
1244 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Task Decomposition and Module Combination Based on Class
Relations: A Modular Neural Network for Pattern Classification

Bao-Liang Lu and Masami Ito

Abstract—In this paper, we propose a new method for de-
composing pattern classification problems based on the class
relations among training data. By using this method, we can
divide a KKK-class classification problem into a series ofKKK

2
two-

class problems. These two-class problems are to discriminate class
CiCiCi from classCjCjCj for i =i =i =1; � � � ;KKK and j = i+j = i+j = i+1, while the existence
of the training data belonging to the otherK�K�K�2 classes is ignored.
If the two-class problem of discriminating classCiCiCi from classCjCjCj
is still hard to be learned, we can further break down it into a
set of two-class subproblems as small as we expect. Since each of
the two-class problems can be treated as a completely separate
classification problem with the proposed learning framework,
all of the two-class problems can be learned in parallel. We
also propose two module combination principles which give
practical guidelines in integrating individual trained network
modules. After learning of each of the two-class problems with
a network module, we can easily integrate all of the trained
modules into a min–max modular (M3) network according to
the module combination principles and obtain a solution to
the original problem. Consequently, a large-scale and complex
KKK-class classification problem can be solved effortlessly and
efficiently by learning a series of smaller and simpler two-class
problems in parallel.

Index Terms—Min–max modular neural network, module com-
bination, parallel learning, pattern classification, task decompo-
sition.

I. INTRODUCTION

ONE OF THE most important difficulties in using artifi-
cial neural networks for solving large-scale real-world

problems is how to divide a problem into smaller and simpler
subproblems; how to assign a network module to learn each
of the subproblems; and how to recombine the individual
modules into a solution to the original problem. In the last
several years, many researchers have studied modular neural-
network learning approaches to dealing with this problem, for
example see [4], [6], [13], [18], [25], [30]. Up to now, various
task decomposition methods have been developed based on
the divide-and-conquer technique [7]. These methods can be
roughly classified into three classes as follows.

A. Explicit Decomposition

Before learning, a problem is divided into a set of sub-
problems by the designer who should have some domain

Manuscript received April 15, 1998; revised March 26, 1999 and May 28,
1999.

B.-L. Lu is with the Laboratory for Brain-Operative Device, RIKEN Brain
Science Institute, Wako-shi, Saitama, 351-0198, Japan.

M. Ito, deceased, was with Bio-Mimetic Control Research Center, the Insti-
tute of Physical and Chemical Research (RIKEN), Shimoshidami, Moriyama-
ku, Nagoya, 463-0003, Japan.

Publisher Item Identifier S 1045-9227(99)07235-5.

knowledge and deep prior knowledge concerning the decom-
position of the problem [11]. Several modular neural-network
systems have been developed based on this decomposition
method, see for instance [15], [29]. The limitation of this
method is that sufficient prior knowledge concerning the
problems is necessary.

B. Class Decomposition

Before learning, a problem is broken down into a set of
subproblems according to the inherent class relations among
training data [2], [6], [12]. In contrast to the explicit decom-
position, this method requires only some common knowledge
concerning the class relations among training data. According
to this method, a -class problem is divided into two-class
problems by using the class relations. The number of training
data for each of the two-class problems is the same as the
original -class problem.

C. Automatic Decomposition

A problem is decomposed into a set of subproblems with the
progressing of learning. Most of the existing decomposition
methods fall into this category: for instance, the mixture of
experts architecture [13], [14] and the multisieving neural
network [18]–[20]. From computational complexity’s point of
view, the former two methods are more efficient than this one
because a problem has been decomposed into subproblems
before learning. Therefore, they are suitable for solving large-
scale and complex problems. The advantage of this method is
that it is more general than the former ones because it can work
when any prior knowledge concerning the problem is absent.

In this paper, we address -class classification problems,
where each input vector belongs to exactly one ofclasses
represented by , , respectively. We propose a
new decomposition method for dividing a -class problem
into a set of relatively smaller and simpler two-class problems.
The central idea underlying this method is to use the class
relations among training data [21], which is similar to the class
decomposition method mentioned above. Our method has two
important advantages over the class decomposition method as
follows.

1) The two-class problem obtained by our method is to
discriminate class from class for
and , while the existence of the training
data of the other classes is ignored. Therefore,
the number of training data for each of the two-class
problems is , which is independent of the number
of classes . Here, for simplicity of description, the
assumption we made is that each of the classes has the

1045–9227/99$10.00 1999 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 10, NO. 5, SEPTEMBER 1999 1245

(a) (b) (c) (d)

Fig. 1. Illustration of (a) a three-class problem and (b), (c), and (d) the related three two-class problems. In (b), (c), and (d), the desired outputs corresponding
to the inputs in the shadow areas should be�. Otherwise,1 � �. The three classes are represented as “1,” “2,” and “3.” The dashed lines denote desirable
boundaries among the classes. This notation will be also used in Fig. 2.

same number of training data. However, the two-class
problem obtained by the class decomposition method has
to discriminate between one class and the rest classes.
Therefore, the number of training data for each of the
two-class problems is , which is the same as the
original -class problem.

2) If the two-class problem of discriminating classfrom
class is still hard to be learned, it can be further
divided into a number of two-class subproblems as
small as the user expects by using the decomposition
method suggested here. However, the class decom-
position method can not be applied to decomposing
two-class problems.

We also propose two module combination principles which
give practical guidelines in integrating the individual trained
modules. After learning of each of the two-class problem with
a network module, we can easily integrate all of the trained
modules into a min–max modular (M) network according
to the proposed module combination principles and obtain a
solution to the original problem. Consequently, a large-scale
and complex -class problem can be solved effortlessly and
efficiently by learning a series of relatively smaller and simpler
two-class problems in parallel.

The remainder of this paper is organized as follows. In
Section II, we present a new decomposition method. In
Section III, we give two module combination principles
and a new modular neural-network architecture. Section IV
presents several examples and simulation results. Section V
mentions the related work and compares the proposed modular
network with other models. Finally, conclusions are given in
Section VI.

II. TASK DECOMPOSITION

The decomposition of a large-scale and complex problem
into smaller and simpler subproblems is the first step to
implement modular neural-network learning. In this section,
we present a new method for decomposing a-class classifi-
cation problem into a series of smaller and simpler two-class
problems.

A. Decomposition of -Class Problems

Suppose that grandmother cells are used as output repre-
sentation, in which output units can only represent
classes of patterns at most, and one and only one output unit

is active at a time [3]. Let be the training set for a -class
problem

(1)

where is the input vector, is the desired
output, and is the number of training data.

Following the class decomposition method [2], [6], [12], a
-class problem can be divided into two-class problems.

The training set for each of the two-class problems is defined
by

for (2)

where is the desired output which is defined by

if belongs to class

if belongs to class
(3)

where is a small positive real number, denotes all the
classes except . It should be noted that the number of
training data for each of the two-class problems given by (2)
is the same as the original-class problem. Fig. 1 illustrates a
three-class classification problem and its three partitions, i.e.,
three two-class problems obtained by the class decomposition
method [2], [6], [12].

If a -class problem is a large and complex problem
(e.g., is a large number and there are a large number of
training data for each of the classes), to learn the two-class
problems defined by (2) may be still intractable. One may ask:
whether can the two-class problems be further decomposed
into relatively smaller and simpler two-class problems? We
will give an answer to this question in the remainder of this
section.

B. Decomposition of Two-Class Problems

By using the class relations provided by training set, the
input vectors can be easily partitioned into subsets in the
form

for (4)

where is the number of data of , all of have
the same desired outputs, and . Note that this
partition is unique.

We suggest that each of the two-class problems defined
by (2) can be further divided into relatively smaller

1246 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Illustration of six relatively smaller two-class problems obtained by
partitioning the two-class problem shown in Fig. 1(b), (c), and (d) according
to the proposed decomposition method.

two-class problems. The training set for each of the smaller
two-class problems is given by

for and (5)

where and are the input vectors
belonging to class and class , respectively. It is important
to emphasize that the two-class problem defined by (5) is to
discriminate between class and class for
and , and the existence of the training data of the other

classes is ignored. Obviously, this two-class problem
is much smaller than that defined by (2) if is large and the
number of data for each of the -classes is roughly equal.
Fig. 2 illustrates the partition of the three two-class problems
depicted in Fig. 1(b), (c), and (d) into six relatively smaller
two-class problems by using the proposed task decomposition
method.

From (5), we see that partitioning each of the two-class
problems into smaller two-class problem is simple and
straightforward, and no domain specialists or a prior knowl-
edge concerning the decomposition of the learning problems
are required. Consequently, any user can easily perform this
decomposition if he or she knows the number of training data
belonging to each of the classes.

C. Fine Decomposition of Two-Class Problems

Even though a -class problem can be broken down into
relatively smaller two-class problems, some

of the two-class problems may be still hard to be learned.
For example, the well-known “two-spirals” problem is a two-
class problem, but it is hard to be learned by plain three-layer
perceptrons trained by the standard backpropagation algorithm
[16]. In order to deal with this problem, we suggest that
the two-class problem defined by (5) can be further
decomposed into a number of two-class subproblems as small
as the user expects according to the class relations among
training data.

Assume that the input set defined by (4) is partitioned
into subsets in the form

for (6)

where is the number of data of , and .
This partition is not unique in general. One may give a
partition randomly or by using a prior knowledge concerning
the learning problems. We will discuss two different methods
for implementing this partition and compare their performance
in Section IV in detail.

After dividing the training input set into subsets
(6), the training set for each of the smaller and simpler

two-class problems can be given by

for

and (7)

where and are the input vectors
belonging to class and class , respectively. If the training
set has only two different elements in the form

for

and (8)

this training set is obviously a linearly separable problem
because any two different training patterns can always be
separated by a hyper-plane. In Section IV, we will demon-
strate how to decompose the XOR problem into four linearly
separable problems according to (8).

III. M IN–MAX MODULAR NETWORK

In order to implement modular learning, we have to deal
with two key problems. One is how to decompose a complex
learning problem into a number of independent smaller and
simpler subproblems. The other is how to recombine individual
trained modules into a solution to the original problem. In
this section we first introduce three integrating units. Then
we present two module combination principles and discuss
how to reduce the number of learning problems. Finally,
we present a new hierarchical, parallel, and modular neural-
network architecture called themin–max modularnetwork.

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 10, NO. 5, SEPTEMBER 1999 1247

A. Three Integrating Units

We introduce three integrating units, namely MIN, MAX,
and INV, respectively, which are the elements of connecting
individual trained modules.

The basic function of an MIN unit is to find a minimum
value from its multiple inputs. The transfer function of the
MIN unit is given by

(9)

where are the inputs and is the output which is
the smallest one among the inputs, for ,
and .

The basic function of an MAX unit is to find a maximum
value from its multiple inputs. The transfer function of the
MAX unit is given by

(10)

where are the inputs and is the output which is
the largest one among the inputs.

The basic function of an INV unit is to invert its single
input. The transfer function of the INV unit is given by

(11)

where , , and are the upper limit of its input value, input,
and output, respectively.

From the definitions of the three integrating units mentioned
above, we can see that the MIN, MAX, and INV units are
similar to the logical AND, OR, and NOT gates, respectively.
The essential difference between the integrating units and
the logical gates is that both the inputs and outputs of the
integrating units are real continuous values, instead of binary
values.

B. The Principles of Module Combination

According to (7), a -class classification problem can be
divided into

(12)

smaller and simpler two-class problems. Suppose that each of
the two-class problems has been learned by a network module
completely. One may ask a question: how to recombine the
outputs of the individual trained modules into a solution to the
original problem? In this section, we will present two module
combination principles which give the user a systematic way
of integrating the individual trained modules.

1) Minimization Principle: The modules, which were
trained on the data sets which have the same training inputs
corresponding to desired outputs , should be integrated
by the MIN unit.

Let us give an explanation of the minimization princi-
ple through the two-class classification problems depicted in
Fig. 2(a) and (b). Suppose that the two-class problems had
been learned by two modules and , respectively.
How can the outputs of the two individual modules be recom-
bined into a solution to the original two-class problem depicted

in Fig. 1(b)? A simple way to deal with this problem is to find
minimum output values from the two individual modules. The
reason for performing thisminimizationoperation is that the
training inputs corresponding to desired outputs are the
same in the two problems, while the difference between them
is only the training inputs whose desired outputs are. For
example, if the regions represented as “U” in Fig. 2(a) and
(b) are classified as class “1” by the two trained modules,
i.e., high responses are generated by the two modules when
the inputs from the regions are presented, these classification
are correct from individual modules’ point view because there
exists no training data in the regions. But, from the original
problem’s point of view, these classifications are incorrect
since the regions in the original problem should correspond to
low response [see Fig. 1(b)]. The combination of the outputs
of the two modules through the MIN unit gives low response
in both the regions. From this example, we see that the MIN
unit makes the proper decision region of each module active
and the incorrect decision region of each module prohibitive.
In fact, the MIN unit implements a competition among the
individual modules. The winner is the module whose output
is the lowest. Although this example is simple, it illustrates
the essential concepts.

2) Maximization Principle: The modules, which were
trained on the data sets which have the same training inputs
corresponding to desired outputs, should be integrated by
the MAX unit.

Consider the combination of the individual network modules
which were trained on the following two-class
problems defined by (7):

(13)

From the definition of the above two-class problems, the
training sets in each row of (13) have the same training inputs
corresponding to the desired outputs . In contrast, the
training sets in each column of (13) have the same training
inputs corresponding to the desired outputs. According to
the minimization and maximization principles, the
modules that were trained on the two-class problems
can be integrated into an Mnetwork as illustrated in Fig. 3.

C. Reduction of the Number of Learning Problems

From (5), we see that a -class problem can be broken
down into two-class problems. In fact, among
them, only two-class problems are different, and other

ones can be replaced by the inverses of the former ones.
Therefore, the number of two-class problems that need to be
learned can be reduced to . For example, the problem
depicted in Fig. 2(a) is the same as depicted in Fig. 2(c)
from pattern classification’s point of view. The difference
between them is only their desired outputs. Suppose that
has been learned by a network module correctly. If we
need to learn , we can get the solution by using the inverse

1248 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 3. The M3 network consisting ofNi�Nj individual network modules,
Ni MIN units, and one MAX unit.

of the output of , instead of training a new network
module on . According to the above discussion, the number
of two-class problems as given by (12) can be reduced to

(14)

Fig. 13 illustrates the proposed min–max modular net-
work for solving a four-class classification problem, in
which INV units are used to invert the outputs of

, and , respectively.

D. Min–Max Modular Network

After training of each of the modules which were assigned
to learn associated subproblems, all of the individual trained
modules can be easily integrated into an Mnetwork by using
the MIN, MAX, or/and INV units according to the proposed
module combination principles. Letdenote the actual output
vector of the whole M network for a -class classification
problem, let denote the transfer function of the M
network. We may then write

(15)

where , and is called thediscriminant function,
which discriminates the patterns of classfrom those of the
rest classes. The Mnetwork is said to assign an input to
class if

and for (16)

where and denote the high and low desired outputs,
respectively, is a real number, which denotes the error
tolerance. For example, and are set to and in
the simulations of this paper.

In the following, we describe the discriminant functions
of two kinds of M networks: i) no INV unit is involved

in integrating individual trained modules and ii) the INV units
are involved in module combination.

1) No INV Unit: The discriminant function of the
M network which is constructed to learn the
two-class problems can be given by

(17)

where is the activation function of the module
trained on (5).

In a similar way, the discriminant function of the M
network which is constructed to learn

two-class problems can be expressed as

(18)

where is the activation function of the module

trained on (7). It should be noted that

is exactly equivalent to if .
2) Involving INV Units: By replacing the module for

with the inverse of the module , the discriminant
functions defined by (17) and (18) can be restated as

(19)

and

(20)

respectively, where the terms and
denote the inverses of

and , respectively, which
can be implemented by the INV units,denotes the upper
limit of the output value of each module. For example,is
set to one in all of the following simulations because the
standard sigmoidal activation function is used.

IV. EXAMPLES AND SIMULATIONS

In this section, six examples are presented. The first one is
used to illustrate how to decompose a linearly nonseparable
problem into a number of linearly separable problems. The
second one is used to demonstrate how to divide a complex
two-class problem into a number of smaller and simpler two-
class problems according to two different partition techniques.
The third and fourth ones are simulated to examine the
generalization performance of the proposed Mnetwork for
solving real multiclass classification problems. In the fifth
example, the method for randomly dividing a problem into a
number of subproblems is examined on its effects on training
time and generalization performance. The last one is used to
demonstrate the classification power and effectiveness of the

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 10, NO. 5, SEPTEMBER 1999 1249

TABLE I
PERFORMANCE COMPARISON OFSINGLE MLQP’s AND THE PROPOSEDM3

NETWORKS. EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS

TABLE II
PERFORMANCE COMPARISON OFSINGLE MLP’s AND THE PROPOSEDM3

NETWORKS ON THEIMAGE SEGMENTATION PROBLEM. VALUES ARE MEAN (TOP

ROW) AND STANDARD DERIVATIONS (BOTTOM ROW) OVER TEN SIMULATIONS

proposed M network for solving large-scale and complex
problems.

In the following simulations, the structures of all the single
and modular networks are chosen to be multilayer percep-
trons (MLP’s) with one hidden layer or multilayer quadratic
perceptrons (MLQP’s) [17] with one hidden layer. All of the
single and modular networks are trained by the standard back-
propagation algorithm [27] or the modified backpropagation
algorithm [1]. The momentums are set all to 0.9. The learning
rates are selected through practical experiments. A summary of
the simulation results is shown in Tables I–IV, where “Max”
means the maximum CPU time required to train any network
modules. All of the simulations were performed on a SUN
Ultra2 workstation.

A. XOR Problem

It is known that the XOR problem is a linearly nonseparable
problem. The four training inputs for the XOR problem are de-
picted in Fig. 4(a). According to the proposed decomposition
method (8), the XOR problem was divided into four linearly
separable problems: , and , which
are depicted in Fig. 4(b)–(e), respectively. Four perceptrons
represented as , and were selected to learn

, and , respectively. Each of the
perceptrons was trained by the traditional perceptron learning
algorithm [24]. The four trained perceptrons were integrated
into an M network as shown in Fig. 5 according to the

TABLE III
PERFORMANCE COMPARISON OF FOUR DIFFERENT RANDOM

PARTITIONS. VALUES ARE MEAN (TOP ROW) AND STANDARD

DEVIATIONS (BOTTOM ROW) OVER TEN SIMULATIONS

TABLE IV
PERFORMANCE COMPARISON OFPLAIN MLP, CLASS-SENSITIVE NEURAL

NETWORK, AND THE PROPOSEDM3 NETWORK ON THE SHUTTLE DATA

SET. EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS

(a) (b) (c)

(d) (e)

Fig. 4. (a) The four training inputs for the original XOR problem. (b)
The training inputs forT (1; 1), (c) T (1; 2), (d) T (2; 1), and (e)T (2; 2),
respectively. The black and white points represent the inputs whose desired
outputs are “0” and “1,” respectively, and grey represents only the background
of the figures. This notation will be also used in Figs. 7 and 8.

module combination principles. The responses of the four
perceptrons, their combinations, and the entire Mnetwork
are shown in Fig. 6(a)–(g), respectively. Comparing Fig. 4(a)
with Fig. 6(g), we can see that the Mnetwork recognizes the
XOR problem correctly.

1250 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 5. The M3 network for the XOR problem, where four perceptron
computational units, namelyP11; P12; P21, andP22, are regarded as four
network modules.

B. Two-Spirals Problem

The “two-spirals” problem [16] is chosen as a benchmark
problem for this study because it is an extremely hard two-
class problem for plain MLP’s, and the input–output mapping
formed by each of the individual trained modules is visible.
The aim of this example is to demonstrate how to divide
a complex two-class problem into a series of smaller and
simpler two-class problems by using two different partition
techniques, namely randomly partition and space-grid par-
tition, respectively. The 194 training inputs of the original
two-spirals problem are shown in Fig. 7(a). In the following
four comparative simulations were performed on this problem.

In the first simulation, the original training inputs belonging
to class and class [see Fig. 7(a)] were divided into six
training subsets randomly according to a uniform distribution
in the two-dimensional space. These six training subsets are
shown in the panels of the top two rows of Fig. 8. The
training inputs of the nine subproblems were constructed from
the combinations of the above six training subsets. These
training inputs are shown in the panels of the bottom three
rows of Fig. 8. The nine subproblems are represented as

, and
, respectively. Note that the subproblems in the same row

of Fig. 8 have the same training inputs corresponding to the
desired outputs “1,” i.e., the same white points.

Nine MLQP’s were selected as the network modules to learn
the nine subproblems. Each of the six network modules has
20 hidden units and each of other three network modules has
25 hidden units. After the nine subproblems had been learned
by the corresponding network modules, which are represented
as , and ,
respectively, the individual trained modules were integrated
into an M network as illustrated in Fig. 9. The responses
of the individual trained modules are shown in Fig. 10(a)–(i),
respectively. The combination of the outputs of ,
and by the MIN unit is shown in Fig. 11(a). The
combination of the outputs of , and by the
MIN unit is shown in Fig. 11(b). The combination of the
outputs of , and by the MIN unit is shown
in Fig. 11(c). The response of the entire Mnetwork is shown
in Fig. 12(a).

In the second simulation, the original training inputs be-
longing to class and class were divided into six training
subsets by partitioning the input variable through the axis of
abscissas into three slight overlapping intervals [21]. We call
this partition method thespace-grid partition. The training
inputs of the nine subproblems were constructed from the
combinations of the above six training subsets. Similar to the
first simulation, nine MLQP’s were selected as the network
modules to learn the corresponding nine subproblems. All
of the MLQP’s were chosen to be five hidden units, except
that one module was selected to be 25 hidden units. The
corresponding M network has the same structure as shown
in Fig. 9. The response of the entire Mnetwork is shown in
Fig. 12(b).

In the third simulation, the original problem was divided
into 36 subproblems by using the space-grid partition method.
The aim of this simulation is to show both the maximum
and the total CPU times required for training the individual
modules can be reduced by dividing the original problem into
a large number of smaller and simpler two-class problems, i.e.,
further decreasing the complexity of each of the subproblems.
The response of the corresponding Mnetwork is shown in
Fig. 12(d).

Although 100% success rates on training data were achieved
by all of the three simulations mentioned above, the success
rate on test data, i.e., the generalization accuracy, obtained
by the first simulation is lower than those obtained by the
second and third simulations. This test result can also be
observed directly by comparing Fig. 12(a) with (b) and (c).
The reason for this result seems that the geometric relations
among the original training data [see Fig. 7(a)] was damaged
to a large extent by randomly dividing the original problem
into several subproblems (see the panels of the bottom three
rows of Fig. 8). In contrast to randomly partition, if the interval
overlapping is wide enough, the geometric relations among
the original training data can be well preserved in each of
the subproblems obtained by using the space-grid partition
method. We think that analysis of the randomly partition
and space-grid partition methods theoretically is an important
problem for the future work.

In the fourth simulation, the original two-spirals problem
was learned by a plain MLQP with 40 hidden units. Even
200 000 epochs were performed, the sum of squared error
was still about 0.57. The network has not yet achieved the
desired error (0.01). The response of the network is shown in
Fig. 12(d).

The CPU times required to train the single and modular
networks in the above four simulations are shown in Table I.
The generalization performance of the single and modular
networks are examined on 1746 test inputs as shown in
Fig. 7(b). The test results are also shown in Table I.

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 10, NO. 5, SEPTEMBER 1999 1251

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. The responses of (a)P11, (b) P12 (b), (c) P21, (d) P22, (e) the combination ofP11 and P12, (f) the combination ofP21 andP22, and
(g) the entire M3 network, respectively. Black and white represent the outputs of “0” and “1,” respectively, and grey represents intermediate value.
This notation will be also used in Figs. 10–12.

C. Vehicle Classification

This real classification problem [22] is to classify a given
vehicle silhouette as one of four types of vehicle by using a set
of features extracted from the silhouette. The vehicle silhou-
ettes were captured with a spatial resolution of 128128
pixels quantized to 64 grey levels. These silhouettes were
cleaned up, binarized and subsequently processed to produced
18 variables intended to characterize shape. The data set was
divided into training and test sets. Each of the two sets consists
of 423 data. The number of attributes is 18 and the number of
classes is four. The original problem was decomposed into
two-class problems. Six MLQP’s were selected as the network
modules to learn the six subproblems, respectively. All of the
MLQP’s were chosen to be four hidden units, except that the
module used to train on was selected to be eight hidden
units. The six individual trained modules were integrated into
an M network as illustrated in Fig. 13. The original problem
was also learned by a plain MLQP with 24 hidden units. The
simulation results are shown in Table I.

D. Image Segmentation

The image segmentation problem [22] is a real problem.1

The instances in the problem were drawn randomly from a
database of seven outdoor color images. The images were
hand-segmented to create a classification for every pixel as
one of brick-face, sky, foliage, cement, window, path, and
grass. The problem consists of 210 training data and 2100
test data. The number of attributes is 18 and the number of
classes is seven. The original problem is decomposed into
two-class problems according to the proposed decomposition
method (5). Each of the two-class problems consists of 60
training data. Each of the 21 two-class problems was learned
by an MLP with one and two hidden units, respectively. All
of the 21 trained modules were integrated into an Mnetwork

1In the original data set, there are 19 attributes. Since the third attribute is
a constant number, we delete it from the data set and use only 18 attributes
in the simulation.

(a) (b)

Fig. 7. The training inputs and test inputs for the two-spirals problem: (a)
shows the 194 training inputs and (b) shows the 1746 test inputs, which are
different from the 197 training inputs.

in a similar way as described in the preceding example. The
original problem was also learned by a plain MLP with 18 and
33 hidden units, respectively. The reason of selecting 18 and
33 hidden units for the single MLP’s is to make the related
M networks have about the same numbers of weights and
bias as the single MLP’s. Ten simulation runs were performed
with both single MLP’s and the Mnetworks. The results are
shown in Table II. For the single MLP with 33 hidden units,
even 200 000 epochs were performed ten times with various
initial weights and learning rates, no successfully learning was
obtained, i.e., the desired error (0.05) was not achieved. From
Table II, we can see that the proposed Mnetwork is far
superior to single networks in training time, and meanwhile
its generalization performance is better than that of single
networks.

E. DNA Problem

The DNA problem is a three-class classification problem
[22], which is to recognize the following three classes: 1)
exon/intron (EI) boundaries; 2) intron/exon (IE) boundaries;
and 3) neither (N). The DNA dataset consists of 2000 training
data and 1186 test data. The number of attributes is 180 and the
number of classes is three. Let , and be the training
input subsets for class IE, class EI, and class N, respectively.

1252 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 8. Randomly partition of the two-spirals problem. The panels in the top
two rows show the 97 training inputs corresponding to desired output “1” and
97 training inputs corresponding to desired output “0” are randomly divided
into three parts, respectively. The panels in the bottom three rows show the
nine subproblems constructed from the combinations of the training inputs in
the panels of the top two rows.

The numbers of data in , and are 464, 485, and
1051, respectively. In the simulations, for , and
3 are randomly divided into several roughly equal subsets.
The following four kinds of partitions are performed: 1)

, and ; 2) , and ;
3) and ; and 4) , and

. According to (14), the total numbers of subproblems
for the above four partitions are 20, 51, 125, and 489,
respectively. The maximal numbers of training data for each of
the subproblems belonging to the above four partitions are 506,
317, 203, and 115, respectively. In the simulations, for each of
the four kinds of partitions, the original dataset was randomly
divided into a number of subproblems ten times. Three-layer
MLP’s with four different numbers of hidden units, i.e., 1) five
hidden units; 2) three hidden units; 3) two hidden units; and
4) one hidden unit, were selected as network modules for the
above four kinds of partitions, respectively. All the network

Fig. 9. The M3 network for the two-spirals problem.

modules were trained by the conventional backpropagation
algorithm [27]. The performance of the corresponding M
networks are shown in Table III. From the simulation results,
we see that even the DNA problem was randomly divided
into 489 subproblems, the corresponding Mnetwork can still
obtain better generalization performance (93.51%) than single
MLP (91.2%), C4.5 (92.4%),-NN (85.4%), and probabilistic
neural network (83.6%) [5], [23], and meanwhile the training
time can be reduced greatly.

F. Shuttle Problem

The shuttle problem concerns the position of radiators
within the Space Shuttle of NASA. The shuttle data set [22] is
a seven-class problem and contains nine attributes all of which
are numerical. The training set consists of 43 500 patterns and
the test set contains 14 500 patterns. In order to investigate the
classification power and effectiveness of the Mnetwork and
to compare it with the conventional MLP and class-sensitive
neural network (CSNN) [2], [6], [12], in learning of large-
scale and complex pattern classification problems, the shuttle
data set is learned by the following three kinds of networks: i)
single MLP; ii) CSNN; and iii) the M network. The MLP is
trained by the standard backpropagation algorithm [27], while
both CSNN and the Mnetwork were trained by the modified
backpropagation algorithm [1]. In the simulations, training was
stopped when no training patterns remained misclassified or
the total number of epochs was reached to 20 000.

1) Single MLP: The shuttle problem was first learned by
a single MLP with one hidden layer. We investigated the
following hidden layer sizes for the MLP’s: 30, 60, 90, 120,
150, and 180. Unfortunately, no successfully learning was
obtained. Since the smallest sum of squared error is still about
4378, no any training data and test data can be correctly
recognized by the trained single MLP’s, i.e., the successfully
rates on both training data and test data are 0!

2) CSNN: According to class decomposition method [2],
[6], [12], the original shuttle problem was divided into seven
two-class problems each of which contains 43 500 training
data. Seven MLP’s with one hidden layer are selected to learn
the seven two-class problems. We investigated the following

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 10, NO. 5, SEPTEMBER 1999 1253

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. The responses of (a)M11, (b)M12, (c)M13, (d)M21, (e)M22, (f) M23, (g)M31, (h)M32, and (i)M33, respectively.

(a) (b) (c)

Fig. 11. The intermediate responses of the M3 network illustrated in Fig. 9:
(a) shows the combination of the outputs ofM11

; M
12, andM13. (b) Shows

the combination of the outputs ofM21
; M

22, andM23. (c) Shows the
combination of the outputs ofM31

; M
32, andM33.

hidden layer sizes for the MLP’s: 30, 60, and 90. The best
learning accuracy was obtained with 60 hidden units. All of
the seven two-class problems could not be learned completely.
The simulation results are summarized in Table IV.

3) The Network: In this simulation, the training set
belonging to class is randomly divide into ten subsets
each of which contains about 3410 patterns, and the training
set belonging to class is randomly divided into two sub-
sets each of which contains 3374 patterns. After performing
these partitions, the total number of two-class subproblems
becomes 90.

Each of the 90 two-class problems is learned by an MLP
with a single hidden layer. The numbers of hidden units for
the MLP’s are selected within the range from 12 to 36. After
training of the 90 modules, the 90 trained modules were
integrated into an M network. The simulation results are

(a) (b)

(c) (d)

Fig. 12. The responses of the M3 networks and single network: (a) Shows
the response of the M3 network illustrated in Fig. 9, where the original
problem is divided into nine subproblems randomly. (b) Shows the response
of the M3 network with nine modules, where the original problem is divided
into nine subproblems by partitioning the input variable through the axis of
abscissas. (c) Shows the response the M3 network with 36 modules, where
the original problem is also divided into 36 subproblems by partitioning the
input variable through the axis of abscissas. (d) Shows the response of a plain
MLQP with 40 hidden units.

shown in Table IV. Although there exist 17 hard two-class
subproblems which could not be learned completely, success
rate on the training data set is near to 100%.

1254 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 13. The M3 network for the vehicle problem, a four-class problem.

The results of Table IV show that the Mnetwork is
superior to CSNN’s in the aspects of convergence speed,
learning accuracy, and generalization performance. The other
advantage of the M network over CSNN’s is that to get
absolute 100% success rate on the training data set or to reduce
the CPU time required for training each of the modules can be
efficiently achieved with the Mnetwork by directly applying
the task decomposition method to dividing each of the hard
two-class subproblems into a set of smaller and simpler two-
class subproblems, while to obtain 100% success rate on
training data by CSNN’s is quite difficult because it is hard to
achieve completely learning of each of the seven large two-
class problems by the modified backpropagation algorithm [1]
and the large two-class problems can not be further divided
into a set of relatively smaller and simpler two-class problems.

V. RELATED WORK

There is a variety of ties that can be made between the M
network and related work in machine perception, statistical
pattern classification, modular neural networks, and fuzzy
neural systems. In this section, we discuss some of these ties
and compare the Mnetwork with other models.

A. Multiple Discriminant Calculators

In [26], Nilsson presented a general-class classifier archi-
tecture that consists of individual discriminant calculators.
The basic ideas behind this architecture are to divide a-class
classification problem into individual two-class problems
and select the largest output as a solution to the original
problem from the individual discriminant calculators. By
applying this architecture to constructing multiclass classifiers,
he also proposed thelinear machineandpiecewise linear ma-
chine for solving a class of multiclass classification problems

known aslinearly separable. In addition, Duda and Hart [8]
gave the definition of thepairwise linearly separableproblem.
However, the classification capabilities of the linear machine
and piecewise linear machine limit their usefulness because
almost all the real classification problems such as the vehicle
and shuttle problems mentioned in the preceded section are
nonlinearly separable. Nevertheless, both the linear machine
and the piecewise linear machine can be considered as special
cases of the M network.

B. Pairwise Classifier

The idea of using maximizing operation to make final deci-
sion is well-known in statistical pattern recognition literature
and has a long theoretical background [8], [10]. Friedman re-
cently proposed an alternative statistical classification method
called pairwise classifierfor solving -class classification
problems [9]. The basic idea behind pairwise classifier is
to cast a -class problem into a series of two-class
problems based on statistic theory and use the maximizing
operation to select the final decision boundary from these
decision boundaries. The common feature between the M
network and Friedman’s method is that a-class problem
is divided into a series of two-class problems and each
of the two-class problems is learned independently, although
completely different techniques are used. On the other hand,
the combination mechanisms used in the Mnetwork and
the pairwise classifier are completely distinct. In the pairwise
classifier, the final decision boundary is selected from the
decision boundaries by performing the maximizing operation,
but in the M network, the trained network modules are
integrated by MIN units. A most remarkable difference
between the M network and the pairwise classifier is that fine
decomposition of two-class problems into a series of smaller
and simpler two-class problems can not be carried out with
Friedman’s method.

C. CSNN

CSNN was first proposed by Chen and You [6], and
rediscovered also by Ishihara and Nagano [12], and Anand and
his colleagues [2]. The basic idea of CSNN is to split a-
class problem into two-class problems as defined by (2). A
CSNN for a -class problem consists of network modules,
and the th network module is used to discriminate the patterns
of class from the patterns of the rest classes. In other words,
the th network module for class is trained on defined
by (2). Even if the number of patterns for each ofclasses
is roughly equal, may contain much more training patterns
belonging to than those belonging to . Such a two-class
classification problem is called animbalancedclassification
problem [1]. Anandet al. [1] have pointed out that the standard
backpropagation algorithm [27] converges slowly for learning
these imbalanced two-class problems, and have developed
a modified backpropagation algorithm for dealing with the
imbalanced two-class problems. They have shown that their
modified algorithm is faster than the standard one. However,
as we mentioned in Section II, if a -class problem is a large

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 10, NO. 5, SEPTEMBER 1999 1255

and complex problem, to learn each of the related two-class
problems defined by (2) is still intractable.

D. Fuzzy Min–Max Neural Networks

Various fuzzy neural networks involved minimizing (inter-
section) and maximizing (union) operations have been pro-
posed for different purposes. Although the functions of the
MIN and MAX units used in the M network are, respec-
tively, the same as the minimizing and maximizing operations
involved in the fuzzy neural networks, the essential purposes of
the MIN and MAX units in the M network are very different
from those of the minimizing and maximizing operations in
the fuzzy neural networks. For example, there are two essential
differences between the Mnetwork and two kinds offuzzy
min–max(FMM) neural networks [28], [31].

1) The MIN and MAX units in the M network are not
involved in the learning process and are only used to
connect each of trained modules after learning, while
the minimizing and maximizing operations in the FMM
networks are the weighting operations and performed in
both learning and recognition processes.

2) The structure of the Mnetwork is modular, while that
of the FMM networks is nonmodular.

VI. CONCLUSIONS

A fundamental modularity design paradigm for a broad
variety of problems is the divide-and-conquer technique. The
research on applying this technique to neural networks is
of extreme importance because it enables a broaden use of
neural networks. In this paper, we have proposed a new task
decomposition method, two module combination principles,
and a new modular neural-network architecture. The central
idea underlying the task decomposition method is based on
the class relations among training data. For a given-class
classification problem, we can divide the problem into a set of
smaller and simpler two-class problems by using the proposed
task decomposition method. Several attractive features of this
method can be summarized as follows.

1) We can break down a problem into a set of subprob-
lems as small as we expect even though we are not
domain specialists or we have no any prior knowledge
concerning the decomposition of the problem.

2) Training of each of the two-class problems can be greatly
simplified and achieved independently.

3) Different network structures or different learning al-
gorithms can be used to learn each of the problems.
The proposed module combination principles give us a
systematic method for integrating the individual trained
modules into a modular network by use of the three
integrating units.

The simulation results (see Tables I–IV) show several signif-
icant advantages of the modular network suggested here over
single networks such as easily designing network structure,
faster training, and high learning accuracy. The generalization

performance of the proposed modular network is about the
same as the single networks. The simulation results also show
that the proposed min–max modular network is superior to
the class-sensitive neural network [2], [6], [12] in convergence
speed and learning accuracy. The importance of the proposed
modular learning framework lies in the fact that it provides us
an efficient approach to solving large-scale, real-world pattern
classification problems.

ACKNOWLEDGMENT

The authors would like to thank the reviewers of this paper
for their thoughtful and valuable suggestions and comments.
The authors also would like to thank R. Anand of IBM Thomas
J. Watson Research Center for providing the source code of
his modified backpropagation algorithm. M. Ito died during
the revision of this paper, so under the circumstances B. L. Lu
wishes to dedicate this paper to his memory.

REFERENCES

[1] R. Anand, K. G. Mehrotra, C. K. Mohan, and S. Ranka, “An improved
algorithm for neural-network classification of imbalanced training sets,”
IEEE Trans. Neural Networks,vol. 4, pp. 962–963, 1993.

[2] , “Efficient classification for multiclass problems using modular
neural networks,”IEEE Trans. Neural Networks,vol. 6, pp. 117–124,
1995.

[3] J. A. Anderson,An Introduction to Neural Networks.Cambridge, MA:
MIT Press, 1995.

[4] Y. Bennani and P. Gallinari, “Task decomposition through a modular
connectionist architecture: A talker identification system,” inProc. 3rd
Int. Conf. Artificial Neural Networks,I. Aleksander and J. Taylor, Eds.,
vol. 1. Amsterdam, The Netherlands: North-Holland, Sept. 4–7, 1992,
pp. 783–786.

[5] M. R. Berthold and J. Diamond, “Constructive training of probabilistic
neural networks,”Neurocomputing,vol. 19, pp. 167–183, 1998.

[6] C. H. Chen and G. H. You, “Class-sensitive neural network,”Neural
Parallel Scie. Comput.,vol. 1, no. 1, pp. 93–96, 1993.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

[8] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[9] J. H. Friedman, “Another approach to polychotomous classification,”
Stanford University, Stanford, CA, Tech. Rep., 1996.

[10] K. Fukunaga,Introduction to Statistical Pattern Recognition,2nd ed.
San Diego, CA: Academic, 1990.

[11] P. Gallinari, “Modular neural net systems, training of,” inThe Handbook
of Brain Theory and Neural Networks,M. A. Arbib, Ed. Cambridge,
MA: MIT Press, 1995, pp. 582–585.

[12] S. Ishihara and T. Nagano, “Text-independent speaker recognition
utilizing neural-network techniques,” Tech. Rep. IEICE, vol. NC93-121,
pp. 71–77, 1994, in Japanese.

[13] R. A. Jacobs, M. I. Jordan, M. I. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,”Neural Comput.,vol. 3, pp. 79–87, 1991.

[14] R. A. Jacobs, M. I. Jordan, and A. Barto, “Task decomposition compe-
tition in a modular connectionist architecture,”Cognitive Sci.,vol. 15,
pp. 219–250, 1991.

[15] R. Jenkins and B. Yuhas, “A simplified neural-network solution through
problem decomposition: The case of the truck backer-upper,”IEEE
Trans. Neural Networks,vol. 4, pp. 718–722, 1993.

[16] K. Lang and M. Witbrock, “Learning to tell two spirals apart,” inProc.
1988 Connectionist Models Summer School. San Mateo, CA: Morgan
Kaufmann, June 17–26, 1988, pp. 52–59.

[17] B. L. Lu, Y. Bai, H. Kita, and Y. Nishikawa, “An efficient multilayer
quadratic perceptron for pattern classification and function approxima-
tion,” in Proc. Int. Joint Conf. Neural Networks,Nagoya, Japan, Oct.
25–29, 1993, pp. 1385–1388.

[18] B. L. Lu, H. Kita, and Y. Nishikawa, “A multisieving neural-network
architecture that decomposes learning tasks automatically,” inProc.
IEEE Conf. Neural Networks,Orlando, FL, June 28–July 2, 1994, pp.
1319–1324.

1256 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

[19] B. L. Lu, “Architectures, learning and inversion algorithms for mul-
tilayer neural networks,” Ph.D. dissertation, Dept. Elect. Eng., Kyoto
Univ., Japan, 1994.

[20] B. L. Lu, K. Ito, H. Kita, and Y. Nishikawa, “A parallel and modu-
lar multisieving neural-network architecture for constructive learning,”
in Proc. Inst. Elect. Eng. 4th Int. Conf. Artificial Neural Networks,
Cambridge, U.K., June 26–28, 1995, pp. 92–97.

[21] B. L. Lu and M. Ito, “Task decomposition based on class relations: A
modular neural-network architecture for pattern classification,” inBio-
logical and Artificial Computation: From Neuroscience to Technology,
Lecture Notes in Computer Science,J. Mira, R. Moreno-Diaz, and J.
Cabestany, Eds., vol. 1240. New York: Springer-Verlag, 1997, pp.
330–339.

[22] C. J. Merz and P. M. Murphy, “UCI Repository of machine learning
databases,” Univ. California, Dept. Inform. Comput. Sci., Irvine, CA,
1996. Available http://www.ics.uci.edu/ mlearn/MLRepository.html

[23] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Eds.,Machine
Learning, Neural and Statistical Classification.Chicester, U.K.: Ellis
Horwood, 1994.

[24] M. Minsky and S. Papert,Perceptrons: An Introduction to Computa-
tional Geometry,Expanded ed. Cambridge, MA: MIT Press, 1988.

[25] J. M. J. Murre,Learning and Categorization in Modular Neural Net-

works. London, U.K.: Harvester Wheatsheaf, 1992.
[26] N. J. Nilsson,Learning Machines: Foundations of Trainable Pattern

Classifying Systems.New York: McGraw-Hill, 1965; reissued asThe
Mathematical Foundations of Learning Machines. San Mateo, CA:
Morgan Kaufmann, 1990.

[27] D. R. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inParallel Distributed Process-
ing: Explorations in the Microstructure of Cognition,D. E. Rumelhart,
J. L. McClelland, and PDP Research Group, Eds. Cambridge, MA:
MIT Press, 1986.

[28] P. K. Simpson, “Fuzzy min–max neural networks—Part 1: classifica-
tion,” IEEE Trans. Neural Networks,vol. 3, pp. 776–786, 1992.

[29] S. Thiria, C. Mejia, F. Badran, and M. Crepon, “Multimodular archi-
tecture for remote sensing operations,”Advances in Neural Information
Processing Systems 4,J. E. Moody, S. J. Hanson, and R. P. Lippmann
Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 675–682.

[30] A. Waibel, H. Sawai, and K. Shkano, “Modularity and scaling in
large phonemic neural networks,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. 37, 1989.

[31] X. Zhang, C. C. Hang, S. Tan, and P. Z. Wang, “The min–max function
differentiation and training of fuzzy neural networks,”IEEE Trans.
Neural Networks,vol. 7, pp. 1139–1150, 1992.

