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ABSTRACT

Electroencephalogram (EEG) classification tasks have re-
ceived increasing attention because its high application value.
Meanwhile, the great success of general pre-training models
in language processing areas inspires us to excavate the po-
tential of an EEG pre-trained model. This model is expected
to adapt to diverse downstream tasks. However, current
studies either ignore the temporal or spatial domain in EEG
signals, or only use single datasets in pre-training. The pro-
posed Temporal-Spatial Prediction (TSP) model effectively
solve these issues. Specifically, the output of the TSP en-
coder serves as the input of two tasks: spatial prediction,
i.e., masked autoencoder, and temporal prediction, i.e, con-
trastive predictive coding. In addition, in order to provide
more diverse information and thus benefit the downstream
fine-tuning, we pre-train TSP on six large EEG datasets with
four different numbers of channels. Results on three public
downstream datasets SEED, SEED-IV, TUEV demonstrate
that TSP achieves the state-of-the-art performance on differ-
ent EEG classification tasks. In addition, according to the
ablation experiments, TSP performs better than the single-
domain method, i.e. Temporal Prediction (TP) model and
Spatial Prediction (SP) model.

Index Terms— EEG, Self-supervised Learning, Emotion
Recognition, Transformer, CNN

1. INTRODUCTION

As an indispensable part of Brain Computer Interface (BCI),
EEG plays an essential role in many fields such as depression
diagnosis, emotion recognition and so on. However, for an
extended period, these areas have progressed separately with
inadequate integration. Given that large general language or
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vision models have achieved great success. The demand of a
general EEG self-supervised model has emerged. By excavat-
ing information from numerous EEG signals without the need
of labels at scale, this kind of model is expected to learn a gen-
eralized representation that can adapt to diverse downstream
tasks regardless of the EEG recording devices, the number of
EEG channels and EEG sampling rates of different tasks. The
central problem of it lies on the design of pre-training tasks.

Some approaches focus on the temporal information. For
example, Contrastive Predictive Coding (CPC) provides an
effective way to predict features in future timesteps [1]. How-
ever, the CPC-based methods only focus on temporal domain
and fail to integrate spatial or frequency information. Some
studies focus on spatial domain. Li et al [2] adapted masked
autoencoder (MAE) [3] for masked channel predicting but
failed to predict time information.

Biosignal Transformer (BIOT) [4] cleverly flattens the
time and channel dimensions as a series of sequences and
convey them to Transformer, through which BIOT is able
to deal with different number of channels or time steps. In
BIOT, the same processing strategy is used for both chan-
nel and time. It is indeed a feasible and effective direction.
However, Considering that EEG signal has spatial smearing
characteristic [5] ,i.e. adjacent channels contain similar infor-
mation and EEG signals are non-stationary, the inter-channel
characteristics and inter-time characteristics are apparently
different. This prompts us to consider whether we ought to
use different strategies for the two domains.

Therefore, we propose the Temporal-Spatial prediction
(TSP) algorithm. TSP effectively solves the following prob-
lems: 1) TSP can adapt to different EEG recording devices
and number of channels, which means TSP is able to be fine-
tuned on different downstream tasks. This places high de-
mands not only on the model structure but also on the pre-
training data as the pre-training data needs to include as many
kinds of EEG recording devices as possible. 2) TSP takes
both time and spatial (channel) information into considera-
tion, i.e., CPC for time prediction and MAE for spatial pre-
diction, which is proved to have improved performance on
three public datasets.
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2. METHODOLOGY

2.1. Overview

We design the Temporal-Spatial prediction (TSP) based on
spatial masked autoencoder and temporal contrastive predic-
tive coding. The illustration of TSP pre-training is shown in
Figure 1. We formulate the input signal as X ∈ RC×T , where
C represents the number of channels and T is the number
of samples in time series. We first randomly mask and re-
move some channels of X with variable masking ratios to get
Xv ∈ RCv×T , where Cv is the number of visible channels.
Then we divided Xv into two part in chronological order: past
signal Xp

v ∈ RCv×Tp and future signal Xf
v ∈ RCv×Tf , where

Tp and Tf are the number of samples in past and future time
series, respectively. The past visible signal Xp

v is conveyed
to an encoder to get the embedding Ep

v ∈ RCv×De , where
De is the embedding dimension of the encoder. Ep

v serves as
the input of two different tasks: a decoder of spatial MAE to
predict the BIOT embedding of Xm ∈ RCm×Tp , where Cm

is the number of masked channels and a temporal CPC to pre-
dict the BIOT embedding of future signal Xf

v . Note that only
the encoder is utilized in fine-tuning process. By combing the
spatial and temporal prediction, we aim to pre-train a strong
encoder that is able to deal with variable sampling rates, num-
ber of channels or time steps.
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Fig. 1. Illustration of TSP structure.

Data Preprocessing: EEG signals from multiple datasets
are first resampled to 200 Hz. Then a 0-75 Hz band-pass filter

is applied. As in BIOT, we also normalize each channel by
the 95-percentile of its absolute amplitude.

Random Masking: As mentioned above, EEG signals
have spatial smearing characteristic, which means adjacent
channels contain similar information. Masked channels can
be easily recovered from neighboring channels, leading in-
sufficient training of encoder. Image MAE encountered the
same problem and solved it by a simple trick: a high mask
rate. Gaining experience from it, we set a relatively high low-
est mask rate, i.e., 0.5. Meanwhile, to avoid excessive hyper-
parameter selection and encourage the model to handle more
diverse situations, we employ variable masking ratios from
0.5 to 0.9 for different batches as in the work [6]. Specifi-
cally, a Gaussian distribution N (0.55, 0.252) with truncated
interval (0.5, 0.9) is applied.

BIOT Embedding: BIOT embeds the Short Time Fourier
Transform (STFT) values of raw EEG signals in a more ab-
stract and high-level semantics space. Previous works [6]
have proved that reconstructing high-level semantics sig-
nificantly improves the performance. So we utilize the
BIOT embedding of Xp

m and Xf
v as the spatial and tem-

poral prediction goals. Specifically, BIOT embeds Xp
m to

Bp
m ∈ R(Cm×Tb)×Db and Xf

v to Bf
v ∈ R(Cv×Tb)×Db , where

Tb and Db are the number of windows in STFT and the em-
bedding dimension of BIOT, respectively. The Tb dimension
in Bp

m and Cv in Bf
v need to be squeezed as we only focus

on the recovery of masked channels (Cm in Bp
m) and pre-

diction of future time steps (Tb in Bf
v ). An attention-based

weight sum method is employed. Finally, Bp
m can be updated

by
∑Tb−1

t=0 Bp
m ⊙ weight, where weight = softmax(Bp

m)
and weight is computed along Tb. Bf

v follows similar steps
except that the weight is computed along Cv .

2.2. Encoder

After masking, the past visible signal Xp
v is conveyed to the

encoder. We first segment the input with window size W
and overlap O to get Sp

v ∈ RCv×Ts×W , where Ts = (Tp −
W )/O + 1. For each segment, we embed it by the frequency
amplitude computed by STFT to get F p

v ∈ RCv×(Ts×Df ),
where Df is the number of frequency components. F p

v serves
as the input of the dynamic CNN layer.

Dynamic CNN: We adopt a dynamic CNN layer inspired
by [7] to enrich the EEG representations. It can extract multi-
scale time-frequency features by parallelly applying I con-
volutional layers with different kernel sizes (1, ki) and the
same number of kernels C1 to F p

v . As F p
v is first reshaped to

1 × Cv × (Ts × Df ), the 2-D convolutional operations are
only employed on the last dimension, i.e., time-frequency di-
mension. Here, we set I = 3 and ki = 0.5iDf , i = 1, 2, 3.
With a total of Ts time steps, longer kernel length can inte-
grate more frequency components in one convolutional oper-
ation for each time step. The I output are then concatenated
along the last dimension and layer normalized (LN) to get
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G1 ∈ RC1×Cv×D1 .

G1 = LN([G1, G2, ..., GI ]), (1)

Gi = AP (Φ(Conv2d(F p
v , (1, ki), C1))), (2)

where AP represents an average pooling layer with the pool-
ing size of (1, p) and Φ represents LeakyReLU . Then,
to integrate information from the output of C1 kernels,
we convey G1 to a pointwise convolution layer and get
G2 = AP (Φ(Conv2d(G1, (1, 1), C2))). Finally, after re-
shaping and flattening G2 ∈ RCv×(C2×D2), we can get the
final output Gp

v = LN(G2)Wg , where Wg ∈ R(C2×D2)×De

is a linear projection.
Spatial Transformer: Added with sin-cos channel em-

bedding [8] and concatenated with a class token along the
channel dimension, Gp

v ∈ R(Cv+1)×De is fed into Le multi-
head spatial transformer (ST) encoders, through which the
similarity among all the channels is computed to get the at-
tention matrices. We first start with the vanilla transformer
encoder [8]. However, A NaN loss is frequently observed
when we increase the number of pre-training datasets. Gain-
ing experience from Ding et al.[9], we apply a Sandwich-
LayerNorm structure as in Figure 1, which is effective to
avoid overflow and thus eliminates the NaN loss. Finally, the
encoder embedding of Xp

v is formulated as Ep
v ∈ RCv×De

and we also get a learnable class token C0.

2.3. Spatial Prediction

The aim of SP task is to predict the BIOT embedding Bp
m ∈

RCm×Db of masked channels from visible channels. Before
decoding, we first pad Ep

v to full channels using the class to-
ken C0 learned by the encoder, i.e., C0 serves as the initial
values of masked channels. The sin-cos channel embedding
is also added to all channels to provide the channel location
information. We stacked Ld ST as in the encoder and a linear
projection with dimension De ×Db to form the decoder. The
mean squared error (MSE) between the predicted BIOT em-
bedding of masked channels and Bp

m is our SP loss function
LSP . Note that as in the image MAE, we normalize the Bp

m

for each channel before the loss computation.

2.4. Time Prediction

The aim of TP task is to predict the BIOT embedding
Bf

v ∈ RTb×Db of the visible channels’ future time steps
using the visible channels’ past time steps. We first need
to summarize all the past time steps to one high-level rep-
resentation Z. The same weight sum operation mentioned
above is applied. Specifically, Z =

∑Cv−1
t=0 Ep

v ⊙ weight
where weight = softmax(Ep

v ) and weight is computed
along Cv . To predict Bf

v , we utilize a log-bilinear model
f(Z, bf

j

v ) = exp(bf
j

v WjZ
T ) to evaluate the mutual in-

formation between Z ∈ R1×De and each future time step
bf

j

v ∈ Bf
v , j ∈ [1, Tb]. Wj ∈ RDb×De is a linear projection

that maps Z to the same feature space as bf
j

v . The prediction
goal is to maximally preserve the mutual information between
the predicted representation WjZ

T and the true correspond-
ing time step bf

j

v while minimize the mutual information with
the other time steps. We apply the InfoNCE loss as follow:

LTP = − 1

Tb

Tb−1∑
j=0

log
f(Z, bf

j

v )∑
k∈Tb

f(Z, bf
k

v ).
(3)

The final loss of TSP is formulated as LTSP = µ1LSP +
µ2LTP , where µ1 and µ2 are hyperparameters.

3. RESULT ANALYSES

3.1. Datasets and Implementation Details

As shown in Table 1, in pre-training, we collect 6 datasets
with different number of channels and paradigms to enrich
the data type. The SEED-series dataset1 contains SEED-V
[10], SEED-GER [11], SEED-FRA [11] and some unreleased
datasets. The EmotionHelper (EH) is a private dataset that
collects EEG data from depression and healthy subjects. For
HBN dataset [12],we select the 19 named-channels according
to the provided location file. For PRED+CT [13], we select
3 datasets named Depression RL, Depression Rest and OCD
Flankers.

Table 1. Dataset Information
Name Channels Rate Files Duration

SEED series1 62 200 Hz 295 ≈ 60min
EP 18 300 Hz 983 [30min, 60min]
TUAB [14] 19 250 Hz 2717 >15 min
HBN [12] 19 500 Hz 8277 [2min, 5min]
TDBRAIN [15] 26 500 Hz 2690 2min
PRED+CT [13] 62 500 Hz 271 [8min, 20min]

As for the downstream tasks, the selected datasets are
different from those in pre-training. we select two datasets
for emotion recognition (SEED, SEED-IV) and one for event
detection (TUEV [16]). Different from previous studies on
SEED and SEED-IV, we introduce the validation set. For
SEED (3-class), the total 15 clips of all subjects are divided
into 9, 3, 3 clips for training, validation and test sets. For
SEED-IV (4-class), the total 24 clips are divided into 4, 4,
16 for test, validation and training sets. TUEV is a 6-class
task and provides the test set. We randomly split the training
patients into training and validation sets by 80% and 20%.

Simialrly as BIOT, the results are averaged on three seeds
[42, 0, 10]. The hyperparameter selection is based on the vali-
dation set under seed 42. We set the time steps T = 2000 and
Tp = Tf = 1000. The parameters of BIOT embedding follow
the default settings. As for the encoder, we set W = 200 and

1https://bcmi.sjtu.edu.cn/home/seed/index.html
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Table 2. Performance (%) of different algorithms

SEED SEED-IV TUEV
Balanced Acc. Coken’s Kappa Balanced Acc. Coken’s Kappa Balanced Acc. Coken’s Kappa

ST-Trans [17] 54.15/0.54 28.60/0.36 36.69/1.34 15.33/1.68 39.84/2.28 37.65/3.06
SPaRCNet [18] 57.23/0.20 32.89/0.20 40.25/0.71 20.33/0.42 41.61/2.62 42.33/1.81
CNN-Trans [19] 59.02/0.60 35.33/1.00 43.33/0.53 23.93/0.81 40.87/1.61 38.15/1.34
ContraWR [20] 59.24/0.59 36.18/1.16 45.61/0.36 26.81/0.08 43.84/3.49 39.12/2.37
FFCL [21] 59.88/0.56 36.90/1.01 43.44/0.31 23.90/1.15 39.79/1.04 37.32/1.88
BIOT [4] 64.34/0.50 44.20/0.62 44.25/0.01 25.14/0.81 52.81/2.25 52.73/2.49

Scratch 58.61/0.69 34.55/1.22 43.47/0.88 23.15/0.99 42.90/1.69 37.15/3.46
Spatial Prediction (SP) 59.37/0.24 35.21/0.43 44.51/1.11 23.82/1.66 47.87/1.86 41.54/2.58
Temporal Prediction (TP) 63.17/0.63 41.96/0.76 45.97/0.58 26.57/0.91 51.76/1.56 43.22/2.35
TSP (µ1 = 0.5, µ2 = 0.5) 65.33/0.49 44.98/0.88 46.40/0.47 27.37/0.82 53.37/1.10 52.61/2.44

Table 3. Performance of different µ1, µ2 (%)

SEED
Balanced Acc. Coken’s Kappa

TSP (µ1 = 0.8, µ2 = 0.2) 64.38/1.02 43.35/2.09
TSP (µ1 = 0.2, µ2 = 0.8) 64.09/1.15 43.01/2.14

O = 100. The CNN embedding dimension De = 512 and
kernel length p of pooling layer is 8. The number of kernels
C1 = 8, C2 = 4 . We stacked 12 ST blocks in encoder and
6 ST blocks in decoder. For pre-training, we use a half-cycle
cosine learning rate schedule with 40 warm-up epochs and
base learning rate of 1e−5. We set µ1 = 0.5, µ2 = 0.5. The
batch size is set to 2048 and epoch is 70. For the fine-tuning,
learning rate is selected from 1e − 4 to 5e − 5 and weight
decay is in [0.05, 0.0005, 0.1]. The Coken’s Kappa is set as
the monitor index.

3.2. Results Analysis and Comparison

Table 2 lists the the Balanced Accuracy and Coken’s Kappa
and corresponding standard deviation. As TUEV has imbal-
anced number of samples, we provide Balanced Accuracy in-
stead of the conventional accuracy. All the baseline methods
are CNN-based or Transformer-based algorithms designed for
raw-EEG classification tasks. For BIOT, we load the provided
pre-trained model for SEED and SEED-IV. Other methods are
training from scratch. All the approaches follow the same hy-
perparameter settings.

Comparison with Baseline: As shown in Table 2, the
pre-trained BIOT obviously performs better than other base-
lines on SEED and TUEV datasets. Even the minimum im-
provements reach 4% on SEED and 9% on TUEV, which
proves the superiority of pre-training. However, ContraWR
surpasses BIOT on SEED-IV around 1% for both indexes.
The proposed TSP surpasses all the baselines for both indexes
except that the Coken’s Kappa on TUEV has a slightly de-

crease of 0.12% compared with BIOT. It should be noted that
the pre-training of BIOT utilized the training set of TUEV,
which may explain the decrease. The results show the superi-
ority of TSP and thus suggest that using high-level represen-
tations as the prediction objectives is beneficial and prove the
effectiveness of using diverse datasets for pre-training.

Ablation Study: The second part of Table 2 presents the
ablation study results. We first training the TSP model from
scratch to demonstrate the effectiveness of pre-training. The
pre-trianed TSP significantly surpasses scratch with a maxi-
mum improvement of 10% on TUEV. We then provide the re-
sults of single-domain approaches, Temporal Prediction (TP)
model and Spatial Prediction (SP) model. The structures of
TP and SP are totally the same as those in TSP. Compared
with single-domain approaches, TSP achieves the highest re-
sults for all the datasets. This verifies that separately pro-
cessing the temporal and spatial domains indeed improve the
model performance. Although both TP and SP perform better
than scratch, SP only improve 0.76% on SEED. The improve-
ment is much smaller than TP especially on SEED and TUEV.
So we test if increasing the proportion of LTP , i.e. µ2 can im-
prove the performance. Table 3 presents the results on SEED.
Unexpectedly, Larger µ1 is slightly better than larger µ2, and
balanced µ1, µ2 is the best.

4. CONCLUSION

We propose the Temporal-Spatial prediction (TSP) self-
supervised method based on spatial masked autoencoder
and temporal contrastive predictive coding, and using six
kinds of datasets for pre-training. TSP can adapt to different
number of channels and different EEG classification tasks.
Results on three public datasets show that TSP surpasses the
SOTA self-supervised method BIOT and the single-domain
methods TP and SP. We demonstrate the effectiveness of sep-
arately processing the temporal and spatial domains and the
feasibility of pre-training on diverse datasets.
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