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ABSTRACT

Multimodal emotion recognition based on electroencephalog-
raphy (EEG) and eye movements has attracted increasing
attention due to their high performance and complementary
properties. However, there are two challenges that hinder
its practical applications: the inconvenient EEG data collec-
tion and high-cost data annotation. In contrast, eye move-
ments are convenient to obtain and process in real scenarios.
To combine high performance of EEG and easy setups of
eye tracking, we propose a novel EEG-assisted Contrastive
Learning Framework with a Functional Emotion Transformer
(ECO-FET) for cross-modal emotion recognition. ECO-
FET leverages both the functional brain connectivity and
the spectral-spatial-temporal domain of EEG signals simul-
taneously, which dramatically benefit the learning of eye
movements. The whole process consists of three phases:
pre-training, test, and fine-tuning. ECO-FET exploits the
complementary information provided by multiple modalities
during pre-training in order to improve the performance of
unimodal models. In the pre-training phase, unlabeled EEG
and eye movement data are fed into the model to contrastively
learn the emotional latent representations between the two
modalities, while in the test phase, eye movements and few
labeled EEG samples are used to predict different emotions.
Experimental results on three public datasets demonstrate
that ECO-FET surpasses the state-of-the-art dramatically.

Index Terms— EEG, eye movement, cross-modal emo-
tion recognition

1. INTRODUCTION

EEG is considered reliable in emotion recognition tasks since
it reflects the internal physiological responses and has strong
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objectivity [1]. Nevertheless, single modalities usually have
limited generalization and robustness [2]. To improve perfor-
mance, researchers have been working on multimodal emo-
tion recognition, which takes advantage of complementary
information across different modalities such as EEG and eye
movements [3, 4]. They also found that EEG has a better
ability to recognize emotions than eye movements [5]. How-
ever, there are two challenges in deploying such multimodal
systems in real scenarios. The first one is the collection of
EEG data, which takes time and efforts to set up due to the
inconvenience of using EEG electrode caps. The other one is
data annotation. Emotion is complex, subjective, and contin-
uous state. Data annotation usually requires many efforts and
sophisticated experimental designs.

In contrast with EEG, eye movements are relatively easy
to acquire in practical scenarios. The dependence on EEG
can be reduced if we can figure out a method that utilizes
EEG to help eye movements decode emotions during the
training phase. Jiang et al. first applied a cross-modal trans-
fer method, which regressed eye movements into multimodal
features [6]. Yan et al. improved this approach by directly
generating multimodal features from eye movements [7].
However, all of these approaches require accurate labels for
cross-modal learning. In addition, since EEG signals are
more complicated than eye movements, how to process the
spectral-spatial-temporal domain of EEG signals effectively
remains a challenging problem.

Recent progresses in contrastive learning [8, 9, 10] pro-
vide a new insight to deal with cross-modal learning. Inspired
by these works, we propose a novel EEG-assisted cross-
modal contrastive learning framework with a Functional
Emotion Transformer which contrastively learns the emo-
tional latent representations and transfers knowledge between
EEG and eye movements in a self-supervised way. In the
test phase, only eye movements are fed into the model to get
the predicted emotions. To evaluate the effectiveness of our
proposed ECO-FET, we conduct experiments on three public
datasets. Experimental results demonstrate that our self-
supervised approach achieves comparable performance with
some supervised baselines. When we use the labeled data
to fine-tune the pre-trained model, ECO-FET can drastically
outperform the state-of-the-art. Therefore, our framework
can leverage the high performance of multiple modalities and
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Fig. 1. Illustration of the pre-training, test processes and the spatial attention mechanism in the proposed ECO-FET.

easy setups of specific modalities when deployed.

2. METHODOLOGY

2.1. Overview

The proposed framework ECO-FET contains three processes:
pre-training, test, and fine-tuning, as shown in Figure 1. The
pre-training process is to minimize the distances of positive
sample pairs while maximizing those of negative sample
pairs. There can be more than one category of emotions stim-
ulated during a video clip and even if there is only one type,
the arousal of this emotion may vary over time. Therefore,
only multimodal samples from the same time step have the
same emotional state. Based on these considerations, we treat
the EEG and eye movement pairs from the same time step
as positive pairs while pairs in different time steps are nega-
tive. By this means the model is anticipated to excavate the
emotion-related information that exists in both modalities.

2.2. Functional Emotion Transformer

Compared with eye movements, EEG signals have more com-
plicated information and higher spatial-temporal resolution.
Hence, a powerful backbone that can effectively decode emo-
tions from EEG is urgently needed. We adapt the Functional
Emotion Transformer (FET) and a critical subnetwork selec-
tion approach for self-supervised pre-training to incorporate
functional brain connectivity (FBC) into FET [11, 12]. Note
that for eye movements, we just use the vanilla Transformer
as the backbone.
Functional Brain Connectivity We extract FBC M1 and M2

from the Pearson’s correlation coefficient (temporal domain)
and spectral coherence matrices (spectral domain) respec-
tively, as shown in Figure 1(c) and Algorithm 1. We make
two significant improvements. First, as ECO-FET is a self-
supervised algorithm, labels are not allowed to use in the
pre-training process. So, the correlation/coherence matrix
is averaged over the same clip instead of the same label.

Algorithm 1: The calculation of the functional brain
connectivity (FBC)

Input: Preprocessed EEG signals Xpre, the number of clips in the training
set Nc, the number of frequency band Nf and threshold t.

Output: FBC M .
1 Get correlation/coherence matrix Xco from Xpre;
2 M ← zeros(62, 62);
3 for i← 1 to Nc do
4 for j ← 1 to Nf do
5 Average the correlation or coherence matrices over the same clip:

Aij ← mean(Xij
co);

6 Sort the absolute values in the upper triangular position of Aij :
Aij

∗ ← sort(abs(triu(Aij)));
7 Get the index of the first t percentage of values in Aij

∗ :
Iij ← index(Aij

∗ , t);
8 M [Iij ]←M [Iij ] + 1;
9 end

10 end
11 M ← normalize(M);

Return: M

Second, we take the degree of importance (the number of
occurrences) of these connections into consideration.
Spatial and Temporal Attention We formulate the EEG in-
put as X ∈ RNe×Ds , where Ne is the number of electrodes
and Ds is the dimension of the spectral feature. The spatial at-
tention layer applies self-attention mechanism among all the
electrodes. If we solely apply the attention mechanism, the
structural information between electrodes depends only on
their semantic similarity while ignoring the structural prior
itself. Thus, the correlation or coherence FBC Mi is added to
attention attention matrix of different heads according to the
following formula:

Ai = softmax(
QiK

T
i√

Datt

+Mi)Vi, (1)

where Qi,Ki,Ki ∈ RDs×Datt . Subsequently, the tempo-
ral attention layer is designed to make use of the continu-
ous feature sequence for context learning.We denote Xj

eeg ∈
RS×Deeg as the input sequence, where S is the time window
size and Deeg = NeDs and j means the j-th sequence. The
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temporal attention is calculated as the standard self-attention
[13].

2.3. The Self-supervised Pre-training Process

Encoders and the Contrastive Loss Assume that the batch
size is N . We have N positive EEG and eye movement pairs
and N2 − N negative pairs. Let Xeeg ∈ RN×S×Deeg repre-
sent the EEG input and Xeye ∈ RN×S×Deye denotes the eye
movement input. Xeeg and Xeye are projected into a common
embedding space through the following equation.

Xg
eeg = fPeeg (fave(fEeeg (Xeeg))), (2)

where Xg
eeg ∈ RN×Df . fEeeg

and fEeye
are encoder s of

EEG and eye movements respectively, which have leeg and
leye blocks. fave is the average pooling layer which average
the features across the time window dimension S. fPeeg

and
fPeye

are the projection heads. Similarly, we can get Xg
eye.

Xg
eeg and Xg

eye are conveyed to the InfoNCE loss [14] is uti-
lized to get the global contextual contrastive loss Lg

contra.
The global contextual contrastive loss focuses on optimiz-

ing the distances across the whole sequences of time win-
dows. Nevertheless, it ignores the local features between indi-
vidual samples, which differ in arousal even within the same
time window. These inter-sample differences are beneficial
for the emotional model learning. Therefore, we compute the
local features as follow:

X l
eeg = fPeeg

(ffla(fEeeg
(Xeeg))), (3)

where X l
eeg ∈ R(NS)×Df . ffla is the flatten layer to convert

the dimensions of features to (NS)×Deeg and (NS)×Deye.
Similar as Lg

contra, the local contrastive loss Ll
contra is com-

puted using X l
eeg and X l

eye.
Decoder and the Reconstructed Loss It is believed that EEG
data has more valuable emotion-related information [15], so
we want the encoder of eye movements fEeye to learn as
much key information of EEG data as possible during pre-
training. Based on this consideration, we add an EEG de-
coder fDeeg

and compute the reconstructed loss to restrict the
EEG encoder fEeeg to remain the core information of EEG
data. Since we expect some beneficial changes in the encoder
of eye movements, this restriction is not applied to the eye
movement encoder. The decoder fDeeg

has similar structure
with the encoders fEeeg

and fEeye
, i.e., leeg FET blocks. The

decoder output Xo
eeg is computed as

Xo
eeg = fDeeg

(fEeeg
(Xeeg)). (4)

Finally, the decoder output and the EEG initial input are
utilized to calculate the MSE (Mean-Squared) loss:

Lrecon = ∥Xo
eeg −Xeeg∥2. (5)

The total loss is the weighted sum of the above losses:

L = Lg
contra + αLl

contra + βLrecon, (6)

where α and β are the trade-offs.

2.4. Test Process of the pre-training process

Figure 1(b) illustrates the test process in which only one new
eye movement sample is taken as an example. Assume that
the number of emotion labels is C. We randomly select C ex-
isting EEG samples with different labels C1, C2, ..., Cc. The
new eye movement sample Xt

eye ∈ R1×Deye and the C se-
lected EEG samples denoted as Xt

eeg ∈ RC×Deeg are then
passed through the same pre-trained model introduced above.
The calculation of embedding features Xc

eeg ∈ RC×Df is
similar as equation 3 but the input is Xt

eeg . Xc
eye ∈ R1×Df is

obtained similarly.
The cosine similarity between the embedding of the new

eye movement sample Xc
eye and those of EEG samples Xc

eeg

is then calculated. The greater the similarity, the more likely
the categories of these two kinds of samples from different
modalities are the same. Therefore, we assign the label of
EEG sample which achieves the largest similarity value to this
new eye movement sample.

2.5. Fine-tuning Process

The fine-tuning process simplifies the emotion recognition
procedure by discarding EEG, i.e., we only utilize the eye
movement data as input. The fine-tuning process follow the
conventional supervised learning paradigms. we employ the
trained eye movement encoder and a classifier, i.e., l′ trans-
former blocks with a full-connected layer and a softmax acti-
vation function. In order to retain the beneficial information
learned from EEG in the contrastive pre-training, we freeze
the encoder and only tune the classification block. The cross-
entropy loss is employed.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

We comprehensively evaluate the performance of our frame-
work on a series of three public multimodal emotion recogni-
tion datasets, SEED [16], SEED-IV [17], and SEED-V [18]
with 3, 4 and 5 emotions, respectively. For EEG, we use the
310-dimension differential entropy (DE) feature as in [16, 19]
and for eye movement, 33 features are calculated as in [17].
The data division is the same for all the employed methods as
in [7].

The threshold t is set to 0.2. The number of FET blocks
leeg and leye is 2 and 3, respectively, while l′ in the classifi-
cation block is set to 1. The dimension Datt and the hidden
dimension in feed forward block are tuned from the combi-
nation of {(128, 32), (64, 16), (128, 16)}, where the former
number in the parentheses represents the dimension of EEG
and the latter represents that of eye movement. For the pro-
jection head in the pre-training process, the dimension of the
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Table 1. The accuracies (Avg./Std.) of different methods on
three datasets. PT denotes pre-train and FT denotes fine-tune.

Method SEED SEED-IV SEED-V

BDAE-regressor [6] 75.72/08.87 73.49/07.02 72.80/05.07
BDAE-cGAN [7] 81.02/08.04 75.74/06.66 73.66/06.05
ECO-Transformer (PT) 77.03/09.80 66.71/10.53 57.50/04.19
ECO-Transformer (FT) 90.39/10.38 82.41/10.80 76.80/05.79

ECO-FET (PT) 83.35/07.98 69.57/14.02 59.48/04.05
ECO-FET (FT) 93.69/08.22 87.76/09.19 77.13/04.16

w/o FBC (PT) 82.61/08.38 69.22/13.54 58.84/04.68
w/o FBC (FT) 92.32/09.36 86.71/09.67 76.95/05.19
w/o Decoder (PT) 80.57/09.70 67.99/12.63 58.02/04.05
w/o Decoder (FT) 93.20/09.18 87.04/09.56 74.71/04.63
w/o local (PT) 81.91/08.74 68.19/12.96 57.60/03.52
w/o local (FT) 91.53/10.52 86.66/09.41 75.62/06.44

Scratch 86.06/10.99 78.16/12.00 71.74/05.94

common embedding space Df is set to 16. The learning rate
is set to 0.0001 or 0.001 while the batch size is 32. The co-
efficients α and β are tuned from set {0.1, 0.01}. The Adam
optimizer is applied.

3.2. Experimental Results

To validate the performance of ECO-FET, we consider several
typical cross-modal methods. Average accuracies and stan-
dard deviations are listed in Table 1. Note that BDAE-cGAN
is the state-of-the-art cross-modal method. We replace FET
with Transformer as the EEG backbone and discard the local
contrastive loss to testify the performance of pure contrastive
learning framework, denoted as ECO-Transformer.

As shown in Table 1, without any information from emo-
tion labels in the training process, our pre-trained model
achieves comparable performance compared with the single-
modal supervised baseline method using eye movement sig-
nals in the first line. ECO-FET even surpasses the supervised
baseline on SEED. When labeled data are available, ECO-
FET can be easily fine-tuned to obtain more excellent clas-
sification accuracies, as suggested in the last row of Table 1.
Our model has a huge advantage of over 12%, 12%, and 3%
on SEED, SEED-IV, and SEED-V, compared with BDAE-
cGAN. The quantitative comparison reflects the superiority
of our cross-modal framework in decoding emotions from eye
movements. Compared with ECO-Transformer, ECO-FET
has a better performance in both pre-training and fine-tuning.
The interesting results indicate that a powerful EEG feature
extractor can also facilitate the learning of eye movements.
Effectiveness of Pre-training We train the whole encoder
of eye movements and the classifier from scratch to com-
pare performance with the fine-tuned model. The results are
presented in Table 1. The accuracies are enhanced by ap-
proximately 6% to 9% on the three datasets. Meanwhile,
the smaller standard deviations also substantiate that the fine-
tuned model is more robust and stable. Therefore, we can de-
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Fig. 2. Fine-tuning on different amount of labeled data.

duce that the contrastive learning framework does enable eye
movements to extract emotional latent representations with
the help of EEG at training time.
Ablation Study We conduct ablation study to verify the ef-
fectiveness of different components of ECO-FET. Results
are presented in Table 1. We remove the functional brain
connectivity from FET and observe a decrease in accuracies,
which demonstrates the importance of exploring functional
brain connectivity in our model. In the pre-training process,
we add a decoder for EEG signals aiming to keep the EEG
information through the MSE loss. With the decoder, the
accuracies of the pre-training model with the decoder are
increased for all datasets, which demonstrates its effective-
ness. Besides, we experimentally verify whether the local
contrastive loss works. When we do not employ the local
contrastive loss, the accuracies drop by 1% to 2%. These
results prove the effectiveness of the local contrastive loss.
Fine-tuning with Partial Labeled Data We investigate the
performance of our ECO-FET when there are fewer labeled
data since it’s common that in real life labeled data are lim-
ited. Experimental results are depicted in Figure 2. Note that
we utilize different numbers of video clips such that each
proportion contains all categories of emotions. The accura-
cies rise as expected when used labeled data get more and
more. Compared with BDAE-cGAN, ECO-FET gets compa-
rable accuracies only using about 50% labeled training data
on SEED-V. Furthermore, our framework surpasses BDAE-
cGAN with 25% labeled data on SEED-IV, and even acquires
a better performance without any labeled data on SEED,
which brings emotion recognition a step closer to practical
application.

4. CONCLUSIONS

In this paper, we propose a self-supervised method called
ECO-FET based on contrastive learning for cross-modal emo-
tion recognition. This model offers a potential solution to im-
prove the emotion classification performance of an easy setup
but weaker modality by exploiting a stronger modality.
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