH

LINEAR KERNELS WERE USED AS CLASSIFIERS

respectively, for all the experiments. We used one-way analysis
of variance (ANOVA) to determine the statistical significance.
The performance with modality fusion is significantly greater
than that with only a single modality (p < 0.01), which indi-
cates that modality fusion with multimodal deep learning can
combine the complementary information in each single modal-
ity and effectively enhance the performance. These results
demonstrate the efficiency of EmotionMeter combining EEG
and eye movements for emotion recognition.

In comparison with the feature-level fusion, multimodal
deep learning can learn the high-level shared representations
between two modalities. Through the processing of multiple
layers in deep neural networks, the effective shared represen-
tations are automatically extracted. In the feature-level fusion,
it is very difficult to relate the original features in one modality
to features in other modality and this method usually learns
unimodal features [58]. Moreover, the relations across vari-
ous modalities are deep instead of shallow. Multimodal deep
learning can capture these relations across various modalities
with deep architectures and improve the performance.

To further investigate the complementary characteristics of
EEG and eye movements, we analyzed the confusion matrices
of each modality, which reveals the strength and weakness
of each modality. Figs. 10 and 11 present the confusion
graph and the confusion matrices of eye movements and
EEG, respectively. As indicated by these results, EEG and
eye movements have important complementary characteris-
tics. We observe that EEG has the advantage of classifying
happy emotion (80%) compared to eye movements (67%),
whereas eye movements outperform EEG in recognizing fear
emotion (67% versus 65%). It is difficult to recognize fear
emotion using only EEG and happy emotion using only eye
movements. Sad emotion has the lowest classification accu-
racies for both modalities. However, the misclassifications of
these two modalities are different. EEG misclassifies more sad
emotion as neutral emotion (23%), whereas eye movements
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Fig. 9. Box plot of the accuracies with each single modality (eye movements
and EEG) and the two modality fusion approaches. The performance with
modality fusion is significantly greater than that with only a single modality
(p < 0.01, ANOVA). The red lines indicate the median accuracies.

TABLE III
PERFORMANCE OF EACH SINGLE MODALITY (EYE MOVEMENTS AND

EEG) AND THE TWO MODALITY FUSION APPROACHES

misclassify more sad emotion as fear emotion (23%). Both
EEG and eye movements can achieve relatively high accura-
cies of 78% and 80% for neutral emotion, respectively. These
results indicate that EEG and eye movements have different
discriminative powers for emotion recognition. Combining the
complementary information of these two modalities, modality
fusion can significantly improve the classification accuracies
(85.11%).

As shown by the confusion matrices of the multimodal
fusion methods presented in Fig. 10, the feature fusion method
can significantly enhance the performance of classifying sad
and fear emotions with 6% and 12% improvements in accura-
cies, respectively. Moreover, multimodal DNN provides even
better improvements for sad, fear, and neutral emotions with
increases in accuracies of 22%, 20%, and 12%, respectively,
in comparison with a single modality, particularly for sad
emotion. The single EEG modality provides a relatively high
classification accuracy for happy emotion. Both fusion meth-
ods do not improve the classification accuracy of happy
emotion compared to the single EEG modality. These experi-
mental results reveal why the combination of both modalities
can enhance the performance of emotion recognition. The
fusion method integrates the advantages of EEG for recog-
nizing happy emotion and the advantages of eye movements
for recognizing fear emotion while simultaneously improv-
ing the classification accuracies of sad emotion. Moreover, the
performance of classifying neutral emotion is also improved.

Humans convey and interpret emotional states through sev-
eral modalities jointly, including audio-visual (facial expres-
sion, voice, and so on), physiological (respiration, skin

TABLE IV
AVERAGE ACCURACIES AND STANDARD DEVIATIONS (%) OF EEG WITH

DIFFERENT NUMBERS OF ELECTRODES AND EYE MOVEMENTS ACROSS

SESSIONS. (“1ST,” “2ND,” AND “3RD”’ DENOTE THE DATA OBTAINED

FROM THE FIRST, SECOND, AND THIRD EXPERIMENTS WITH ONE

PARTICIPANT, RESPECTIVELY)

temperature, and so forth), and contextual information (envi-
ronment, social situation, and so on) [72]. Researchers have
reached a consensus for constructing multimodal emotion
recognition while concerning the fusion architecture of these
multimodal information. However, most studies simply feed
all multiple modalities into the machine learning models and
do not investigate or interpret the underlying mechanisms
of the improvement, even for the popular audio and visual
modalities. In this paper, we utilize the attractive modal-
ities six-channel EEG and eye movements and study the
interactions between both modalities for multimodal emo-
tion recognition. Eye tracking using wearable techniques
has received considerable attention in recent years due to
its natural observations and informative features of users’
nonverbal behaviors [38], [73], [74]. The previous study of
Ding et al. [75] showed that eye contact contained reliable
information for speaker identification in three-party conversa-
tions. Through eye tracking, more qualitative indices could
be included to enhance HCIs. Compared to other modali-
ties, eye tracking has the advantage of providing contextual
information.

C. Analysis of Stability Across Sessions

The systematic evaluation of a robust emotion recognition
system involves not only the accuracy but also the stability
over time. The novelty of our dataset compared with other
datasets is that it consists of three sessions for each participant
to investigate the stability of EmotionMeter across sessions.

We select the DE features of the total frequency bands and
eye movement features from different sessions with the same
participants as the training and test datasets. The average accu-
racies and standard deviations for two, four, and six electrodes
are shown in Table IV. A mean classification accuracy of
72.39% was achieved across sessions with the six-electrode
EEG and eye movement features using multimodal deep learn-
ing, whereas for feature-level fusion with SVM, the mean
accuracy was 59.52%. The multimodal deep learning approach
achieves significantly better performance than feature-level
fusion. An interesting finding is that the performance was
better with training and test data obtained from sessions
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(a) (b) (c) (d)

Fig. 10. Confusion matrices of single modality and multimodal fusion methods: feature-level fusion and multimodal deep neural networks. Each row of the
confusion matrices represents the target class and each column represents the predicted class. The element (i, j) is the percentage of samples in class i that is
classified as class j. (a) Eye. (b) EEG. (c) Feature Fusion. (d) DNN.

Fig. 11. Confusion graph of EEG and eye movements, which shows their
complementary characteristics for emotion recognition. [The numbers denote
the percentage values of samples in the class (arrow tail) classified as the
class (arrow head). Bolder lines indicate higher values.]

performed in nearer time. These results demonstrate the com-
parative stability of our proposed EmotionMeter framework.

For real-world applications, the intuitive approach of the
training and calibration phase is to use the past labeled data
as the training data and make inferences on the new data.
However, there are some differences in feature distributions
across sessions, and these differences may be due to the non-
stationary characteristics of EEG and changing environments
such as noise, impedance variability, and the relative posi-
tion of the electrodes. As time passes, the performance of the
emotion recognition system may deteriorate. Therefore, adapt-
ing emotion recognition models should be further studied in
the future [76]–[80]. To overcome the across-day variability
in neural recording conditions and make the brain-machine
interfaces robust to future neural variability, Sussillo et al. [81]
exploited the previously collected data to construct a robust
decoder using a multiplicative recurrent neural network.

VI. CONCLUSION

Emotions are manifested via internal physiological
responses and external behaviors. Signals from different
modalities provide different aspects of emotions, and com-
plementary information from different modalities can be
integrated to construct a more robust emotion recognition
system compared to unimodal approaches. In this paper,
we have presented EmotionMeter, which is a multimodal
framework to recognize human emotions with EEG and
eye movements. Considering its wearability and feasibility,
we have designed a six-electrode placement above the ears,
which is suitable for attachment in a wearable headset
or headband. We have demonstrated that modality fusion
combining EEG and eye movements with multimodal deep
learning can significantly enhance the emotion recognition
accuracy (85.11%) compared with a single modality (eye
movements: 67.82% and EEG: 70.33%). Moreover, we have
also investigated the complementary characteristics of EEG
and eye movements for emotion recognition and evaluated
the stability of our proposed framework across sessions. The
quantitative evaluation results have indicated the effectiveness
of our proposed EmotionMeter framework.

In the future, we plan to improve the accuracy of our emo-
tion recognition system with the adaptation over time and the
integration of user-specific profiles. We are also working on
implementing wearable prototypes with hardware and software
in more real social interaction environments.
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