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Abstract. Emotion recognition based on electroencephalography
(EEG) is attracting more and more interest in affective computing. Pre-
vious studies have predominantly relied on manually extracted features
from EEG signals. It remains largely unexplored in the utilization of
raw EEG signals, which contain more temporal information but present
a significant challenge due to their abundance of redundant data and
susceptibility to contamination from other physiological signals, such
as electrooculography (EOG) and electromyography (EMG). To cope
with the high dimensionality and noise interference in end-to-end EEG-
based emotion recognition tasks, we introduce a Two-Stream Spectral-
Temporal Denoising Network (TS-STDN) which takes into account the
spectral and temporal aspects of EEG signals. Moreover, two U-net mod-
ules are adopted to reconstruct clean EEG signals in both spectral and
temporal domains while extracting discriminative features from noisy
data for classifying emotions. Extensive experiments are conducted on
two public datasets, SEED and SEED-IV, with the original EEG signals
and the noisy EEG signals contaminated by EMG signals. Compared to
the baselines, our TS-STDN model exhibits a notable improvement in
accuracy, demonstrating an increase of 6% and 8% on the clean data
and 11% and 10% on the noisy data, which shows the robustness of the
model.

Keywords: EEG · EMG · Emotion Recognition · End-to-end ·
Denoising · Robust Classification

1 Introduction

The rapid development of deep learning techniques opens up new possibilities for
brain-computer interfaces (BCI). Different from the BCI applications in helping
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a paralytic patient walk again [1], affective brain-computer interface (aBCI) is
aiming to detect, analyze, and respond to human emotions. Emotions are essen-
tial in our daily lives and influence our behaviors and mental states consciously
or unconsciously.

In recent decades, EEG-based emotion recognition has obtained great interest
due to the reason that EEG signals are inherently correlated to brain activity [2].
The previous EEG-based emotion recognition studies are almost based on man-
ually extracted features, e.g., power spectral density (PSD) [10] and differential
entropy (DE) features [14]. Significant progress has been achieved by using these
handcrafted features [10,17]. However, they could be biased in specific domains
and ignore rich information in the temporal domain. To fully excavate emotion-
related information in raw EEG signals and eliminate the complicated process
of handcrafted feature extraction, end-to-end models are promising approaches.

Basically, there are two types of BCIs for EEG recordings: the invasive BCIs
[1] and the non-invasive BCIs [10]. The non-invasive BCIs are used more widely
in research and treatments due to their hurtlessness and safety. However, EEG
signals acquired by the non-invasive BCI are more easily contaminated by other
physiological signals such as EMG caused by facial muscle movements, especially
when some patients are unable to control muscle movements because of their
illnesses [3]. Figure 1 shows the influence of an EMG signal on clean EEG data.
It can be seen that the clean EEG signal is almost destroyed by the EMG signal.
The presence of noise interference presents formidable challenges in the realm
of end-to-end EEG-based emotion recognition. Thus, it is important to design
better end-to-end denoising neural networks.
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Fig. 1. Examples of a raw EEG segment and EMG interference

For end-to-end EEG-based emotion recognition, lots of endeavors have been
made in the past few years. EEGnet [9] is a compact convolutional neural network
(CNN) designed for EEG-based BCI to extract features from raw EEG signals.
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To detect the valance and arousal levels, an end-to-end regional-asymmetric
CNN was proposed and achieved an accuracy of over 95%, which was better than
other methods using handcrafted features [16]. After that, Tao et.al. improved
the accuracies to over 97% by an attention-based convolutional recurrent neural
network (ACRNN) network on the same tasks [15]. These achievements show
the superiority of end-to-end emotion recognition.

Deep learning methods have been proven to be effective in the denoising of
EEG signals, which can learn the neural oscillations in EEG for eliminating noise
from other artifacts. A benchmark dataset called EEGdenoiseNet was proposed
for the research of EEG denoising [8]. However, it focuses on the EEG denoising
task and not considering other EEG-based tasks.

To the best of our knowledge, addressing the processing of noisy data in
the domain of end-to-end EEG-based emotion recognition remains largely unex-
plored. In this paper, we pioneerly introduce a novel Two-Stream Spectral-
Temporal Denoising Network to achieve robust classification against EMG inter-
ference. An EEG noise-adding approach is proposed to simulate real-world mus-
cle artifacts. Comprehensive experiments are conducted to test the proposed
TS-STDN model in the cases of using clean data and EMG-contaminated data,
respectively. Experimental results demonstrate the outperforming ability of our
TS-STDN model in robust recognition. The code of our model and the noise-
adding approach is published in https://github.com/XuanhaoLiu/TS-STDN.

2 Methodology

2.1 Data Preprocessing

Data Augmentation. The raw EEG signals with H Hz sampling frequency
and duration Tall of a subject are denoted as Xall = [Xtrain,Xtest] ∈ R

M×C×L,
where M , C, and L is the number of trials, EEG channels, and sample points,
respectively. One EEG trial Xs ∈ R

C×L is segmented into several slices S =
{S1, S2, . . . , Sn} by sliding window, where slices Si(i = 1, 2, . . . , n) ∈ R

C×T . Due
to the reason that the lengths of the EMG segments in EEGdenoiseNet are 2 s,
we employ a 2-s sliding window with an overlap of 1-s for data augmentation.
Hence, in this paper, we set H = 200 and T = 400.

Noisy Data Generation. The strategy for generating noisy data is to simulate
real situations as much as possible. By carefully scanning a large amount of EEG
records in the SEED dataset, we conclude that the brain areas which are prone
to be disturbed by EMG signals are mainly distributed in the temporal areas
on both sides of the scalp, while the frontal area and occipital area are less
likely to be impacted. The influence of EMG signals is often asymmetric on
the cortex as human muscle movements are not always symmetrical. Moreover,
it cannot be ignored that individual differences are significant among different
subjects. Based on the observation, forty electrodes that are easily affected by
EMG signals are selected. The ten EMG groups are shown in Fig. 2, each group

https://github.com/XuanhaoLiu/TS-STDN
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Fig. 2. The ten EMG noise-adding groups of electrodes, electrodes with the same color
are in a group.

has four electrodes. We divided the forty electrodes into ten groups and for each
particular EEG slice Si, six out of ten groups are chosen randomly to be added
the same EMG signals with a constant signal-noise ratio (SNR) calculated by
Eq. (1), while there is no noise added to the remaining four groups. Notably,
the EMG signals added to each EEG slice are selected randomly as well. The
randomness creates asymmetry and individual differences in an easy way.

Let x ∈ R
T denotes a single channel of EEG signals, and z ∈ R

T denotes
EMG signals, we generate noisy data by linearly combining x and λ times z with
a constant SNR.

SNR = 10 log
RMS(x)

RMS(λ · z)
, (1)

in which the RMS stands for root mean squared (RMS). Let S =
{S1,S2, . . . ,Sn}, where slices Si(i = 1, 2, . . . , n) ∈ R

C×T , denotes the noisy
slices generated by the strategy we propose in this paper.

2.2 Two-Stream Spectral-Temporal Denoising Network

Inspired by the two-stream network for action recognition in videos [6], we pro-
pose a novel two-stream spectral-temporal denoising network with self-attention
to fully excavate the emotional information from spectral and temporal aspects
of EEG signals. Figure 3 illustrates the overall architecture of the two-stream
spectral-temporal denoising network. The input noisy data are passed to both
of the streams, which extract the temporal and spectral features, respectively.
Meanwhile, two U-net networks [5] are employed to reconstruct the clean EEG
signals in the temporal and spectral domains. After that, the features extracted
by the CNN are concatenated and fed into an LSTM network [12]. Finally, all
features are multiplied by the weight calculated with the self-attention module
and classified by a linear layer to predict emotions.
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Fig. 3. Two-Stream Spectral-Temporal Denoising Network

Short Time Fourier Transform. To fully consider both the spectral and
temporal information of EEG signals, short time Fourier transform (STFT) is
utilized for extracting spectral information:

STFT (x, t) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2πfτdτ, (2)

in which h is the window function. Let the S̃′ = {S̃′
1, S̃

′
2, . . . , S̃

′
n} denotes the

slices after STFT. For the purpose of balancing the size of two streams in our
TS-STDN model, we elaborately choose the parameter of STFT to make the
size of S̃′ approximately equal to raw EEG slices S.

Spectral and Temporal U-Net. By carefully setting the parameter of the
STFT function, the slices S̃ are similar in size to S. Consequently, the spectral
U-net and temporal U-net are designed to have the same structure symmetrically
for balancing the stream scale and improving parallel performance. A batch of
noisy EEG slices Sb ∈ R

B×C×T is fed in the TS-STDN, where B is the size of
each batch. During the training stage, the clean EEG batches Sb corresponding
to the input noisy data Sb are used for training the denoising ability of TS-STDN.
While at the testing stage, no clean data are available to our model.

The U-nets [5] can be regarded as encoder-decoder structures using several
down or up units with shortcut concatenation, where each unit consists of a 1-D
convolutional layer and an average pooling layer or an upsampling layer. The
convolutional layers keep the length of the input and output tensors consistent by
padding but change the channel numbers simultaneously. The lengths of tensors
are doubled up by the upsampling layer, or reduced by half by the average
pooling layer with a kernel of size (1,2).
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We only introduce the temporal U-net due to the symmetry. Firstly, the input
batch Sb is transformed to S′

b ∈ R
B×1×C×T for subsequent calculating. Let σ()

denote the exponential linear unit (ELU) activation function ELU(), and BN()
stands for the batch normalization. Consequently, the outputs of down1 and
down2 are:

Xd1 = AvgPool(σ(BN(Convd1(S′
b)))) ∈ R

B×2×C×(T/2), (3)

Xd2 = AvgPool(σ(BN(Convd2(Xd1)))) ∈ R
B×4×C×(T/4). (4)

The up1 and up2 units are designed to reduce half of the channel number but
double the length of the input tensor by replacing the average pooling layer with
an upsampling layer in the down units. Consequently, the outputs of up1 and
up2 are calculated as:

Xu2 = σ(BN(Convu2(Upsample(Xd2)))) ∈ R
B×2×C×(T/2), (5)

Xu1 = σ(BN(Convu1(Upsample(Concat(Xu2,Xd1))))) ∈ R
B×2×C×T . (6)

Afterward, the output of up1 Xu1 concatenated with the input noisy data
S′

b is fed into the decoder, whose output has the same shape of tensor S′
b. The

decoder has two convolutional layers to better reconstruct the clean EEG signals
without EMG interference Ŝb. The reconstructed data Ŝb is used to compute the
Mean-Squared Loss (MSE) loss with the clean data Sb:

Ltemporal = MSELoss(Ŝb, Sb). (7)

Same to the reconstruction loss in the temporal domain, the reconstruction loss
of spectral signals is calculated by:

Lspectral = MSELoss( ˆ̃Sb, S̃b). (8)

Depthwise CNN and Feature Level CNN & RNN. Inspired by the Xcep-
tion [7], a depthwise CNN with a kernel size of (C, 1) is employed for aggregating
the spatial information between EEG channels. Let D denotes the depth multi-
plier number, the output of the depthwise CNN is:

XD = AvgPool(σ(BN(ConvD(Xd2)))) ∈ R
B×4D×1×(T/8). (9)

The feature level CNN is utilized to compress temporal information. Let Ft

and Fs denote the filter numbers of the feature level CNN in the temporal and
spectral streams, the output of the feature level CNN is:

XFs/t
= AvgPool(σ(BN(ConvF (X̃D/XD)))) ∈ R

B×Fs/t×1×(T/32). (10)

An LSTM network is adopted for the spectral and temporal information
fusion. The output of the feature level CNN of both streams XFs

and XFt
are

reshaped, concatenated and linearly embedded to XF ∈ R
B×(Fs+Ft)×d, where

d is the embedding dimension. As the LSTM is a seq2seq model, the XF is
transformed to XL ∈ R

B×(Fs+Ft)×d by regarding each feature as a token of d
dimension.
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Self-Attention Alignment Weight. After extracting the spatial, spectral,
and temporal information through two-stream U-net, CNN, and LSTM, the
output tensor XL is highly semantic and discriminative. However, some of the
Fa = Fs + Ft features are not closely related to human emotions. Hence, a
self-attention module [4] is utilized for concentrating on the features mostly
related to emotions. The alignment weight is calculated from the average of each
feature with two linear layers activated by the tanh() function. Let Xa ∈ R

B×Fa

denotes the average tensor of XL. The first dimensionality-reduction layer has
a parameter W1 ∈ R

Fa×dr and a bias b1 ∈ R
dr , while the second dimensionality

increasing layer has a parameter W2 ∈ R
dr×Fa and a bias b2 ∈ R

Fa , where the
dr is the reduction dimension number. The alignment weight w is calculated by:

w = softmax(W2 · (tanh(W1 · Xa + b1)) + b2) ∈ R
B×Fa . (11)

Finally, multiply each feature of XL by the corresponding coefficient in the
attention weights w to produce Xsa. Xsa is {w1x1, w2x2, w3x3, . . . , wFa

xFa
}.

Then, Xsa is flattened and fed into a linear classifier to get the final prediction
ŷ. The cross-entropy loss is applied to compute the classification loss:

Lcls = −
N∑

i=1

yi log ŷi , (12)

where y stands for the ground truth emotion label. Consequently, the entire
objective function is given as minimizing the linear combination of the classifi-
cation loss and reconstruction loss:

arg min
Θ

Lall = arg min
Θ

(Lcls + Lspectral + Ltemporal). (13)

3 Experiment

3.1 Dataset

SEED and SEED-IV. The SJTU Emotion EEG datasets are a series of
datasets that record the EEG signals of subjects while they are watching emo-
tion videos. The original SEED dataset [10] chooses fifteen Chinese film clips
in order to induce three target emotions: positive, neutral, and negative. The
SEED-IV dataset [11] contains four categories of emotion including happy, sad,
neutral, and fear. Seventy-two film clips are chosen as stimuli. The 62-channel
ESI NeuroScan System was employed to capture EEG signals in both datasets,
using the EEG cap with 62 channels positioned according to the international
10–20 system at 1000 Hz. All EEG signals are then downsampled to 200 Hz.

Specifically, for the SEED dataset, each recording contains fifteen trials of
EEG signals, we use the samples from the first nine clips as the training set
and the samples from the remaining six clips as the testing set. However, for
the SEED-IV dataset, the last eight clips are unequal in the number of emotion
types. Hence, we choose the two video clips that appear at the end of each session
for each emotion as the testing set, and the remaining sixteen clips compose the
training set.



Two-Stream Spectral-Temporal Denoising Network 193

EEGdenoiseNet. EEGdenoiseNet [8] is a benchmark dataset designed for the
purpose of training and evaluating deep learning denoising models. The dataset
consists of single-channel EEG, EOG, and EMG signals collected from diverse
publicly available datasets. To ensure the quality and reliability of the dataset,
rigorous preprocessing procedures are conducted on all physiological signals.
Notably, the signals are segmented into 2-second intervals and meticulously
examined by an expert to confirm their cleanliness and suitability for analy-
sis. There are 5598 pure EMG segments in EEGdenoiseNet, and as the original
EMG signals are 512 Hz, we downsampled them to 200 Hz to match the EEG
signals from SEED datasets.

3.2 Implementation Details

We compare our TS-STDN model with other end-to-end approaches including
LSTM [12], EEGnet [9], and ACRNN [15] under subject-dependent conditions.
In this paper, the number of EEG channels is C = 62, the sampling frequency
is H = 200 Hz, and the length of slices is T = 400. For the TS-STDN model,
the depth multiplier number D = 4, the filter number of the feature level CNN
of both streams are Fs = Ft = 16, and the embedding dimension d = 16. The
LSTM model regards the input EEG data as a sequence that contains T tokens,
each token is obtained by embedding a sample point in a 32-dim tensor through
two linear layers connected by a ReLU activation function. The hyperparameters
of the EEGnet model and ACRNN remain the same as those in the original
papers. All models are implemented by PyTorch [13] deep learning framework
and trained with Adam optimizer with a learning rate of η = 0.001 and a batch
size of B = 64.

3.3 Ablation Experiments

Ablation experiments are conducted by removing some modules to evaluate the
effectiveness of each module in our TS-STDN model. We design several variant
models as follows:

• Spectral DN: This model only contains the spectral stream of the TS-STDN.
• Temporal DN: This model only contains the temporal stream of the TS-

STDN.
• TS-STDN w/o SA: This model only removes the self-attention alignment

weight module.
• TS-STDN w/o MSE: This model is trained without using the reconstruction

MSE Loss computed with clean data in both spectral and temporal domains.

3.4 Results on Clean Data

We use the raw EEG signals without adding noise to evaluate the performance
of each model. Subject-dependent experiments on two public datasets SEED
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Table 1. The accuracies (Avg./Std.) of different methods on SEED and SEED-IV

Method SEED SEED-IV

Avg. (%) Std. (%) Avg. (%) Std. (%)

LSTM [12] 67.50 12.06 43.95 10.30

ACRNN [15] 57.37 10.93 40.19 07.27

EEGnet [9] 72.49 12.52 54.26 12.19

Spectral DN 76.88 09.89 54.90 11.01

Temporal DN 73.69 12.70 55.50 12.17

TS-STDN w/o SA 75.73 09.96 56.64 10.12

TS-STDN w/o MSE 76.93 10.98 58.84 12.11

TS-STDN 78.45 10.49 62.13 12.18

[10] and SEED-IV [11] demonstrates the outperforming performance of our TS-
STDN model, the classification accuracies are presented in Table 1. Remarkably,
our TS-STDN achieves the highest accuracies of 78.45% and 62.13% on the
SEED and SEED-IV datasets, respectively. It is worth noting that relying solely
on a single stream results in varying decreases in accuracy, which shows the
complementary properties of the temporal and spectral information. The Spec-
tral DN demonstrates better performance on the SEED dataset, whereas the
Temporal DN exhibits higher accuracy on the SEED-IV dataset. As a result, it
remains uncertain which stream holds greater importance over the other. With-
out employing the self-attention module, TS-STDN fails to extract the key fea-
tures closely related to emotions and has 3% and 6% reductions in accuracy. It
can be seen that the denoising U-net is still effective when processing clean data,
which can be regarded as an autoencoder.

The confusion matrices illustrating the classification performance of our TS-
STDN model on the SEED and SEED-IV datasets are presented in Fig. 4(a)
and (b). Regarding the SEED dataset, the positive emotion exhibits the highest
accuracy, whereas classifying the negative emotion proves to be notably chal-
lenging. In contrast, for the SEED-IV dataset, the accuracies for all emotions
are relatively similar to each other.
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Table 2. The average accuracies (%) of different methods on the SEED dataset under
varying levels of EMG interference.

Method The SNR of contaminated EEG Avg

−6 db −7 db −8 db −9 db −10 db −11 db

LSTM [12] 51.95 55.22 55.02 48.57 48.74 48.57 51.34

ACRNN [15] 48.30 49.68 49.30 47.05 47.43 46.90 48.11

EEGnet [9] 57.32 59.63 59.08 54.52 53.67 54.19 56.40

Spectral DN 65.51 68.26 68.10 63.23 62.58 63.83 65.25

Temporal DN 64.79 67.89 66.77 61.29 61.24 63.05 64.17

TS-STDN w/o SA 64.62 68.58 68.94 64.08 63.64 64.05 65.65

TS-STDN w/o MSE 65.50 68.36 68.72 61.26 61.00 61.03 64.31

TS-STDN 67.81 70.38 71.03 65.27 64.79 64.67 67.33

3.5 Results on Noisy Data

To fully investigate the robustness of our TS-STDN model against the interfer-
ence of EMG signals, we tested our model under conditions where the raw EEG
signals are contaminated by EMG signals with varying signal-to-noise ratios.
The clean EEG data are from the SEED dataset [10] and the SEED-IV dataset
[11], while the EMG data are from the EEGdenoiseNet dataset [8]. Specifically,
we conducted our experiment on noisy data with SNR from −6 dB to −11 dB,
simulating the disturbance from relatively moderate to extremely intense. The
SNR is calculated by the Eq. (1). For fairness, all methods are tested on the
same noisy data which had been generated before evaluation.

Table 2 and Table 3 display the results of each model under various noise
intensity conditions on the noisy SEED and SEED-IV datasets, respectively. It
can be seen that our TS-STDN model acquires the best classification accuracies
under all conditions, exhibiting an increase of about 11% to the EEGnet on the
SEED dataset, and 10% on the SEED-IV dataset to the EEGnet. All baseline
models, which possess no denoising modules, perform worse when processing
contaminated EEG. The Spectral DN model shows better performance than the
Temporal DN model when facing noisy data on both datasets, suggesting that
spectral information is more robust to EMG interference. Through the observa-
tion of reduced accuracy on both datasets of the TS-STDN w/o SA model, it is
evident that the self-attention module remains effective when facing noisy EEG
data. It is worth noting that by employing reconstruction loss, our TS-STDN
model exhibits a notable improvement in accuracy, demonstrating an increase
of 3% on the SEED dataset and 7% on the SEED-IV dataset to the TS-STDN
w/o MSE model, which proves the effectiveness of the reconstruction module.
Moreover, compared to the improvement of the reconstruction module on the
clean data, which are 2% and 4% on two datasets, we find the reconstruction
module is more suitable for denoising. The average confusion matrices of our
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TS-STDN model on noisy datasets are depicted in Fig. 4(c) and (d). All emotion
classification accuracies are influenced by EMG disturbance.

Table 3. The average accuracies (%) of different methods on the SEED-IV dataset
under varying levels of EMG interference.

Method The SNR of contaminated EEG Avg

−6 db −7 db −8 db −9 db −10 db −11 db

LSTM [12] 33.64 33.33 33.63 33.61 33.48 33.22 33.48

ACRNN [15] 37.40 37.67 37.36 37.72 37.35 37.00 37.42

EEGnet [9] 42.57 42.86 42.41 42.83 42.07 41.98 42.46

Spectral DN 48.93 49.11 48.21 49.03 49.51 48.73 48.92

Temporal DN 46.21 45.13 45.22 45.34 46.02 45.72 45.61

TS-STDN w/o SA 50.12 49.15 49.15 49.34 50.31 49.66 49.62

TS-STDN w/o MSE 45.09 44.80 45.73 44.85 45.79 45.07 45.22

TS-STDN 52.17 52.40 52.84 52.25 52.33 51.92 52.32

4 Conclusion

In this paper, we introduce a novel Two-Stream Spectral-Temporal Denoising
Network to thoroughly exploit emotion-related features from both spectral and
temporal views in contaminated EEG signals while learning the ability to elim-
inate noise interference. The TS-STDN model acquires the denoising capabil-
ity by reconstructing clean EEG signals using U-net architectures, which can
be seen as a denoising autoencoder. To simulate the real-world EMG distur-
bance on EEG signals, we propose a random algorithm for EMG noise adding
in the raw EEG recordings. The experimental results demonstrate that the TS-
STDN model performs the best on both clean and contaminated data, and is
robust when facing extremely intense noise interference. The source code of
the noisy data production and TS-STDN model implementation is shared in
https://github.com/XuanhaoLiu/TS-STDN.
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