
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999 1271

Inverting Feedforward Neural Networks Using
Linear and Nonlinear Programming

Bao-Liang Lu,Member, IEEE,Hajime Kita, and Yoshikazu Nishikawa

Abstract—The problem of inverting trained feedforward neu-
ral networks is to find the inputs which yield a given output.
In general, this problem is an ill-posed problem because the
mapping from the output space to the input space is a one-to-
many mapping. In this paper, we present a method for dealing
with the inverse problem by using mathematical programming
techniques. The principal idea behind the method is to formulate
the inverse problem as a nonlinear programming (NLP) problem,
a separable programming (SP) problem, or a linear programming
(LP) problem according to the architectures of networks to be
inverted or the types of network inversions to be computed. An
important advantage of the method over the existing iterative in-
version algorithm is that various designated network inversions of
multilayer perceptrons (MLP’s) and radial basis function (RBF)
neural networks can be obtained by solving the corresponding SP
problems, which can be solved by a modified simplex method, a
well-developed and efficient method for solving LP problems. We
present several examples to demonstrate the proposed method
and the applications of network inversions to examining and
improving the generalization performance of trained networks.
The results show the effectiveness of the proposed method.

Index Terms—Boundary training data, feedforward neural
networks, generalization, inverse problem, iterative inversion
algorithm, linear programming, neural-network inversions, non-
linear programming, separable programming.

I. INTRODUCTION

T HE problem of training a feedforward neural network
is to determine a number of adjustable parameters or

connection weights, which are denoted by on the basis
of a set of training data. A trained feedforward neural network
can be regarded as a nonlinear mapping from the input space
to the output space. Once a feedforward neural network has
been trained on a set of training data, all the weights are fixed.
Thus the mapping from the input space to the output space
is determined. This mapping is referred to as theforward
mapping. In general, the forward mapping is a many-to-
one mapping because each of the desired outputs usually
corresponds to several different training inputs in the training
set. We express the forward mapping as follows:

(1)

Manuscript received January 16, 1998; revised October 19, 1998 and June
25, 1999. This work was done in part while the first author was a Ph.D student
at the Department of Electrical Engineering, Kyoto University, Kyoto, Japan.

B. L. Lu is with the Laboratory for Brain-Operative Device, Brain Science
Institute, RIKEN, Saitama, 351-0198, Japan.

H. Kita is with the Department of Computational Intelligence and Systems
Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan.

Y. Nishikawa is with the Faculty of Information Sciences, Osaka Institute
of Technology, Hirakata 573-0196, Japan.

Publisher Item Identifier S 1045-9227(99)08838-4.

where , , and ,
, represent the input and output of

the network, respectively, denotes the fixed weights, and
denotes the forward mapping determined by the

architecture of the network. For a given input, it is easy
to calculate the corresponding outputfrom (1).

In contrast, the problem of inverting a trained feedforward
neural network is to find inputs which yield a given output

Such inputs are called thenetwork inversionsor simply
inversions. The mapping from the output space to the input
space is referred to as theinverse mapping. The inverse
problem is an ill-posed problem because the inverse mapping

(2)

is usually a one-to-many mapping. In general, the inverse
problem is locally ill-posed in the sense that it has no unique
solution and globally ill-posed because there are multiple so-
lution branches [7]. Hence, there is no closed form expression
for the inverse mapping.

It is necessary to invert trained feedforward neural net-
works in order to examine and improve the generalization
performance of trained networks and apply feedforward neural
networks to solving the inverse problems encountered in many
engineering and science fields [10], [6], [20]. In the last
few years, several algorithms for inverting feedforward neural
networks have been developed. A survey on this issue can be
found in [27].

An iterative algorithm for inverting feedforward neural net-
works is first introduced by Williams [44], and independently
rediscovered also by Linden and Kindermann [26]. In this
iterative inversion algorithm, the inverse problem is formulated
as an unconstrained optimization problem and solved by
a gradient descent method similar to the backpropagation
algorithm [41].

Jordan and Rumelhart [16] have proposed an approach
to inverting feedforward neural networks in order to solve
inverse kinematics problems for redundant manipulators. Their
approach is a two-phase procedure. In the first phase, a
network is trained to approximate the forward mapping. In
the second phase, a particular inverse solution is obtained
by connecting another network with the previously trained
network in series and learning an identity mapping across the
composite network.

Lee and Kil [24] have presented a method for computing
inverse mapping of a continuous function approximated by a
feedforward neural network. Their method is based on a com-

1045–9227/99$10.00 1999 IEEE

1272 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

bination of local update rule using the Lyapunov function and
the relocation rule using the predefined or known information
on the forward mapping, or the probabilistic description of the
possible location of an inverse solution.

The method of learning an inverse mapping directly by use
of feedforward neural networks had been used to solve the
inverse kinematics problems in robotics community [36], [22].
This method is called thedirect method. Bishop analyzed the
problem encountered by the direct method when a sum-of-
squares error function is used to learn a one-to-many inverse
mapping, and he proposed a new direct method based on
conditional density estimation [3].

Beheraet al. [2] have developed an inversion algorithm for
inverting radial basis function (RBF) networks, which is based
on an extended Kalman filter [14], [42]. They have applied
their algorithm to implementing trajectory tracking control of
a two-link manipulator.

In this paper we present a new method for inverting pre-
viously trained feedforward neural networks by using mathe-
matical programming techniques. The idea is to formulate the
inverse problem as an NLP problem, a separable programming
(SP) problem or a linear programming (LP) problem according
to the architectures of networks to be inverted or the types
of the network inversions to be computed. An important
advantage of the method over the existing iterative inversion
algorithm is that various network inversions for multilayer
perceptrons (MLP’s) and RBF neural networks can be obtained
by solving the corresponding SP problems, which can be
solved by a modified simplex method, a well-developed and
efficient method for solving LP problems.

The structure of this paper is as follows. In Section II, the
inverse problem for MLP’s is described and the characteristics
of the inverse problem are discussed. In Section III, the
problem of inverting feedforward networks is formulated as
an NLP problem, an inversion algorithm based on NLP
techniques is presented, and comparisons between the NLP-
based inversion algorithm and the iterative inversion algo-
rithm are discussed. In Section IV, the problems of inverting
MLP’s and RBF networks are formulated as SP problems,
the approximation of the SP problems is described, and an
inversion algorithm based on SP techniques is presented.
In addition, an LP-based inversion method for inverting a
class of specific MLP’s is also presented. Several illustrative
examples that demonstrate the proposed inversion algorithms
are given in Section V. Applications of the network inversions
to examining and improving the generalization performance of
trained networks are presented in Section VI. Conclusions are
outlined in Section VII.

II. STATEMENT OF INVERSE PROBLEM

In this section, we consider the problem of inverting a
trained -layer (1) MLP. The network consists of the
input layer, the output layer and the 2 hidden layers. The
units in the input layer serve only as distribution points. Each
unit in the hidden layer , 1 , receives its input only
from the previous layer, layer (1), and sends its output
only to the succeeding layer, layer (1).

We can write an -layer MLP in the form

...

(3)

where , , , is the th element of
the input, , , , is the output
of the th unit in the layer , , ,

, , , for , , ,
is the number of units in the layer , is

the weight connecting theth unit in the layer (1) to the
th unit in the layer , , ,

is the total net input to theth unit
in the layer , , , is a vector with elements,

is the activation function, , , ,
and is the bias of the th unit in the layer for 2, ,

Without loss of generality and for simplicity of description,
we assume that the same activation function is used in
each of the hidden and output units.

Once an -layer MLP has been trained on a set of training
data completely, its weights and biases for 2, 3, ,

are fixed. The problem of inverting a trained-layer MLP
is to find the inputs which would yield a given output
By using the inverse of the activation function, we can obtain
the following simultaneous constrained equations from (3):

...

(4)

where , , , is the
inverse of the activation function for 2, , , and

and denote the constant vectors representing the range of
interested inputs

The importance of (4) lies in the fact that it provides us with
an analytical formula for expressing theinverse mappingfrom
the output space to the input space. From (4), we can recognize
some characteristics of the inverse mapping. For a given
output , a solution to (4) is called anetwork inversion.
Unfortunately, it is difficult to find network inversions directly
from (4) because there is no efficient computational method
for solving the above simultaneous constrained equations.

III. COMPUTING INVERSIONS BY NLP TECHNIQUES

In general, there exist an infinite number of solutions
to (4) for a given output , that is, there are an infinite
number of inversions corresponding to a given output. Since
there is no closed expression for inverse mapping, to find all

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1273

of these inversions by numerical computing methods is time-
consuming or impossible in actual computation, especially for
high dimension of input space. A practical strategy is to restrict
ourselves to finding some specified ones. In this section, we
discuss how to obtain various designated network inversions
by using NLP techniques [1].

A. NLP Problem

An NLP problem can be stated as follows:

Minimize

subject to

(5)

where is a real vector of components , , called the
decision variables, is the objective function, 0
and 0 are theinequalityand theequalityconstraints,
respectively.

A vector satisfying all the constraints in (5) is called a
feasiblesolution to the NLP problem. The NLP problem is to
find a feasible point such that for any feasible
point Such a point is called anoptimal solution, or a
global optimalsolution to the NLP problem. If is feasible
and if there exists an-neighborhood around such
that for any , then is called alocal
optimal solution to the NLP problem.

B. Formulation of Inverse Problem as NLP Problem

Consider the problem of inverting a trained feedforward
neural network for a given output, that is, to find the network
inversions which yield a given output Suppose that each
element of the given outputdoes not exceed the range of the
corresponding actual output, that is, the given outputis an
actual output that can be produced by the trained network.
In general, there exist an infinite number of inversions
for a given output To find various designated inversions
for a given output, we formulate the inverse problem as the
following NLP problem:

Minimize

Subject to

(6)

where is the given output, and are the constant vectors
representing the range of inputs, and is the weights, is
the input vector. We see that the equality constraints in (6) are
precisely the forward mapping formed by the network. The
introduction of inequality constraint into (6) is to
limit the values of obtained inversions within a meaningful
range of the network inputs. The purpose of the objective
function is to express what kind of inversions are to
be computed. When an optimal solution to (6) is obtained,
this means that is a reasonable input vector that gives rise
to the given output Obviously, this input vector is just
the inversion corresponding to

The merit of formulating the inverse problem as an NLP
problem is that the user can explicitly express various func-
tional and (or) side constraints on inversions and easily impose

them on the NLP problem. For example, if the inversions
associated with a given output interval, instead associated with
a single given output, are required, the inverse problem can
be formulated as the following NLP problem:

Minimize

Subject to

(7)

where both and are the given outputs. In the rest of the
paper, we focus only on the formulation of (6). The results
can be easily extended to other formulations such as (7).

The formulation of (6) is general and can be used to invert
any feedforward neural networks if their forward mappings
can be expressed in a closed form as (1), for example, MLP’s,
RBF networks, mixtures of experts [15], hierarchical mixtures
of experts [17], and high-order feedforward networks [9], [30].
However, on the other hand, the NLP problem defined by (6)
is a nonconvex problem since it contains nonlinear equality
constraints. In general, several local optimal solutions to a
nonconvex problem may exist and the corresponding objective
function values may different substantially.

C. Objective Functions for Network Inversions

When a given output and the range of inputs are
determined, all the constraints in (6) are fixed. Then, what
kind of inversions to be calculated mainly depends on the
objective functions. For a given output, we can obtain various
inversions by using different objective functions.

Let us introduce three kinds of simple objective functions
as follows:

(8)

(9)

and

(10)

where is constant, and , is a given point
in the input space, which is called thereference point.

If we use the objective function or ,
for a given output The feature of the inversion is that
the value of its th element is the smallest one among all of the
inversions corresponding to the given outputSo that
is called theinversion with minimal single element(IMIN).
Similarly, we see that the value of theth element of
is the largest one among all of the inversions corresponding
to the given output So that is called theinversion
with maximal single element(IMAX). IMIN’s and IMAX’s
are useful for determining the range of the inverse image for a
given output. Equation (9) is an extension of (8) to the general
weighted sum of the inputs.

If we use the objective function , we can
obtain an inversion , which is nearest to the reference
point So that, is called the inversion nearest the
reference point(INRP). Fig. 2 illustrates IMIN’s, IMAX’s,
reference points, and INRP’s in two-dimensional input space.

1274 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

D. Inversion Algorithm Based on NLP Techniques

For a trained feedforward network and a given output
, various network inversions can be found by using the

following NLP-based inversion algorithm.

Step 1) Set the values of and , i.e., the range for
computing inversions.

Step 2) Select an objective function
Step 3) Set an initial value if a solver of NLP problems

requires it.
Step 4) Solve the NLP problem defined by (6). If an

optimal or local optimal solution is obtained,
is the network inversion associated with the given
output and go to Step 5). Otherwise, go to Step
3).

Step 5) If multiple network inversions are required, go to
Step 2) to change the objective function. Otherwise,
stop.

The advantage of the above NLP-based inversion algorithm
is that it is quite general and can be used to invert almost all
the existing feedforward neural networks. However, it is not
guaranteed that the NLP problem (6) can be solved by the
available algorithms or software packages efficiently.

E. Comparison with Iterative Inversion Algorithm

In this section, we compare the NLP-based inversion algo-
rithm with the iterative inversion algorithm and discuss the
merits and demerits of each of the algorithms.

1) Iterative Inversion Algorithm:In the iterative inversion
algorithm [44], [26], the inverse problem is formulated as the
following unconstrained minimization problem:

Minimize (11)

where and represent the input and actual output of the
network, and is the given output.

The central idea underlying the iterative inversion algorithm
is to solve the above unconstrained minimization problem by
using the gradient descent method. The iterative inversion
algorithm consists of two passes of computation, i.e., the
forward pass and backward pass, which are similar to the
backpropagation algorithm [41]. In the forward pass, the error
signal between the given output and actual output is computed
according to the forward mapping formed by the network. In
the backward pass, the error signal is backpropagated to the
input layer through the network, layer by layer, and the input
is adjusted to decrease the output error.

2) Generality: The generality of an inversion algorithm
refers to the variety of network inversions that the algorithm
can obtain. By choosing different objective functions and
imposing functional and (or) side constraints on the NLP
problem of (6), various network inversions for a given output
such as IMIN’s, IMAX’s, and INRP’s can be obtained by
the NLP-based inversion algorithm. However, the iterative
inversion algorithm can only findrandominversions. We call
them the random inversions because they mainly depend on
the starting points which are usually given randomly, and
cannot controlled by the user sufficiently. From optimization’s

point of view, the random inversions obtained by the iterative
inversion algorithm are merely the feasible solutions to (6).
According to the formulation of (6), the NLP-based inversion
algorithm can also obtain random inversions by using the
objective function and selecting as a random point.
In comparison with the iterative inversion algorithm, the NLP-
based inversion algorithm is more manageable since the user
can easily obtain various designated inversions by explicitly
defining objective functions and imposing constraints on the
corresponding NLP problem.

Some attempts to make the iterative inversion algorithm
find INRP’s have been done by using the following extended
objective function [26], [19]:

Minimize (12)

where 0 is the penalty parameter whose value determines
the effect of the constraint on the inversions to be computed,
and and are the given input and given output, respectively.

Unfortunately, the formulation defined by (12) is question-
able from network inversion’s point of view. According to
NLP theory [1], if is a large number, the unconstrained
problem of (12) is equivalent to the following constrained
problem:

Minimize

subject to (13)

Strictly speaking, no accurate solutions to the above con-
strained problem can be found if the given inputis not
an inversion for the given output Usually, it is hard for
the user to select an accurate or an approximate inversion as a
given input. Therefore, the formulation of (12) is unreasonable
or incorrect. In the following, we present a counterexample to
illustrate the above analysis.

Counterexample:For comparison, we use the same pa-
rameters of the trained network for the “ problem” [19].
The network has six input, two hidden and one output units.
For reader’s convenience, we rewrite the network parameters
as follows:

In the simulations, the starting point is selected as [0.074,
0.049, 0.010, 0.076, 0.034, 0.058], which is the same as

presented in [19]. The learning rate and momentum are set to
0.02 and 0.9, respectively. The iterative inversion algorithm is
stopped when 10 000 iterations are reached.

Tables VI shows the inversions for the given output 0.5,
which are obtained by solving the unconstrained optimization
problem (12) by the gradient method. Here, the given input
is selected as , , , , , From Table VI, we

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1275

can see that the iterative inversion algorithm cannot converge
even with small The reason is that the given input was not
selected as an approximate or an accurate inversion for the
given output.

Even though some inversions that are nearer the given input
than the random inversions may be obtained by solving the
unconstrained problem of (12) with a small, these inversions
are usually nottrue INRP’s since the convergence criterion is
mainly determined by the first term of the extended objective
function.

In addition, any constraints on the input range can be easily
imposed by selecting the values ofand in the NLP-based
inversion algorithm. For example, if set 0.1 and
0.3, then the inversions whose value of theth element is
limited to the interval [0.1, 0.3] are obtained. However, the
iterative inversion algorithm can only find the inversions that
are restricted to certain specific intervals. For example, if the
sigmoidal activation function 1/(1
is used for each of the input units, then only the inversions
which are restricted to the interval for can
be obtained [19].

3) Sensitivity to Starting PointsFor the iterative inversion
algorithm, the user must set initial values for certain pa-
rameters such as the starting point, the learning rate and
the momentum. Once the learning rate and momentum have
been fixed, the inversions obtained by the iterative inversion
algorithm are mainly determined by the starting points. In other
words, the iterative inversion algorithm is quite sensitive to
the starting points [27]. The reason is that the convergence
criterion in the iterative inversion algorithm is only determined
by the error between the given output and actual output and
no any constraints, except for the range of input, are imposed
on the inversions.

Although the user may need to set a starting point for
the NLP-based inversion algorithm, the NLP-based inversion
algorithm is more insensitive to the starting points than the
iterative inversion algorithm because the inversions obtained
by the NLP-based algorithm are global or local optimal
solutions to (6), instead of feasible solutions to (6).

4) Computational Effort:According to optimization the-
ory, the unconstrained problem (11) solved by the iterative
inversion algorithm is simpler than the constrained problem
(6) solved by the NLP-based inversion algorithm since many
NLP algorithms solve a constrained problem by converting
it into a sequence of unconstrained problems via Lagrangian
multipliers, or via penalty and barrier functions [1]. In com-
parison with the iterative inversion algorithm, the NLP-based
inversion algorithm requires more computer memories and
time. If suitable starting points, learning rate, and momentum
are selected, the iterative inversion algorithm is faster than
the NLP-based inversion algorithm for computing random
inversions.

In summary, the iterative inversion algorithm can be consid-
ered as a special case of the NLP-based inversion algorithm.
The advantage of the iterative inversion algorithm over the
NLP-based inversion algorithm is that it is simple. But, its
disadvantages are that it is quite sensitive to starting points
and cannot obtain various designated inversions.

IV. COMPUTING INVERSIONS BY SP TECHNIQUES

NLP problems can be classified as separable and nonsepa-
rable programming problems based on the separability of the
objective and constraint functions [1], [40]. For SP problems,
some variation of thesimplexmethod [43], a well-developed
and efficient algorithm for solving LP problems, can be used as
an approximate solution procedure. In this section we focus on
the problems of inverting MLP’s and RBF networks. We show
that the corresponding inverse problems for those kinds of the
networks can be formulated as SP problems, and propose an
inversion algorithm based on SP techniques [35], [1].

A. SP Problem

A function is said to beseparableif it can be expressed
as the sum of single-variable functions as follows:

(14)

An SP problem refers to an NLP problem whose objective and
constraint functions can be expressed as separable functions,
and can be expressed as follows:

Minimize

subject to

(15)

B. Formulation of Inverse Problem as SP Problem

From (3) and (4), we can reformulate the inverse problem
for MLP’s as an NLP problem as follows:

Minimize

Subject to

...

(16)

where and for , are unknown vectors,
, and are given vectors, and for ,

, is known weight matrix.
If we use the objective function as defined by (8)–(10), we

can represent the above NLP problem in nonmatrix notation

1276 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

as follows:

Minimize

Subject to

...

(17)

where denotes the following sigmoidal activation func-
tion:

(18)

According to the definition of the SP problem defined by (15),
we see that the NLP problem of (17) is an SP problem.

Following the similar idea mentioned above, let us formulate
the inverse problem for RBF networks. In general, only three-
layer RBF networks with a single hidden layer are considered
in neural network literature [13], [3]. The forward mapping of
a RBF network can be expressed as follows:

(19)

where is the weight connecting theth unit in the hidden
layer to the th unit in the output layer, is the bias of theth
unit in the output layer, denotes the radial basis function.
For the case of Gaussian basis function we have

(20)

where is the width parameter of , and is the vector
determining the center of

From (19) and (20), we can formulate the inverse problem
for RBF networks as an SP problem as follows:

Minimize

Subject to

(21)

where for 1. , is the given output, for 1,
is variable, and for , , is auxiliary

variable.
From (17) and (21), we see that the constraint functions are

separable functions for both MLP’s and RBF networks. If non-
separable objective functions are required, we can transform
them into separable ones by using MLP’s [34]. Consequently,
the problems of inverting MLP’s and RBF networks can
always be formulated as SP problems.

C. Approximation of SP Problems

In this section, we discuss how to approximate the SP prob-
lems by replacing each of the separable nonlinear functions
with their approximation using piecewise linear functions.

Suppose that we are interested in the values of a separable
nonlinear function over the interval and we wish
to define a piecewise linear function that approximates
The interval is partitioned into several subintervals,
via the grid points , , , The nonlinear
function can be approximated over the interval via
the grid points , , , by the piecewise linear function

, defined by

for (22)

where,at most, two adjacent ’s are positive. For example,
the sigmoidal activation function can be approximated over
the interval [16, 16] via 14 grid points 16, 8,

5, 4, 3, 2, and 1, as shown in Fig. 3(a).
Suppose the objective function of (8) is used. Replacing

each of the separable nonlinear functions in (17) with the cor-
responding piecewise linear functions as defined by (22), we
obtain an approximating problem to the original SP problem
of (17) as follows:

Minimize

Subject to

...

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1277

and

and

(23)

where , , are the grid points which are used in
the piecewise linear approximation of the separable nonlinear
functions involving as variable, and is the number of
grid points. Further, we impose the constraints that for each
and no more than two can be positive and only adjacent

can be positive. With the exception of the requirement
on the number and the way in which the can be positive,
the problem of (23) is an linear programming problem. The
problem of (23) is called theapproximating LP(ALP) problem
[1] to the original SP problem of (17).

Following the same line as above and using the formulation
of (21), we can state the problem of computing INRP for RBF
networks as an ALP problem as follows:

Minimize

Subject to

and

and

(24)

where, at most, two adjacent ’s and two adjacent ’s are
positive, and are the grid points for

and respectively, and and are the number of grid
points which are used for piecewise linear approximation of

nonlinear functions involving and as variables in (21),
respectively.

D. Solving ALP Problems

It has been shown that the ALP problems can be solved
by use of thesimplex method with restricted basis entry rule
[35]. For example, the restricted basis entry rule for solving
the ALP problem of (23) can be described as follows:

• If no element of is in the basis, then all elements of
will be allowed to be introduced into the basis, where
denotes the set: , , for , ,

; and , , 1.
• If one element of is contained in the basis, then only

the variables adjacent to it are allowed to be introduced
into the basis.

• If two variables from are contained in the basis, then
no others from are allowed to be introduced into the
basis.

It has been shown that if the objective function is strictly
convex and all the constraint functions are convex, the solution
obtained from the ALP problems is sufficiently close to
the global optimal solution of the original SP problems by
choosing a grid of sufficiently short intervals. Unfortunately,
the ALP problems of (23) and (24) are nonconvex since
the original SP problems have nonlinear equality constraints.
Nevertheless, empirical evidence suggests that “even though
optimality of the solution can not be claimed with the restricted
basis rule, good solutions are produced” [1].

E. Inversion Algorithm Based on SP Techniques

Using the formulations of (17) and (21), we present an
SP-based inversion algorithm for inverting MLP’s and RBF
networks. The algorithm can be described as follows.

Step 1) Set the values of and in (17) or (21).
Step 2) Select an objective function.
Step 3) Select the number of grid points and the values of

the grid points.
Step 4) Solve the ALP problems by use of the simplex

method with the restricted basis entry rule. If an
optimal solution is found. is the network
inversion corresponding to the given output, and
go to Step 5). Otherwise, go to Step 3) to change
the piecewise linear approximation.

Step 5) If multiple network inversions are required, go to
Step 2) to change the objective function. Otherwise,
stop.

From optimization’s point of view, the SP-based inversion
algorithm is more efficient than the NLP-based inversion
algorithm since there are sophisticated computer programs that
solve LP problems of very large size. The SP-based inversion
algorithm keeps up the same generality as the NLP-based
inversion algorithm, except for the restriction that both the
objective and constraint functions should be separable.

Now let us analyze the complexity of the ALP problems
included in the SP-based inversion algorithm. Suppose that
the -layer MLP has output units, and input units,

1278 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

TABLE I
NUMBER OF CONSTRAINTS AND VARIABLES IN ALP PROBLEMS FOR INVERTING MLPS

TABLE II
NUMBER OF CONSTRAINTS AND VARIABLES IN ALP PROBLEMS FOR INVERTING RBF NETWORKS

and the number of units in the hidden layerfor
1 is Also suppose, for each variable and

, and grid points are used. Then the numbers of
constraints and variables in the ALP problems formulated for
inverting MLP’s are shown in Table I.

Similarly, suppose that a RBF network has input,
hidden, and output units. Also, suppose, for each variable

and , and grid points are used. Thus the number of
constraint and variables in the ALP problems formulated for
inverting RBF networks are shown in Table II. From Tables I
and II, we see that there exists a tradeoff between the accuracy
of the approximation of SP problems (i.e., number of grid
points) and the complexity of the ALP problems.

F. Relations Between Inversions and Network Parameters

In order to sketch out the inverse mapping from the re-
lationships between the given outputs and the corresponding
inversions, an ideal inversion algorithm should not only obtain
various inversions for a given output as many as possible,

but also provide relationships between the inversions and the
network parameters. Almost all existing inversion algorithms
such as the iterative inversion algorithm, however, seem to
lack abilities to satisfy the latter requirement. In this section,
we show that the proposed inversion algorithm for MLP’s as
mentioned above makes a step to overcome this deficiency.

From (16) we see that once an optimal solution to the NLP
problem had been found, we not only get a network inversion

but also obtain total net input vectors, i.e., ,
, Using these total net input vectors, we can

establish the relationship between the network inversion
and the network parameters.

For real-world application problems, the dimension of the
input space is usually larger than that of the output space.
Consequently, the number of input units in MLP’s is often
larger than that of the output units, i.e., Consider
three-layer perceptrons, and suppose the inverse mappings
formed by the networks are one-to-many mappings. If

, all of the possible three-layer perceptrons can be classified
into three types, and the parameters of each of them should

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1279

TABLE III
NETWORK INVERSIONS OF THERBF NETWORK FOR THE XOR PROBLEM

satisfy one of the following relations:

I rank rank

rank rank (25)

II rank rank

rank rank (26)

III rank rank

rank rank (27)

where , , is the weight matrix,
is known total net input vector, and .
In the cases of (25) and (26), we see that there exist an

infinite number of inversions corresponding to for Type
I and II networks. These inversions are determined by the
constrained hyper-plane as follows:

(28)

From (28) we can further compute network inversions by
solving the following linear programming problem:

Minimize

Subject to

(29)

where , , , , and are constants, and is variable.
For Type III networks, there exists only one network inver-

sion for Consequently, no inversions can be further find
from (28).

V. ILLUSTRATIVE EXAMPLES

In this section, we present three simple examples to demon-
strate the proposed inversion algorithms. For simplicity of
illustration, the problems of inverting the RBF network and
three-layer MLP which are used to learn the XOR problem are
discussed. In the examples except for Example 1, the sigmoidal
activation function defined by (18) is used.

A. Example 1

In this example, we demonstrate how to invert RBF net-
works by the NLP-based inversion algorithm. We create a RBF

Fig. 1. The mapping from(x1, x2) to y31 formed by the RBF network for
the XOR problem.

network in a similar way as presented in [13]. The training data
are organized as follows: If the training input is (0, 0) or (1,
1), the corresponding desired output should be zero, and if
the training input is (0, 1) or (1, 0), the corresponding desired
output should be one. The input–output mapping formed by
the trained RBF network is plotted in Fig. 1.

For a given output 0.7, we state the problem of
computing IMIN’s as the following NLP problem:

Minimize

Subject to

(30)

Solving the NLP problem by use of the modified Pow-
ell’s method [39], we obtain an IMIN as shown in the
first row of Table III. Replacing the objective function of
(30) with , , , , and

, and solving the corresponding
NLP problems, we obtain the related five inversions as shown
also in Table III. All the inversions and the corresponding two
reference points are illustrated in Fig. 2.

1280 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Fig. 2. The network inversions corresponding to the given outputy
31
= 0.7

of the RBF network for the XOR problem. Solid lines denote all the accurate
network inversions associated withy

31
= 0.7, squares denote IMIN’s and

IMAX’s, circles denote reference points, dots denote INRP’s, and dashed
lines denote the distance from the reference points to the INRP’s.

B. Example 2

A three-layer MLP with two input, two hidden, and one
output units is used to learn the XOR problem. The training
input and the desired output sets are {(0.01, 0.01), (0.01,
0.99), (0.99, 0.01), (0.99, 0.99)} and {(0.01), (0.99), (0.99),
(0.01)}, respectively. The network is trained by the standard
backpropagation algorithm [41]. The parameters of the trained
XOR network are as follows:

Let us compute IMIN’s and IMAX’s for the given output
0.9 by the SP-based inversion algorithm. Using the

formulation of (17) and the parameters of the XOR network
mentioned above, we can state the inversion problem as
follows:

Minimize

Subject to

(31)

where , and and are variables, and the range of
inputs are set to [0.000 001, 0.999 999].

Approximating the sigmoidal activation function over the
interval [16, 16] via the grid points 16, 8, 5, 4,

3, 2, and 1, as shown in Fig. 3(a), we obtain the

(a)

(b)

Fig. 3. (a) Piecewise linear approximation of the sigmoidal activation func-
tion over the interval [�16, 16] via 14 grid points�16,�8, �5, �4, �3,
�2, and�1. (b) the errors between the original sigmoidal activation function
and its approximation as shown in (a).

corresponding ALP problem. Solving the ALP problem by
use of the simplex method with the restricted basis entry
rule, we obtain an IMIN and related as shown in the first
row of Table IV. Replacing the objective function in the ALP
problem with , , and and solving the corresponding
ALP problems, we obtain other three network inversions as
shown also in Table IV. From Table IV, we see that there exist
some errors between the given output and the actual outputs
produced by the obtained inversions. The reason for these
errors is the piecewise linear approximation of the sigmoidal
activation functions. It has been shown that these errors can
be reduced by increasing the number of grid points used to
approximate the sigmoidal activation functions [34].

C. Example 3

In this example, we demonstrate how to further compute
inversions associated with a givenby using linear program-
ming techniques. We use the computing results obtained in
Example 2. From Table IV, we get the relationship between
the given output 0.908 994 and [1.712 502,

2.744 893] Now let us compute the network inversions
related to 0.908 994 by solving the following linear

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1281

TABLE IV
NETWORK INVERSIONS AND RELATED TOTAL NET INPUTS OF THE MLP FOR THE XOR PROBLEM

TABLE V
COMPUTING RANGES AND RELATED NETWORK INVERSIONS

TABLE VI
RELATIONS BETWEEN DIFFERENT � AND THE CONVERGENCE OF THEITERATIVE INVERSION ALGORITHM

programming problem:

Minimize

Subject to

(32)

where and are variables, and are constants whose
values are shown in Table V.

Solving the linear programming problem of (32) under
different inequality constraints, we obtain several network
inversions as shown in Table V.

VI. A PPLICATIONS OF NETWORK INVERSIONS

Network inversions have been applied to various prob-
lems such as examining and improving the generalization
performance of trained networks [26], [28], [12], adaptive
control [11] solving inverse kinematics problems for redundant
manipulators [18], [16], [7], [33], [2], and speech recognition
[38]. In this section we present four examples to illustrate the
applications of network inversions obtained by the proposed
SP-based inversion algorithm. The first three ones are to
illustrate the use of network inversions for examining the
generalization performance of trained networks and demon-
strate the performance of the proposed inversion algorithm
for computing various designated inversions. The last one
is presented to show a way of generating boundary training

1282 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

data for improving the generalization performance of trained
networks.

A. Generating Test Data

Generalization is one of the most important issues in learn-
ing of neural networks and refers to a trained network gen-
erating reasonable outputs for novel inputs that did not occur
during training. In more detail, it can be explained as two
different behaviors for dealing with novel inputs, which are
commonly known asinterpolation and extrapolation, respec-
tively. For existing neural-network models, to achieve a good
extrapolation capability is generally much more difficult than
to obtain a good interpolation behavior, since a trained network
may produce an arbitrary response for a novel input from
regions where no training input data have occurred. In practical
applications of neural networks, some need networks to have
good interpolation capability only, and some require that the
networks should both interpolate and extrapolate novel inputs
properly.

A popular method for examining the generalization perfor-
mance of trained networks is to measure the performance of
the networks on test data that did not presented during training,
i.e., the generalization performance of trained networks is
judged by the correct recognition rates on the test data. In
order to examine generalization performance completely, it
is necessary to generate a sufficient number of test data
that are distributed in the whole input space. There are two
conventional methods for obtaining test data. One is to gather
test data from the problem domain, and the other is to generate
test data randomly. For most of application problems, it is
difficult to obtain a sufficient number of test data by means of
the first method because the model of the object to be learned
is partially unknown. A difficulty of using random test data is
that it is hard to outline the actual decision boundaries formed
by the networks especially when the dimension of the input
space is high. Our previous work on network inversions has
shown that network inversions can be used as a particular kind
of test data for detecting generalization errors more completely
[28], [31]. In the following three examples, we demonstrate
how to generate particular test data by the SP-based inversion
algorithm.

1) Fisher’s Iris Classification Problem:In this example,
the Fisher’s iris classification problem [8] is treated. It
is well known that the iris data set is composed of 150
four-dimensional vectors that measure four features of three
varieties of the iris. These data are presented on Fig. 4 by
their first and second principal components. The data set is
partitioned into a subset with 60 data for training and a subset
with 90 data for testing, randomly. A three-layer MLP with
four input, three hidden, and two output units are trained by
the backpropagation algorithm [41].

First, the trained network is examined by the ordinary 90
test data. The correct recognition rates are 100% for the
setosa, 93.3% for the versicolor, and 96.7% for the virginica,
respectively. From the above test results, it seems that the
network has a nice interpolation performance. However, its
extrapolation behavior cannot be judged on these test results

Fig. 4. Fisher’s iris data and the 240 inversions corresponding to the outputs
of setosa, which are represented by their two principal components.

Fig. 5. Ten standard printed digit images.

because the test data are distributed in the same areas as the
training data.

Second, the trained network is examined by network inver-
sions. For simplicity, we consider the IMIN’s and IMAX’s cor-
responding to the actual outputs of 30 test data for the setosa.
By using the SP-based inversion algorithm, 240 inversions are
computed, where the sigmoid function is approximated over
the interval [16, 16] with 14 grid points shown in Fig. 3. The
relationships among the 240 inversions and the 150 iris data
are also depicted in Fig. 4. From this figure, we can see that the
distribution area of the 240 inversions are much wider than that
of the training and test data for the setosa. Checking the values
of the 240 inversions, we see that, at least, one component of
each of the inversions is near zero. Therefore, all the 240
inversions should be judged as unreasonable data according to
the physical meaning of the features of the iris. However, the
network classifies all the 240 inversions as proper setosa. That
is, the network extrapolates all the 240 inversions incorrectly.
From this example, we can see that 1) it is difficult to detect
extrapolation errors by ordinary test data if their distribution
is the same with that of the training data and 2) the network
inversions are useful for detecting extrapolation errors.

2) Printed Digits Recognition Problem:We consider the
three-layer MLP used for printed digit recognition. Ten
standard printed digit images used as training inputs are
shown in Fig. 5. Each image corresponds to a vector
with each component value varying from zero (white) to one
(black) determined by the gray level in the corresponding
pixel. Four output units are used to represent ten classes of
outputs according to the binary coding method. A three-layer
MLP with 35 input units, 12 hidden units, and four output
units is used to learn this pattern recognition task.

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1283

Fig. 6. Random test input images for digit “0.” All them are recognized as
the proper digit “0,” except one marked by open gray box. The images from
left to right are numbered from 1 to 10.

The training data set consists of ten standard training
patterns and 540 noised training patterns. The noised training
inputs are generated by performing logic XOR operation
between the ten standard training inputs and the 540 noise
patterns. The noise patterns for generating noised training
inputs are created by randomly putting three black pixels in
the 35 white pixels according to a uniform distribution. In the
following, the noise pattern which is generated by randomly
putting (1 35) blank pixels in the 35 white pixels
is called the -random-dots pattern. According to combination
theory, the total number of different noise patterns (binary
value) is 2

Random Test Data:In order to compare the test data
obtained by the SP-based inversion algorithm with the test data
generated randomly, we first discuss the characteristics of the
random test data. For simplicity of description, we consider
the random test input images for digit “0.” Ten random test
input images are generated by doing the logical XOR operation
between the standard training inputs of “0” and ten five-
random-dots patterns. Fig. 6 illustrates these random test input
images.

Presenting these random test input images to the trained
network and checking the corresponding outputs, we see that
all the ten random test input images, except one image, are
classified as digit “0” by the network. Comparing the standard
digit images in Fig. 5 with the random test images in Fig. 6,
we can see that the network produces several generalization
errors. For example, the second random test input image in
Fig. 6 is recognized as the digit “0” by the network. However,
one may answer that it is not digit “0” from the viewpoint
of human recognition. From this example, we see that the
network may assign some poor novel input images to one
of the known digits. For some practical applications, for
instance fault diagnosis systems [21], [23], it is necessary to
remove this kind of generalization errors since fault inputs
may be classified as the normal states or normal inputs may
be classified as the fault states by the network if this kind
of incorrect generalizations exist. To remove this kind of
generalization errors completely, we should outline the actual
inverse images of given outputs. However, it is very difficult to
achieve this objective by using random test data, especially for
high-dimensional input space. The reason is that to generate
all random test inputs which will give rise to a given output
needs to check random test input images, whereis the
number of input units and is the number of values which can
be taken from each pixel. For example, we need to examine
2 test input images for the printed digit recognition problem
even if considering only binary value patterns.

Network Inversions as Test Data:Selecting the objective
functions as and solving the corresponding ALP
problems, we obtain various network inversions as illustrated

Fig. 7. The five IMIN’s and five IMAX’s corresponding to the actual output
of standard digit “0.” The ten images from left to right are arranged as the
following: the (2i � 1)th image (in odd column) is the IMIN obtained by
minimizexi, and the (2i)th image (in even column) is the IMAX obtained by
maximizexi for i = 6, � � �, 10. The pixels to be optimized as the objective
function are marked by small open gray boxes. If the given level in a pixel
is white (black), the value of the related component is 0 (1). This notation
will be also used in Figs. 8–14.

(a)

(b)

Fig. 8. The inversions (upper ten images) obtained by minimizing the sum
of the values of the pixels in the upper center area, i.e.,(x7+x8 + x9+x12

+ x13+x14), and the inversions (lower ten images) obtained by maximizing
the same objective function.

Fig. 9. The inversions (upper ten images) obtained by minimizing the sum
of all the pixels, i.e.,�35

i=1
xi, and the inversions (lower ten images) obtained

by maximizing the same objective function.

in Figs. 7–9. The central processing unit (CPU) time for
computing each of these inversions is about 8 s at a SUN
Ultra workstation. Here, the sigmoidal activation functions is
approximated over the interval [16, 16] with 26 grid points.

Choosing the objective function as for
we obtain five IMIN’s and five IMAX’s for the actual output
of the standard digit “0.” Fig. 7 shows five IMIN’s and five
IMAX’s. From these inversions, we know that the actual range
of the th (for 6, 10) component of the inverse image
is between zero and one. Presenting the ten inversions to the
network and checking the corresponding outputs, we see that
all the inversions are recognized as the standard digit “0” by
the network. Clearly, these generalizations are incorrect from
the viewpoint of human decision.

Furthermore, selecting the objective functions as
and and we obtain 40

inversions as illustrated in Figs. 8 and 9 by using the SP-
based inversion algorithm. Here, the given outputs are set to
the actual outputs of the ten standard digits shown in Fig. 5.
Looking at the 40 images in Figs. 8 and 9, we may indistinctly
recognize a few images among them as the digit “7” and “9”
in a usual way. Checking the actual outputs of the inversions,
however, we see that all the inversions are recognized as the
standard digits by the network.

1284 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Fig. 10. Ten random inversions for digit “0” obtained by the iterative
inversion algorithm.

Fig. 11. Digits that were segmented from handwritten ZIP codes.

Fig. 12. Illustrations of 15 different objective functions which are defined
as the sums of the elements in the shadow areas, for example, the upper-left
frame represents the objective function,�15

i=0
�
16
j=1x16i+j : The 15 frames

from left to right and from top to bottom are numbered from 1 to 15.

Fig. 13. Inversions corresponding to the actual outputs of the handwritten
digits “0”–“9,” respectively. These inversions are obtained by using the
objective function of minimizing the sum of the pixels located in the shadow
area of the first frame in Fig. 12.

In order to compare the inversions obtained by the SP-
based inversion algorithm with these obtained by the iterative
inversion algorithm, ten random inversions for the actual
outputs of the digit “0” are also computed by the iterative in-
version algorithm. The starting points are generated randomly
according to a uniform distribution. The average CPU time
for computing each of the inversions is about 0.02 s. Fig. 10
illustrates the ten random inversions. Although the iterative
inversion algorithm is much faster than the SP-based inversion
algorithm, it is hard for the user to roughly outline the actual
inverse images of given outputs from the random inversions.

From the simulation results mentioned above, we see that
the proposed inversion method for generating test data pos-
sesses the following two features in comparison with the
method of generating test data randomly and the iterative
inversion algorithm. 1) Variousdesignatednetwork inversions
corresponding to a given output can be obtained efficiently

Fig. 14. Thirty particular images derived from the 300 inversions. All these
images are also recognized as proper handwritten digits by the network.

by the proposed inversion algorithm. 2) These inversions are
useful for roughly outlining the actual inverse image of a given
output, and therefore the extrapolation behavior of trained
networks can be examined more systematically.

3) Handwritten ZIP Code Recognition Problem:We deal
with the handwritten ZIP code recognition problem [25], one
of typical applications of feedforward neural networks to
real-world pattern recognition problems. The aims to solve
this problem are to show the effectiveness of the SP-based
inversion algorithm for inverting large-scale neural networks
and to demonstrate the usefulness of network inversions
for detecting particular extrapolation errors. The original
training set and test set (TEST1) for the handwritten ZIP
code recognition problem consist of 7291 and 2007 data,
respectively. Fig. 11 shows ten handwritten numerals that
were segmented from the handwritten zip codes. The image
for each handwritten ZIP code data contains 16 pixel rows by
16 pixel columns, for a total 256 pixels. Since it is hard to learn
the whole 7291 training data by using a conventional three-
layer MLP, we randomly select 500 training data from the
original training set as a reduced training set. The remaining
6791 training data are considered as a new test set (TEST2).
The desired outputs are represented by the binary coding
method. A three-layer MLP with 256 input units, 30 hidden
units, and four output units is trained on the reduced training
set by the backpropagation algorithm [41].

After training of the network, its generalization performance
is examined on the ordinary test data. The correct recognition
rates on TEST1 and TEST2 are 78.1 and 82.9%, respectively.
Although the total number of the test data is much more
than that of the training data, the generalization performance
of the network cannot be judged only on the above correct
recognition rates because the test data are not distributed in the
whole input space and many generalization errors, especially

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1285

(a) (b)

Fig. 15. Two-class classification problem. (a) The desired input-output mapping. (b) The initial 40 random training inputs, which are represented bysmall
open boxes and filled triangles. The desired outputs for the open boxes and filled triangles should be zero and one, respectively. The big triangle (dashed)
denotes the desired decision boundary associated with output 0.8. This notation will be used in Figs. 16–19.

extrapolation errors, may not be detected. In the following, we
demonstrate how to detect particular extrapolation errors in a
more systematic way by using network inversions. Selecting
the objective functions as minimizing and maximizing the sum
of the pixels located in the shadow areas depicted in Fig. 12
and solving the corresponding ALP problems, we obtain 300
network inversions for the actual outputs of the handwritten
digits “0”–“9” shown in Fig. 11. Here, the sigmoidal activation
function is approximated over the interval [16, 16] with
14 grid points shown in Fig. 3. The average CPU time for
computing each of these inversions is about 14 min. Fig. 13
illustrates 20 inversions that are obtained by minimizing the
sum of 60 pixels located in the shadow area of the first frame
in Fig. 12. The frames from left to right and from top to
bottom in Fig. 13 are the inversions for the actual outputs
of the handwritten digits “0”–“9,” respectively.

Examining each image of the 300 inversions, we see that
all of them are poor images and no one can be recognized
as the handwritten digits from the viewpoint of human de-
cision. However, all of the 300 inversions are recognized
as proper handwritten digits by the network. For example,
the inversions from left to right and from top to bottom in
Fig. 13 are recognized as proper handwritten digits “0”–“9”
by the network, respectively. Clearly, these generalizations are
incorrect. Fig. 14 illustrates 30 particular images which are
derived from the 300 inversions with reference to the similar
inversions. For example, the particular image in the first frame
of Fig. 14 is derived from the inversion in the first frame of
Fig. 13. Presenting the 30 particular images to the network
and checking the corresponding actual outputs, we find that
all the 30 particular images are also recognized as the proper
handwritten digits by the network. For example, the 1st image
in Figs. 14 is recognized as proper handwritten “0” by the
network. If we examine the generalization performance of the
network by using the ordinary test data, we may never think
that the network will produce so poor generalization.

In most of practical applications, we need to detect extrap-
olation errors more completely. Therefore, various network
inversions for different given outputs should be obtained. From
this example, we can see that the proposed SP-based inversion
algorithm may provide us with an efficient tool for dealing
with this problem.

B. Generating Boundary Training Data

It has been observed that using training data located at
the boundaries of decision regions gives better performance
than using training data selected randomly [37], [12]. The
training data located at the boundaries of the decision regions
are called theboundary training data. In this example, we
demonstrate how to generate the boundary training data by
inverting trained networks with our inversion method and
illustrate the effectiveness of the boundary training data for
improving the generalization performance of trained networks.

Following the similar way presented in [12], we use net-
work inversions as the boundary training data and retrain
the network to improve its generalization performance. The
network inversions which produce correct generalization are
used as “positive” retraining data, and the others are used as
“negative” retraining data, i.e., counter-samples. The purpose
of the “positive” retraining data is to consolidate the domain of
the input space on which the network generalizes correctly. On
the contrary, the “negative” retraining data are to narrow the
range of each input variable to reduce the domain of the input
space on which the network produces incorrect generalization.

For visualization of the decision boundary formed by the
network, a simple two-class pattern recognition problem is
treated. The problem is to classify two-dimensional inputs into
two classes. The desired input-output mapping is shown in
Fig. 15(a). For the inputs inside a triangle region as shown in
Fig. 15(b), the network should give rise to output 0.99, and
otherwise the output should be 0.01. The initial 40 training
data illustrated in Fig. 15(b) are generated randomly according

1286 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

(a) (b)

Fig. 16. (a) The input–output mapping formed by the network which is trained on the 40 random training data. (b) The inversions (small open circles)
and the actual decision boundary (close curve) associated with output 0.8.

(a) (b)

(c) (d)

Fig. 17. The process of improving the generalization performance of the network by retraining the network with the network inversions as the boundary
training data. (a), (c), (e), and (g) represent the retraining inputs for the first, the second, the third, and fourth retraining, respectively. (b), (d), (f), and (h)
represent the inversions (small open circles) obtained from the corresponding trained networks and the actual decision boundaries formed by the networks
after the first, the second, the third, and the fourth retraining, respectively.

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1287

(e) (f)

(g) (h)

Fig. 17. (Continued.) The process of improving the generalization performance of the network by retraining the network with the network inversions as
the boundary training data. (a), (c), (e), and (g) represent the retraining inputs for the first, the second, the third, and fourth retraining, respectively. (b),
(d), (f), and (h) represent the inversions (small open circles) obtained from the corresponding trained networks and the actual decision boundariesformed
by the networks after the first, the second, the third, and the fourth retraining, respectively.

(a) (b)

Fig. 18. (a) The input–output mapping formed by the network after the fourth retraining with 40 random and 56 boundary training data. (b) The
corresponding actual decision boundary.

1288 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

(a) (b)

(c)

Fig. 19. (a) 200 random training inputs. (b) The input–output mapping formed by the network which is trained on 200 random training data. (c) The
corresponding actual decision boundary.

to a uniform distribution in the two-dimensional input space.
A three-layer perceptron with two input, ten hidden, and one
output units is used to learn this problem. Here, the decision
boundary is defined as a curve in the input space, on which
the corresponding outputs are about 0.8.

After the network is trained with the 40 random training
data, we generate boundary training data, i.e., network in-
versions, by inverting the trained network, and improve the
generalization performance by retraining the network with the
boundary training data according to the following procedure.

Step 1: Compute two IMIN’s, i.e., and respec-
tively, and two IMAX’s, i.e., and respectively,
associated with the given output 0.8.

Step 2: Generate ten reference points randomly and com-
pute the corresponding ten INRP’s associated with the given
output 0.8.

Step 3: Examine the generalization performance of the
trained network by using the 14 inversions (i.e., two IMIN’s,
two IMAX’s, and ten INRP’s) and their corresponding outputs.

Step 4: If the decision boundary outlined by the inversions
is satisfactory to compare with the desired decision boundary,

then stop the procedure. Otherwise, do the following steps.
Step 5: Adding the test results to the training set, we

obtain an extended retraining set. The obtained inversions are
classified into positive and negative data according to their
desired outputs.

Step 6: Retrain the network on the extended retraining set
and go back to Step 1).

In the above procedure, the reason for using IMIN’s,
IMAX’s, and INRP’s as the boundary training data is that
IMIN’s and IMAX’s can give rough estimates of the range
of the decision boundary and INRP’s can outline the decision
boundary in more detail. All of the network inversions are
obtained by solving the corresponding ALP problems. The
method described here is general and can be applied to-class
(2) pattern recognition problems.

Repeating the above procedure four times, the generalization
performance of the network is improved significantly. The
process of improvement is shown in Figs. 16–18. The final
result after the fourth retraining is shown in Fig. 18. Compar-
ing Fig. 18 with Fig 16, we see that much better generalization
performance is obtained. In order to compare the effectiveness

LU et al.: INVERTING FEEDFORWARD NEURAL NETWORKS 1289

of the boundary training data with that of random training
data, the network is trained on 200 random training data.
Fig. 19 shows the corresponding training inputs, the actual
input–output mapping, and the decision boundary formed by
the trained network. Comparing Fig. 18 with Fig. 19, we see
that the boundary training data obtained by our inversion
algorithms is much superior to the random training data in
the generalization performance of the trained networks.

VII. CONCLUSIONS

We have formulated the inverse problems for feedforward
neural networks as constrained optimization problems. We
have shown that the problems of inverting MLP’s and RBF
networks can be formulated as separable programming prob-
lems, which can be solved by a modified simplex method, a
well-developed and efficient method for solving linear pro-
gramming problems. As a result, various network inversions
of large-scale MLP’s and RBF networks can be obtained effi-
ciently. We have presented three inversion algorithms based on
NLP, SP, and LP techniques. Using the proposed inversion al-
gorithms, we can obtain various designated network inversions
for a given output. We have shown that the proposed method
has the following three features: 1) The user can explicitly
express various functional and (or) side constraints on network
inversions and easily impose them on the corresponding con-
strained optimization problems. 2) Various designated network
inversions for a given output can be obtained by setting
different objective and constraint functions. 3) Once the net-
work inversions for MLP’s have been found, the relationship
between the network inversions and the network parameters
is also brought to light. We have compared the proposed
inversion method with the iterative inversion algorithm and
analyzed the limitations of the iterative inversion algorithm.
We have also demonstrated the applications of the network
inversions obtained by the SP-based inversion algorithm to
examining and improving the generalization performance of
trained networks. The simulation results show that the network
inversions are useful for detecting generalization errors and
improving the generalization performance of trained networks.

ACKNOWLEDGMENT

The authors are grateful to Prof. T. Tezuka of Kyoto
University for his valuable suggestions and discussions on this
research and S. Murakami for his help in computer simula-
tions. The authors also would like to thank the anonymous
referees for improvements to the article, as suggested by their
comments.

REFERENCES

[1] M. B. Bazaraa, H. D. Sherali and C. W. Shetty,Nonlinear Programming
Theory and Algorithms, 2nd ed. New York: Wiley, 1993.

[2] L. Behera, M. Gopal, and S. Chaudhury, “On adaptive trajectory tracking
of a robot manipulators using inversion of its neural emulator,”IEEE
Trans. Neural Networks, vol. 7, pp. 1401–1414, 1996.

[3] C. W. Bishop,Neural Networks for Pattern Recognition. Oxford, U.K.:
Oxford Univ. Press, 1995.

[4] C. W. Bishop and C. Legleye, “Estimating conditional probability
densities for periodic variables,” inAdvances in Neural Information

Processing Systems, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds.,
vol. 7. Cambridge, MA: MIT Press, 1995, pp. 641–648.

[5] V. Chvátal,Linear Programming San Francisco, CA: W. H. Freeman,
1983.

[6] D. Colton and R. Kress,Inverse Acoustic and Electromagnetic Scattering
Theory. Berlin, Germany: Springer-Verlag, 1992.

[7] D. E. Demers, “Learning to invert many-to-one mapping,” Ph.D. dis-
sertation, Univ. California, San Diego, 1992.

[8] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugenics, vol. 7, pt. 2, pp. 179–188, 1936.

[9] C. L. Giles and T. Maxwell, “Learning, invariance, and generalization in
high-order neural networks,”Appl. Opt., vol. 26, pp. 4972–4978, 1987.

[10] G. M. L. Gladwell, Inverse Problems in Vibration. Dordrecht, The
Netherlands: Kluwer, 1986.

[11] D. A. Hoskins, J. N. Hwang, and J. Vagners, “Iterative inversion of
neural networks and its application to adaptive control,”IEEE Trans.
Neural Networks, vol. 3, pp. 292–301, 1992.

[12] J. N. Hwang, J. J. Choi, S. Oh, and R. J. Mark, II, “Query based learning
applied to partially trained multilayer perceptrons,”IEEE Trans. Neural
Networks, vol. 2, pp. 131–136, 1991.

[13] S. Haykin,Neural Networks. New York: Macmillan, 1994.
[14] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real time learning algorithm

for a multilayered neural network based on extended Kalman filter,”
IEEE Trans. Signal Processing, vol. 40, 1992.

[15] R. A. Jacobs, M. I. Jordan, M. I. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,”Neural Comput., vol. 3, pp. 79–87, 1991.

[16] M. I. Jordan and D. E. Rumelhart, “Forward models: supervised learning
with a distal teacher,”Cognitive Sci., vol. 16, pp. 307–354, 1992.

[17] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the EM algorithm,”Neural Comput., vol. 6, pp. 181–214, 1994.

[18] M. Kawato, “Computational schemes and neural network models for for-
mation and control of multijoint arm trajectory,” inNeural Networks for
Control, W. T. Miller, R. S. Sutton, and P. J. Werbos Eds. Cambridge,
MA: MIT Press, 1990, pp. 197–228.

[19] J. Kindermann and A. Linden, “Inversion of neural networks by gradient
descent,”Parallel Computing, vol. 14, pp. 277–286, 1990.

[20] A. Kirsch and R. Kress, “A numerical method for an inverse scattering
problem,” in Inverse and Ill-posed Problems, H. W. Engl and C. W.
Groetsch, Eds. Boston: Academic, 1987.

[21] M. A. Kramer and J. A. Leonard, “Diagnosis using backpropagation
neural networks: Analysis and criticism,”Computers Chem. Eng., vol.
14, pp. 1323–1338, 1990.

[22] M. Kuperstein, “neural model of adaptive hand-eye coordination for
single postures,”Science, vol. 239, pp. 1308–1311, 1988.

[23] J. A. Leonard and M. A. Kramer, “Radial basis function networks for
classifying process faults,”IEEE Contr. Syst. Mag., vol. 11, pp. 31–38,
1991.

[24] S. Lee and R. M. Kil, “Inverse mapping of continuous functions using
local and global information,”IEEE Trans. Neural Networks, vol. 5, pp
409–423, 1994.

[25] Y. Le Cun, Y. B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
ZIP code recognition,”Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[26] A. Linden, and J. Kindermann, “Inversion of multilayer nets,” in
Proc. Int. Joint Conf. Neural Networks, Washington, D.C., 1989, pp.
II425–II430.

[27] A. Linden, “Iterative inversion of neural networks and its applications,”
in Handbook of Neural Computation, M. Fiesler and R. Beale Eds.
Oxford, U.K.: Inst. Phys. Publishing and Oxford Univ. Press, 1997,
pp. B521–B527.

[28] B. L. Lu, H. Kita, and Y. Nishikawa, “Examining generalization
by network inversions,” inProc. 1991 Annu. Conf. Japanese Neural
Network Soc., Tokyo, Japan, 1991, pp. 27–28.

[29] , “A new method for inverting nonlinear multilayer feedforward
networks,” in Proc. IEEE Int. Conf. Ind. Electron. Contr. Instrumenta-
tion, Kobe, Japan, Oct. 28–Nov. 1, 1991, pp. 1349–1354.

[30] B. L. Lu, Y. Bai, H. Kita, and Y. Nishikawa, “An efficient multilayer
quadratic perceptron for pattern classification and function approxima-
tion,” in Proc. Int. Joint Conf. Neural Networks, Nagoya, Japan, Oct.
25–29, 1993, pp. 1385–1388.

[31] B. L. Lu, H. Kita, and Y. Nishikawa, “Inversion of feedforward neural
networks by a separable programming,” inProc. World Congr. Neural
Networks, Portland, OR, July 11–15, 1993, pp. IV415–IV420.

[32] B. L. Lu, “Architectures, learning and inversion algorithms for mul-
tilayer neural networks,” Ph.D. dissertation, Dept. Elect. Eng., Kyoto
Univ., Japan, 1994.

[33] B. L. Lu and K. Ito, “Regularization of inverse kinematics for redundant
manipulators using neural network inversions,” inProc. IEEE Int.

1290 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 6, NOVEMBER 1999

Conf. Neural Networks, Perth, Australia, Nov. 27–Dec. 1, 1995, pp.
2726–2731.

[34] , “Transformation of nonlinear programming problems into sep-
arable ones by multilayer neural networks,” inMathematics of Neural
Networks: Models, Algorithms, and Applications, S. W. Ellacott, J. C.
Mason, and I. J. Anderson, Eds. Boston, MA: Kluwer, 1997, pp.
235–239.

[35] C. E. Miller, “The simplex method for local separable programming,”
in Recent Advances in Mathematical Programming, R. L. Graves and P.
Wolfe, Eds. New York: McGraw-Hill, 1963, pp. 89–100.

[36] W. T. Miller, “Sensor-based control of robotic manipulators using
a general learning algorithm,”IEEE J. Robot. Automat., vol. 3, pp.
157–165, 1987.

[37] K. G. Mehrotra, C. K. Mohan, and S. Ranka, “Bounds on the number
of samples needed for neural learning,”IEEE Trans. Neural Networks,
vol. 2, pp. 548–558, 1991.

[38] S. Moon and J. N. Hwang, “Robust speech recognition based on joint
model and feature space optimization of hidden Markov models,”IEEE
Trans. Neural Networks, vol. 8, pp. 194–204, 1997.

[39] M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimiza-
tion calculations,” inLecture Notes in Mathematics630, G. A. Watson,
Ed. Berlin: Springer-Verlag, 1978.

[40] S. S. Rao,Engineering Optimization: Theory and Practice, 3rd ed.
New York: Wiley, 1996.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” inParallel Distributed
Processing: Exploration in the Microstructure of Cognition, vol. 1,
D. E. Rumelhart, J. L. McClelland, and PDP Research Group, Eds.
Cambridge, MA: MIT Press, 1986, pp. 318–362.

[42] R. S. Scalero and N. Tepedelenlioglu, “A fast new algorithm for training
feedforward neural networks,”IEEE Trans. Signal Processing, vol. 40,
1992.

[43] R. Shamir, “The efficiency of the simplex method: A survey,”Manage-
ment Sci., vol. 33, pp. 301–334, 1987.

[44] R. J. Williams, “Inverting a connectionist network mapping by back-
propagation of error,” inProc. 8th Annu. Conf. Cognitive Sci. Soc..
Hillsdale, NJ: Lawrence Erlbaum, 1986, pp. 859–865.

Bao-Liang Lu (M’94) was born in Qingdao, China,
on November 22, 1960. He received the B.S. degree
in instrument and control engineering from Qingdao
Institute of Chemical Technology, Qingdao, China,
in 1982, the M.S. degree in computer science and
engineering from Northwestern Polytechnical Uni-
versity, Xi’an, China, in 1989, and the Ph.D degree
in electrical engineering from Kyoto University,
Kyoto, Japan, in 1994.

From 1982 to 1986, he was with the Qingdao
Institute of Chemical Technology. From April 1994

to March 1999, he was a Frontier Researcher at the Bio-Mimetic Control
Research Center, the Institute of Physical and Chemical Research (RIKEN),
Japan. Currently he is a Staff Scientist at the Brain Science Institute, RIKEN.
His research interests include neural networks, brain-like computers, pattern
recognition, mathematical programming, and robotics.

Dr. Lu is a member of Japanese Neural Network Society, the Institute
of Electronics, Information and Communication Engineers of Japan, and the
Robotics Society of Japan.

Hajime Kita received the B.E, M.E., and Ph.D.
degrees in electrical engineering from Kyoto Uni-
versity, in 1982, 1984, and 1991, respectively.

From 1987 to 1997, he worked as an Instructor
at the Department of Electrical Engineering, Kyoto
University. Since 1997, he has been an Associate
Professor at the Department of Computational In-
telligence and Systems Science, Tokyo Institute of
Technology. His research interests are evolutionary
computation, neural networks, and socio-economic
analysis of energy systems.

Dr. Kita is a member of the Institute of Electrical Engineers of Japan,
the Institute of Electronics, Information and Communication Engineers of
Japan, the Institute of Systems, Control and Information Engineering of Japan,
Japanese Neural Network Society, Japan Society of Energy and Resources,
the Operations Research Society of Japan, and the Society of Instrument and
Control Engineers of Japan.

Yoshikazu Nishikawa was born in Ohmi-
Hachiman, Japan, on March 18, 1933. He received
the B.S, M.S., and the Doctor of Engineering
(Ph.D) degrees, all from Kyoto University, Japan,
in 1955, 1957, and 1962, respectively.

In 1960, he joined the Department of Electrical
Engineering, Faculty of Engineering, Kyoto
University. Since 1972, he has been Professor
of the Laboratory of Instrument and Control
Engineering, Faculty of Engineering, and also
the Laboratory of Complex Systems Science and

Engineering, Graduate School of Engineering, Kyoto University. From 1993
to 1996, he was Dean of the Faculty of Engineering and the Graduate School
of Engineering, and also Vice President of the University. Since April, 1996,
after retirement from Kyoto University, he has been Dean and Professor
of the Faculty of Information Sciences, Osaka Institute of Technology,
Japan. His research interest includes systems planning, systems optimization,
systems control, nonlinear systems analysis and synthesis, especially those of
complex systems. He is currently working on bioinformatics including neural
networks, evolutionary algorithms and artificial life, and also autonomous
decentralized and/or emergent function generation approaches to complex
systems planning, design, and operation.

Dr. Nishikawa is a member of the Science Council of Japan and many
other organizations on Science and Engineering.

