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Abstract—The study of the human decision-making process
has long been a valuable field for both scientific research and
practical application. Towards knowing and taking control of
the decision-making process, evaluating the reliability of human
decisions objectively plays an important role. Various studies have
demonstrated that the confidence level of humans during the
decision-making process is an important factor that reflects the
correctness of decisions. In literature, several deep learning based
methods have been developed to estimate decision confidence
using Electroencephalography (EEG). Among these approaches,
the spectral-spatial-temporal adaptive graph convolutional neural
network (SST-AGCN) stands out. However, SST-AGCN focuses
on specific subjects, and may lead to less efficiency in cross-
subject situations, which are more common in application
scenarios. In this paper, we propose a deep learning model
called SST-AGCN with Domain Adaptation (SST-AGCN-DA)
for cross-subject decision confidence estimation. To examine the
effectiveness of our proposed model, we compare our SST-AGCN-
DA with the original SST-AGCN, three typical domain adaption
algorithms in the field, and the SST-AGCN with Domain Gener-
alization (SST-AGCN-DG), which is another transfer learning
model we developed in this paper. We conduct cross-subject
confidence estimation experiments on an EEG dataset collected
under a text-based decision-making task. The averaged results
of leave-one-out cross-validation come out that the F1-scores of
our proposed SST-AGCN-DA and SST-AGCN-DG are 79.45%
and 77.04%, respectively, while the original SST-AGCN and the
best of the existing domain adaptation algorithms are 74.15%
and 74.25%, respectively.

Index Terms—decision confidence estimation, electroen-
cephalography (EEG), cross-subject, domain adaptation, domain
generalization
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I. INTRODUCTION

The fast-developing science and technology enable auto-
mated machines to substitute human forces in various po-
sitions, but critical decision-making processes still require
human participation. Therefore, it becomes more important to
evaluate the reliability of human decision-making in time. To
realize the real-time evaluation of the decisions, researchers
attempt at estimating the level of human decision confidence
during the decision-making process. Decision confidence is the
subconscious estimation of the subject that has been shown to
increase accordingly with the possibility for the decision to be
correct [1].

To precisely estimate decision confidence, several kinds of
physiological data have been investigated. In traditional works,
researchers have worked on functional magnetic resonance
imaging (fMRI) [2], [3] and event-related potential (ERP)
[4], commonly acquired under experiments around techniques
like psychological, and have revealed the critical regions
that affect decision confidence [5]. These methods are poor
in applicability because of the high professionalism of the
experiments and the various experimental restrictions to data
collection.

In recent years, labeled datasets have been developed,
including other forms of psychological data collected under
life-like tasks. These works cover the above shortages while
promoting advanced models for supervised learning in de-
cision confidence estimation. Among the various kinds of
psychological data, Electroencephalography (EEG) stands out
because of its objectivity. Li et al. developed an image-based
experiment containing tasks close to realistic scenarios like
detecting objects from remote sensing images and created
an EEG dataset with data labeled by five levels of decision
confidence [6]. The experiment environment and the time
limit are delicately designed to simulate real-world situations
as well as the task targets. Base on this dataset, a deep-
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Fig. 1. Structure of the SST-AGCN model, composed of preprocessing, feature extraction, and decision confidence level classification steps. The input samples
are the EEG signals collected from the subjects during the decision-making process. The preprocessing step calculates primary features from the raw EEG
signals. In the feature extraction step, each of the L SST-AGCN blocks concurrently extracts features from the spectral-spatial and the spectral-temporal
aspects. The classifier finally predicts the decision confidence level base on the extracted feature.

learning based approach was proposed [7] and advanced neural
networks like graph convolutional network proposed by Liu
et al. [8] efficiently predict the level of decision confidence.
These works demonstrated the effectiveness of EEG in deci-
sion confidence estimation. Moreover, Li et al. put forward a
text-based experiment to further explore the ability of EEG
in recognizing decision confidence levels based on text exams
[9]. A spectral-spatial-temporal adaptive graph convolutional
neural network (SST-AGCN) is designed in this work [9]. The
SST-AGCN model fully utilizes information from the EEG
data in the dimensions of spectral, spatial, and temporal, and
is shown to be the most effective model in text-based decision
confidence estimation.

Although the above studies greatly promote the accuracy of
decision confidence estimation, they are not suitable for cross-
subject scenarios and thus infeasible in practical applications.
For the existing subject-dependent methods, a specific model
is trained for each subject, which promotes the accuracy
of confidence estimation within individuals. However, these
models rely too much on the labeled data of the target subjects,
while in application it is usually impractical to first obtain
adequate labeled samples of the subjects. So to improve the
confidence estimation models for practical application, we
adopt the idea in transfer learning, namely domain adaptation,
which can eliminate the distribution differences between the
feature extracted from the massive known data collected before
application and the limited data from the target. We thus
formulate the spectral-spatial-temporal adaptive graph convo-
lutional neural network with domain adaptation (SST-AGCN-
DA). We also include another transfer learning technique
called domain generalization for comparison, and form the
spectral-spatial-temporal adaptive graph convolutional neu-
ral network with domain generalization (SST-AGCN-DG).
These models, together with several other domain adaptation
algorithms, are tested on cross-subject decision confidence

estimation based on the EEG dataset collected under the text-
based decision-making task.

II. RELATED WORK

A. Spectral-Spatial-Temporal Adaptive Graph Convolutional
Neural Network

Among the various models for decision confidence estima-
tion, the spectral-spatial-temporal adaptive graph convolutional
neural network (SST-AGCN) [9] achieves leading performance
in subject-dependent tasks, and our work further explores the
potential of it in cross-subject tasks. The SST-AGCN model is
originate from the idea of graph convolutional neural network
(GCN) [10], which realizes feature extraction based on graph
information. However, the original GCN model requires the
input graph manually defined in advance, while it is infeasible
in dealing with data of unknown functional connections. To
cope with this circumstance, Shi et al. suggested the adaptive
GCN model [11], where the topological structure can be
learned by the backpropagation algorithm. Although the aim of
the work is skeleton-based action recognition, the work gives
inspiration to the SST-AGCN model to adapt to the human
brain and the EEG signal.

The structure of the SST-AGCN model is shown in Figure
1. The main component of the feature extraction module is
the L SST-AGCN blocks, where spectral-spacial convolution
and spectral-temporal convolution are applied simultaneously
within each block to the input. The residual structure [12]
and the batch normalization operations retain the original
information and ensure the stability of the model. The input
of the first SST-AGCN block is the spectral feature, defined
as Bin ∈ RSin×T×C . Sin, T and C are the scales of spectral,
temporal and spatial dimensions. The output of the block can
be expressed as:

B̃ = σ(BN(B̃ss) +BN(B̃st) + residual(Bin)), (1)
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where B̃ss ∈ RSout×T×C is the output of the spectral-spatial
convolution module while B̃st ∈ RSout×T×C is the output of
the spectral-temporal convolution module. σ refers to the Relu
activation function. After the L SST-AGCN blocks for feature
extraction, the global average pooling layer and the linear
output layer complete the downstream classification step.

To implement graph convolution and utilize spatial features,
the spectral-spatial module adaptively learns the weighted ad-
jacency matrix that carries the connection information among
the EEG channels. The matrix is composed of the public
matrix Apub and the private matrix Apri, both belong to RC×C

where C is the number of channels. Apub is a shared trainable
parameter that holds the general brain function connectivity
and reflects the neural patterns during decision-making. Apri is
extracted for each sample to measure the correlation between
two EEG channels. It can be calculated from:

Apri = softmax(ET
θ Eτ ), (2)

where Eθ ∈ R(SeT )×C and Eτ ∈ R(SeT )×C are reconstructed
embedded features separately obtained through convolution on
input Bin using 1 × 1 kernels. Because of the complexity of
human brain, the function connection graph for EEG data is
fully connected. Thus the calculation for convolution can be
inferred from the original GCN model:

B̃ss = WBin(Apub +Apri), (3)

where W represents the convolution kernel of size 1 × 1,
number of input channels as Sin and number of output
channels as Sout.

Based on the spectral feature, the spectral-spatial convolu-
tion module extract the spatial feature of the EEG data, and in
the spectral-temporal convolution module, the temporal feature
is further explored. The graph structure enables the model to
learn with the information of channel-wise relationship. So
to inform the model with temporal influence of the adjacent
frames in the time series, convolution is conducted to the
sequential data of each channel, providing B̃st = Convt(Bin).
The kernel size is Kt × 1, and Kt denotes the number of
neighboring frames that are related with the current frame.

Combining the above equations, the output of each SST-
AGCN block can be calculated, and the final extracted feature
can be applied in decision confidence estimation.

B. Transfer Learning

Models trained by the above method perform well with
specific subjects in decision confidence estimation, but when
applied to new subjects with few labeled EEG data, the
performance of estimation will decline. This decline is caused
by individual differences between subjects. So we introduce
transfer learning techniques into the SST-AGCN model to re-
move the personalized information and enhance the generality
of the learned models among different subjects.

Domain adaptation is a progressed idea in the field of
transfer learning. Domain D = {X , P (X)}(X ∈ X ) refers
to the feature space X and the distribution P (X) of a certain
group of samples [13]. Adaptation is to make the model

trained on the source domain DS = {XS , P (XS)} apply to
the target domain DT = {XT , P (XT )} with few samples.
Various domain adaptation methods have been suggested,
and some are used in EEG-based tasks. Pan et al. proposed
transfer component analysis to transform the feature space
[13]. Zheng et al. conducted transductive parameter transfer in
emotion recognition based on EEG [14]. The idea of adver-
sarial network is also adopted in various domain adaptation
methods to blur the distinction between features from the
source and the target domains. Li et al. introduced the domain-
adversarial neural network (DANN) into cross-subject emotion
recognition based on EEG [15]. The DANN model create the
adversarial relationship between the feature extractor and the
domain discriminator to eliminate domain information. The
popular adversarial discriminative domain adaptation (ADDA)
[16] is also widely applied in EEG based tasks. In the ADDA
model, a target domain feature extractor is fine-tuned from the
source domain feature extractor to remove specific information
of the target domain. Zhao et al. proposed the plug-and-
play domain adaptation and make representation partition to
enable fast model transfer [17]. Moreover, remarkable results
in EEG-based cross-subject emotion recognition have been
achieved by the Wasserstein generative adversarial network
domain adaptation (WGANDA) model [18].

Although domain adaptation methods are effective in most
cross-subject tasks, there may still be circumstances when
no information from the target domain is reachable before
training. Therefore, researchers put forward the idea of domain
generalization. The domain generalization method aims at
removing the differences among all the subjects to retain
only the target-related information. Compared with domain
adaptation methods, domain generalization methods may be
less effective in tasks with a certain amount of samples from
the target, but the models trained under domain generalization
methods may have better potential in generality. Ma et al. pro-
posed the domain generalization DANN model (DG-DANN)
[19] based on the DANN model, and Jia et al. proposed
a spatial-temporal graph convolutional network with domain
generalization to classify sleep stages [20].

III. METHODS

A. Spectral-Spatial-Temporal Adaptive Graph Convolutional
Neural Network with Domain Adaptation

To improve the cross-subject decision confidence estimation
and eliminate the domain deviation caused by data distribution
differences among different subjects, we take advantage of
the adversarial module similar to the DANN model to con-
struct the SST-AGCN with domain adaptation (SST-AGCN-
DA) model, as shown in Figure 2. The model is composed
of the feature extractor Gf base on the SST-AGCN model,
the decision confidence level predictor Gy , and the domain
predictor Gd. A gradient reversal layer (GRL) [21] is added
between Gf and Gd to form the adversarial relationship.
Gy and Gd aim at correctly predict the level of decision
confidence and domain of the feature generated by Gf , while
Gf is optimized to remove domain-related information from
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Fig. 2. The overall process of the spectral-spatial-temporal adaptive graph convolutional neural network with domain adaptation. The training set includes
all the EEG signals from the source domain and the target domain. They are labeled by the domains to which they belong to train the domain predictor,
while only the confidence levels from the source domain are applied to train the confidence predictor. The test set is composed of both the EEG signals
from the target domain and their confidence levels to evaluate the precision of the confidence predictor. Solid arrows represent the forward propagation path
and dashed arrows represent the backward propagation path. The flip gradient module reverses the optimization target of the SST-AGCN module to remove
domain-related information from the extracted feature and brings in a weight coefficient to balance the training process.

the feature to support Gy and confuse Gd. In the domain
adaptation method, the domains are the source domain and
the target domain.

To be precise, in the forward propagation step, we denote
xr,i as the ith input EEG feature from domain r ∈ {s, t}
where s and t represent the source and target domain. Gf

extracts the feature x̂r,i = Gf (xr,i) from the input and
sends it to downstream tasks including decision confidence
estimation and domain prediction. The outputs of Gy and Gd

are separately ŷr,i = Gy(x̂r,i) and d̂r,i = Gd(x̂r,i) while
the ground truth decision confidence level and domain are
yr,i and dr,i. Since the ground truth labels of confidence
level for samples from the target domain may be unavailable,
Gy only take into consideration the correctness of predicting
the level of samples from the source domain. Then in the
backpropagation step, the predicted labels are compared with
the known ground truth labels to optimize the parameters
of the SST-AGCN-DA model. We apply cross entropy loss
in both confidence level and domain prediction. The loss
functions are:

Ly = − 1

|s|
Σ

|s|
i=1ys,i log ŷs,i, (4)

Ld = − 1

|s|+ |t|
(Σ

|s|
i=1ds,i log d̂s,i +Σ

|t|
i=1dt,i log d̂t,i). (5)

Since the domain prediction loss is reversed between Gf and
Gd, the optimization of Gf will be maximizing Ld, and the

overall loss function of the SST-AGCN-DA model can be
expressed as:

L = Ly − βLd, (6)

where β is the hyperparameter that controls the balance
between decision confidence level prediction and domain
prediction.

The optimized parameters θf , θy and θd of the three
modules should then be:

θ̂f , θ̂y = argminθf ,θyL (θf , θy, θ̂d) (7)

θ̂d = argmaxθdL (θ̂f , θ̂y, θd) (8)

During training the SST-AGCN-DA model, especially the
domain predictor Gd, samples from at least two domains are
required to form the source and the target domains. Consider-
ing this fact, our SST-AGCN-DA model only applies to cross-
subject scenarios instead of intra-subject ones. Meanwhile,
our model faces another problem caused by separating the
two domains. The domain predictor may suffer from the
imbalanced dataset since the target domain usually refers to a
specific subject, while the source domain is possibly composed
of all the rest subjects. If not handled appropriately, the huge
difference between the sample size of the two domains is prone
to bring the domain predictor into local optimum, and the
effectiveness of the feature extractor Gf in removing domain-
related information becomes doubtful. To relieve the problem
of the imbalanced dataset, we apply random oversampling to
the target domain during the training process in this paper. The
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Fig. 3. The overall process of spectral-spatial-temporal adaptive graph convolutional neural network with domain generalization. The training set includes
only the EEG signals from the known subjects. The subject information and the confidence levels respectively form the corresponding labels that support the
training process of the multi-class domain predictor and the confidence predictor. The test set is composed of the EEG signals and confidence levels obtained
from new subjects to evaluate the model with completely no information related to the application target. The solid arrows, the dashed arrows, and the flip
gradient act similarly as in the SST-AGCN-DA model.

results of the experiment section demonstrate the superiority
of the SST-AGCN-DA model, and other strategies to cope with
the imbalanced dataset still need to be explored.

B. Spectral-Spatial Sdaptive Graph Convolutional Neural
Network with Domain Generalization

The SST-AGCN-DA model is capable of removing the
differences between the source domain and the target domain,
and to further cope with unknown target domain, we introduce
the SST-AGCN with domain generalization (SST-AGCN-DG)
model shown in Figure 3. Instead of confusing the feature
extracted from the source and target domain, the SST-AGCN-
DG model aims at eliminating all the personalized information
and retaining all the task-related general information. This is
achieved by viewing samples from each subject as a domain,
which has been proven to be effective in other tasks [22]. Once
the model is able to extract only the non-redundant information
from each domain, the generality of this model will support
any unknown new domain.

Similar to SST-AGCN-DA, the SST-AGCN-DG model oc-
cupies the feature extractor Gf based on SST-AGCN, the deci-
sion confidence level predictor Gy , and the domain predictor
Gd. The gradient reversal layer is also applied between Gf

and Gd to form the adversarial relationship. However, Gd in
this model is the multi-class classifier instead of the binary
classifier previously applied which is the significant differ-
ence between the domain adaptation method and the domain
generalization method. Gd tries to tell features from each
domain apart while Gf brings disturbance. During forward
propagation, we denote xr,i as the ith input EEG feature from

the rth subject Dr, or the rth domain as well. The domains are
marked by D = {D1, D2...Dr...}. The signs for the extracted
features, the predicted confidence levels, and the predicted
domains are similarly transferred from the definition in SST-
AGCN-DA. Then in back propagation, the loss function of
confidence estimation and domain prediction based on cross
entropy loss are defined as:

Ly = − 1

ΣD
r=1|Dr|

ΣD
r=1Σ

|Dr|
i=1 yr,i log ŷr,i, (9)

Ld = − 1

ΣD
r=1|Dr|

ΣD
r=1Σ

|Dr|
i=1 dr,i log d̂r,i. (10)

The overall loss function and the parameter optimization of
the SST-AGCN-DG model follow that of the SST-AGCN-DA
model, which are listed in Equation (6)−(8).

Although the SST-AGCN-DG model is also not applicable
in intra-subject scenarios, the dataset is balanced for Gd

since each subject makes up a unique domain. However, the
difficulty of training an effective domain predictor increases
with the number of subjects, which is also the number of
categories of the classification task for Gd. When facing
practical applications with varying numbers of subjects, the
adversarial relationship between Gf and Gd becomes too
sensitive to hyper-parameters like β in Equation (6) to provide
stable results. Thus the SST-AGCN-DG model is theoretically
less general than the SST-AGCN-DA model. Another approach
to relieving this problem is to utilize implicit labels to redefine
the domain of the subjects. The implicit labels could be gender,
age bracket, degree of education, etc. The appropriate domain
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TABLE I
EXPERIMENTAL RESULTS OF CROSS-SUBJECT DECISION CONFIDENCE LEVELS CLASSIFICATION ON THE EEG DATASET COLLECTED UNDER THE TEXT
EXAM TASK (%). MODELS RELATED TO THE SST-AGCN STRUCTURE ARE INCLUDED. THE HIGHEST AVERAGE VALUE AND THE LOWEST STANDARD

DEVIATION AMONG THE MODELS IN EACH EVALUATION CRITERIA ARE SHOWN IN BOLD FONT. OUR SST-AGCN-DA TAKES THE LEAD, AND OUR
SST-AGCN-DG PERFORMS BETTER THAN THE PURE SST-AGCN.

Model Accuracy Precision Recall F1-score

SST-AGCN 79.48/7.94 77.22/8.41 75.77/8.17 74.15/7.59
Our SST-AGCN-DG 81.50/9.88 79.08/9.77 77.97/9.87 77.04/10.11

Our SST-AGCN-DA 83.64/8.75 81.03/8.20 80.77/8.30 79.45/8.48

SST-AGCN SST-AGCN-DG SST-AGCN-DA

Fig. 4. F1-score for each subject as the application target. SST-AGCN-DA is more effective for most subjects and SST-AGCN-DG work on the rest. The
two models work well even when the original SST-AGCN-DA has poor performance.

information used in the SST-AGCN-DG model remains to be
explored in future works.

IV. EXPERIMENT

A. Dataset

To evaluate the performance of our SST-AGCN-DA and
SST-AGCN-DG models in cross-subject decision confidence
estimation, we conduct experiments against the original SST-
AGCN model on an EEG dataset collected by Li et al. under
a text-based decision making task [9]. During the experiment,
the subjects are asked to answer text-based questions and
score their level of confidence immediately after making each
decision. The EEG data is recorded during the experiment.
There are altogether 80 single-choice blank-filling questions
in Chinese which are selected from the question bank of the
Chinese high school exams, and just as in real exams, a time
limit is given to each question. These measures not only make
the experiment more realistic but also ensure the effectiveness
of the collected EEG data. In this experiment, there are 5
levels of decision confidence ranging from certainly wrong
to certainly correct, and the subjects label their decision with
the 5 levels. The EEG data is collected through a 62-channel
electrode cap worn by the subjects and is recorded by the
ESI Neuroscan system at a frequency of 1000 Hz. The EEG
data during the decision-making processes is segmented for
further study. Base on this experiment, Li et al. created the
decision confidence EEG dataset involving 24 healthy subjects,
11 males and 13 females aged between 19 to 24.

B. Experimental Setup

Base on the above EEG dataset, we adopt the leave-one-
out-cross-validation method in the following experiments
to evaluate the performance of the models in cross-subject
scenarios. With each subject as the target domain and other
subjects as the source domain, 24 independent decision
confidence estimation models are trained and the results are
averaged for each method.

In the preprocessing step, we first remove the eye movement
artifacts from the EEG signals according to the signals from
the electro-oculogram (EOG) and frontal poles zero (FPZ)
channels, and filter out the noise by a band-pass filter of 0.3
HZ to 50. We smooth the feature using the linear dynamic
system [23] to wipe out abnormal jitter. We retain the EEG
signals collected during the decision-making process to
ensure the effectiveness of the data in estimating decision
confidence. To accelerate the training process and utilize
the spectral feature of the raw EEG data more efficiently,
we further extract the differential entropy (DE) features
[24]. The superiority of DE feature has been demonstrated
in other decision confidence estimation tasks [6], [7]. In
this experiment, we divide the processed EEG signals into
segments of 1-second length, and apply short-time Fourier
transform (STFT) with 1-second Hanning window to each
segment. The extracted DE features contain five frequency
bands (Delta: 1-3 Hz, Theta: 4-7 Hz, Alpha: 8-13 Hz, Beta:
14-30 Hz, Gamma: 31-50 Hz).

The EEG features are of size N × F × C where N is the
number of samples, F is the number of frequency bands and
C is the number of EEG channels. To include the temporal
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TABLE II
EXPERIMENTAL RESULTS OF CROSS-SUBJECT DECISION CONFIDENCE LEVELS CLASSIFICATION ON THE EEG DATASET COLLECTED UNDER THE TEXT

EXAM TASK (%). MODELS USING DOMAIN ADAPTATION METHODS ARE INCLUDED. THE HIGHEST AVERAGE VALUE AMONG AND THE LOWEST
STANDARD DEVIATION AMONG THE MODELS IN EACH EVALUATION CRITERIA ARE SHOWN IN BOLD FONT. OUR SST-AGCN-DA PERFORMS FAR BETTER

THAN THE OTHER METHODS.

Model Accuracy Precision Recall F1-score

DANN 77.42/8.23 73.68/9.85 74.13/9.06 71.69/9.22

ADDA 77.89/7.48 74.86/9.24 73.78/7.20 71.93/8.32
WGANDA 79.11/8.18 75.01/9.12 76.88/8.84 74.25/8.90

Our SST-AGCN-DA 83.64/8.75 81.03/8.20 80.77/8.30 79.45/8.48

DANN SST-AGCN-DAWGANDAADDA

Fig. 5. F1-score for each target subject using the DANN, the ADDA, the WGANDA and the SST-AGCN-DA models. The SST-AGCN-DA model takes the
lead, and the WGANDA is slightly better than the other two methods.

information in the input samples, we extend the samples into
shape N × F × T × C by an overlapping window with the
size of T. In this experiment, F = 5, T = 5 seconds and
C = 62. We set the number of SST-AGCN blocks to be
L = 6. The output channel size of each graph convolutional
layer is selected between 30 to 120.

C. Cross-subject Confidence Estimation with SST-AGCN-DA

To exhibit the promotion brought by different transfer
learning techniques, especially domain adaptation, we first
compare the SST-AGCN, the SST-AGCN-DA and the SST-
AGCN-DG models. For each model, we train 24 cross-subject
classifiers to predict the level of decision confidence for the
24 subjects. We only adopt the extreme samples labeled by
1 and 5 to ensure the correctness of the labels. Thus, the
confidence predictors gy are binary classifiers. All the deep
neural network modules in the SST-AGCN and SST-AGCN-
DG models are trained on the EEG feature of the rest 23
subjects and transferred directly to the target subjects, while
modules in the SST-AGCN-DA model utilize not only the
other 23 subjects but also the EEG data from the target
subject. These samples act as the information from the target
domain and help in training the feature extractor and the
domain predictor.

Table I shows the effects in estimating decision confidence
in cross-subject scenarios. To evaluated the results fairly for
both low and high confidence levels, we mainly judge by the
F1-score. We can see that the mean F1-score and standard
deviation of the classifiers based on the SST-AGCN model

without using any transfer learning techniques are 74.15% and
7.59%. When the domain adaptation modules are included,
the performance of SST-AGCN-DA reaches 79.45%±8.48%.
Since part of the samples from the target domain are included
in the training process, the feature extractor can remove
the information that differentiate samples from the source
and target domains against the domain classifier. Then the
confidence level classifier can improve the cross-subject
performance. Based on domain generalization, SST-AGCN-
DG does not utilize any information of the target domain,
and the effect is slightly lower than SST-AGCN-DA. Even
so, the differences between domains are still eliminated in the
training stage, and the SST-AGCN-DG model achieves better
results than the SS-AGCN model. The averaged mean value
and standard deviation are 77.04% and 10.11%. To show
the generality of the performance, we also plot the F1-score
for each subject, as shown in Figure 4, and reveal the same
phenomenon in most subjects.

D. Comparison among Domain Adaptation Methods

The above results show the superiority of our SST-AGCN-
DA model than the original SST-AGCN model in this
cross-subject decision confidence estimation tasks, and the
potential of the SST-AGCN-DG model is proved. We further
prove the SST-AGCN-DA model to be more effective than
other domain adaptation methods. The other methods we
adopt are the DANN [15], the ADDA [16] and the WGANDA
models [18]. We create consistent training environments for
all the methods, and the results shown in Table II reveal
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that the SST-AGCN-DA model surpasses the other domain
adaption methods. Similar to the above experiment, the
F1-score of each subject acting as target is shown in Figure
5. We can conclude that the SST-AGCN blocks are necessary
for efficient feature extractor, and the SST-AGCN-DA model
successfully combine it with the domain adversarial structure
which promotes domain adaptation. In all, the SST-AGCN-DA
model is more suitable for cross-subject decision confidence
estimation from EEG signals.

E. Ablation Study

The ablation study is implicit in the above experiments.
Among the three main components of the SST-AGCN-DA
model, the confidence level predictor is indispensable. If the
domain predictor is removed together with the flip gradient
module, the model degrades to the original SST-AGCN model.
If the SST-AGCN blocks are substituted by basic neural
networks like the multilayer perceptron, the model becomes
the DANN model. Furthermore, Thus the above experiments
prove the effectiveness of combining the idea of domain
adversarial in that the feature extractor can produce more
target-specific features, and the efficiency of the SST-AGCN-
based feature extractor is also validated.

V. CONCLUSIONS

The objective evaluation of human confidence in the
decision-making process is of great value in both research
and application. The SST-AGCN model has greatly improved
the prediction performance of decision confidence based on
individual subjects. But in practical application, effectiveness
in cross-subject scenarios is more critical. In this paper, we
have introduced transfer learning techniques into SST-AGCN
and have proposed two cross-subject decision confidence
estimation models, namely SST-AGCN-DA and SST-AGCN-
DG. We utilize the decision confidence EEG dataset collected
during a text-based exam to evaluate the effectiveness of our
proposed models. The experimental results demonstrate that
our methods can reduce the difference in data distribution
among subjects and our SST-AGCN-DA achieves state-of-the-
art performance on EEG-based cross-subject decision confi-
dence estimation.
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