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Abstract

For relieving data sparsity problem, Hierarchi-
cal Word Sequence (abbreviated as HWS) lan-
guage model, which uses word frequency in-
formation to convert raw sentences into spe-
cial n-gram sequences, can be viewed as an
effective alternative to normal n-gram method.
In this paper, we use directional information
to make HWS models more syntactically ap-
propriate so that higher performance can be
achieved. For evaluation, we perform intrin-
sic and extrinsic experiments, both verify the
effectiveness of our improved model.

1 Introduction

Probabilistic Language Modeling is a fundamental
research direction of Natural Language Processing.
It is widely used in many applications such as ma-
chine translation (Brown et al., 1990), spelling cor-
rection (Mays et al., 1991), speech recognition (Ra-
biner and Juang, 1993), word prediction (Bickel et
al., 2005) and so on.

Most research about Probabilistic Language Mod-
eling, such as back-off (Katz,1987), Kneser-Ney
(Kneser and Ney, 1995), and modified Kneser-Ney
(Chen and Goodman, 1999), only focus on smooth-
ing methods because they all take n-gram approach
(Shannon, 1948) as a default setting for extracting
word sequences from a sentence. Yet even with 30
years worth of newswire text, more than one third
of all trigrams are still unseen (Allison et al., 2005),
which cannot be distinguished accurately even us-
ing a high-performance smoothing method such as
modified Kneser-Ney (abbreviated as MKN). It is

better to make these unseen sequences actually be
observed rather than to leave them to smoothing
method directly.

For the purpose of extracting more valid word se-
quences and relieving data sparsity problem, Wu and
Matsumoto (2014) proposed a heuristic approach to
convert a sentence into a hierarchical word sequence
(abbreviated as HWS) structure, by which special n-
grams can be achieved. In this paper, we improve
HWS models by adding directional information for
achieving higher performance.

This paper is organized as follows. In Section 2,
we give a complete review of the HWS language
model. We present our improved HWS model in
Section 3. In Section 4, we show the effectiveness
of our model by several experiments. Finally, we
summarize our findings in Section 5.

2 Review of HWS Language Model

The HWS language model is defined as follows.
Suppose that we have a frequency-sorted vocab-

ulary list V = {v1, v2, ..., vm}, where C(v1) ≥
C(v2) ≥ ... ≥ C(vm)1.

According to V , given any sentence
S = w1, w2, ..., wn, the most frequently
used word wi ∈ S(1 ≤ i ≤ n) can be se-
lected2 for splitting S into two substrings
SL = w1, ..., wi−1 and SR = wi+1, ..., wn. Sim-
ilarly, for SL and SR, wj ∈ SL(1 ≤ j ≤ i− 1)
and wk ∈ SR(i+ 1 ≤ k ≤ n) can also be se-
lected, by which SL and SR can be splitted

1C(v) represents the frequency of v in a certain corpus.
2If wi appears multiple times in S, then select the first one.
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Figure 1: A comparison of structures between HWS and
n-gram

into two smaller substrings separately. Ex-
ecuting this process recursively until all the
substrings become empty strings, then a tree
T = ({wi, wj , wk, ...}, {(wi, wj), (wi, wk), ...})
can be generated, which is defined as an HWS
structure.

In an HWS structure T , assuming that each node
depends on its preceding n-1 parent nodes, then spe-
cial n-grams can be trained. Such kind of n-grams
are defined as HWS-n-grams.

The advantage of HWS models can be considered
as discontinuity. Taking Figure 1 as an example,
since n-gram model is a continuous language model,
in its structure, the second ‘as’ depends on ‘soon’,
while in the HWS structure, the second ‘as’ depends
on the first ‘as’, forming a discontinuous pattern to
generate the word ‘soon’, which is closer to our lin-
guistic intuition. Rather than ‘as soon ...’, taking ‘as
... as’ as a pattern is more reasonable because ‘soon’
is quite easy to be replaced by other words, such
as ‘fast’, ‘high’, ‘much’ and so on. Consequently,
even using 4-gram or 5-gram, sequences consist-
ing of ‘soon’ and its nearby words tend to be low-
frequency because the connection of ‘as...as’ is still
interrupted. On the contrary, the HWS model ex-
tracts sequences in a discontinuous way, even ‘soon’
is replaced by another word, the expression ‘as...as’
won’t be affected. This is how the HWS models re-
lieve the data sparseness problem.

It unsupervisedly construct a hierarchical struc-
ture to adjust the word sequence so that irrele-
vant words can be filtered out from contexts and
long distance information can be used for predict-
ing the next word. On this point, it has some-
thing in common with structured language model

(Chelba, 1997), which firstly introduced parsing into
language modeling. The significant difference is,
structured language model is based on CFG parsing
structures, while HWS model is based on pattern-
oriented structures.

The experimental results reported by Wu and
Matsumoto (2014) indicated that HWS model keeps
better balance between coverage and usage than nor-
mal n-gram and skip-gram models (Guthrie, 2006),
which means that more valid sequence patterns can
be extracted in this approach.

However, the discontinuity of HWS models also
brings a disadvantage. In normal n-gram models,
since the generation of words is one-sided (from left
to right), given any left-hand context, words gener-
ated from it can be considered as linguistically ap-
propriate. In contrast, HWS structures are essen-
tially binary trees, which also generate words on the
left side. However, according to the definition of
HWS-n-grams, the directional information are not
taken into account, which causes a syntactical prob-
lem.

Taking Figure 1 as an example. According to
the structure of HWS, HWS-3-grams are trained as
{(ROOT, as, as), (as, as, soon), (as, as, possible)},
where ‘soon’ and ‘possible’ are generated from con-
text (as, as) without any distinction, which means, an
illegal sentence such like ‘as possible as soon’ can
be also generated from this HWS-3-gram model.

3 Directional HWS Models

To solve this problem, we propose to use direc-
tional information. As mentioned previously, since
HWS structures are essentially binary trees, direc-
tional information has already been encoded when
HWS structures are established.

Thus, after an HWS structure being constructed,
directional information can be easily attached to this
tree as shown in Figure 2. Then, assuming that each
node depends on its n-1 preceding parent nodes with
their directional information, we can train a special
n-gram from this binary tree. For instance, 3-grams
trained from this tree are {(ROOT-R, as-R, as), (as-
R, as-L, soon), (as-R, as-R, possible)}, where syn-
tactical information can be encoded more precisely
than original HWS-3-grams. For the purpose of dis-
tinguishing our models from the original HWS mod-
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Figure 2: An example of HWS structure with directional
information

els, we call n-grams trained in our way as DHWS-n-
grams.

In the above example of DHWS-3-grams, (as-R,
as-L, soon) indicates that ‘soon’ is located between
two ‘as’s, while (as-R, as-R, possible) indicates that
‘possible’ is located on the right side of the second
‘as’. Similarly, if we use DHWS-4-grams or higher
order ones, the relative position of each word will be
more specific. In other words, according to a DHWS
structure, for each word (node), its position (relative
to the whole sentence) can be strictly determined by
its preceding parent nodes. The bigger n is, the more
syntactical information DHWS-n-grams can reflect.

As for smoothing methods for HWS models,
Wu and Matsumoto (2014) only used an additive
smoothing. Although HWS-n-grams are trained
in a special way, they are essentially n-grams be-
cause each trained sequence is reserved as a (n −
1 length context, word) tuple as normal n-grams,
which makes it possible to apply MKN smoothing
to HWS models. The main difference is that HWS
models are trained by tree structures while n-gram
models in a continuous way, which affects the count-
ing of contexts C(wi−1

i−n+1).
Taking Figure 1 as an example. According to

the structure of HWS, HWS-3-grams are trained as
{(ROOT, as, as), (as, as, soon), (as, as, possible)},
while the HWS-2-grams are trained as {(ROOT, as),
(as, as), (as, soon), (as, possible)}. In the HWS-
3-gram model, as the context of ‘soon’ and ‘possi-
ble’, ‘as ... as’ appears twice, however, in the HWS-
2-gram model, C(as, as) is counted only once. In
normal n-gram models, C(wi−1

i−n+1) can be directly
achieved from its lower model because they are con-
tinuous, but in HWS models, C(wi−1

i−n+1) should be
counted as

∑
wj∈{wi:C(wi

i−n+1)>0}C(wi−1
i−n+1, wj),

which means that the frequencies of contexts should

Figure 3: The interpolation of GLM model

Figure 4: A demonstration for applying GLM smoothing
to HWS structure

be counted in the model with the same order. Taking
this into account, MKN smoothing method can be
also applied to HWS models and DHWS models.

As an alternative of MKN smoothing method, we
can also use GLM (Pickhardt et. al., 2014). GLM
(Generalized Language Model) is a combination of
skipped n-grams and MKN, which performs well on
overcoming data sparseness. GLM smoothing con-
siders all possible combinations of gaps in a local
context and interpolates the higher order model with
all possible lower order models derived from adding
gaps in all different ways. As shown in Figure 3,
n stands for the length of normal n-grams for cal-
culation, k indicates the number of words actually
be used, and the wildcard ’ ’ represents the skipped
words in a n-gram.

Since GLM is a generalized version of MKN
smoothing, it can also be applied to HWS models (as
shown in Figure 4). In the following experiments,
we will use MKN and GLM as smoothing methods.
To ensure the openness of our research, the source
code used for following experiments can be down-
loaded.3

3https://github.com/aisophie/HWS
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4 Evaluation

4.1 Intrinsic Evaluation

To test the performance on out-of-domain data, we
use two different corpus: British National Corpus
and English Gigaword Corpus.

British National Corpus (BNC) 4 is a 100 mil-
lion word collection of samples of written and spo-
ken language from a wide range of sources, de-
signed to represent a wide cross-section of British
English from the later part of the 20th century, both
spoken and written. In our experiments, we ran-
domly choose 449,755 sentences (10 million words)
as training data.

English Gigaword Corpus 5 consists of over 1.7
billion words of English newswire from 4 distinct
international sources. We randomly choose 44,702
sentences (1 million words) as test data.

As preprocessing of training data and test data,
we use the tokenizer of NLTK (Natural Language
Toolkit) 6 to split raw English sentences into words.
We also converted all words to lowercase.

As intrinsic evaluation of Language Modeling,
perplexity (Manning and Schütze, 1999) is the most
common metric used for measuring the usefulness
of a language model.

Wu and Matsumoto (2014) also proposed to use
coverage and usage to evaluate efficiency of lan-
guage models. The authors defined the sequences
of training data as TR, and unique sequences of test
data as TE, then the coverage is calculated by Equa-
tion 1.

coverage =
|TR

⋂
TE|

|TE|
(1)

Usage (Equation 2) is used to estimate how much
redundancy contained in a model and a balanced
measure is calculated by Equation 3.

usage =
|TR

⋂
TE|

|TR|
(2)

F -Score =
2×coverage×usage
coverage+ usage

(3)

4http://www.natcorp.ox.ac.uk
5https://catalog.ldc.upenn.edu/LDC2011T07
6http://www.nltk.org

Models PP(MKN) PP(GLM) C U F
2-gram 1244.535 - 0.479 0.081 0.139
HWS-2 1130.790 - 0.455 0.078 0.133

DHWS-2 920.783 - 0.447 0.075 0.129
3-gram 1107.430 925.666 0.229 0.028 0.051
HWS-3 1065.594 873.252 0.316 0.045 0.079

DHWS-3 834.680 687.605 0.298 0.041 0.072
4-gram 1093.799 861.930 0.086 0.009 0.016
HWS-4 1064.444 756.100 0.240 0.030 0.054

DHWS-4 822.225 596.369 0.216 0.027 0.048

Table 1: Performance of normal n-gram models, HWS
models and DHWS models

Based on above measures, we compared our mod-
els with normal n-gram models and the original
HWS models. The results are shown in Table 1.

According to this table, for each language model,
higher order one brings lower perplexity. Besides,
contrast to the result reported by Wu and Matsumoto
(2014), after applied with MKN smoothing method,
even for higher order models such as 3-grams and
4-grams, HWS models outperform normal n-gram
models as well. Furthermore, after taking direc-
tional information into account, DHWS models per-
form even better than the original HWS models.

On the other hand, in DHWS models, since al-
most each word is distinguished as ‘two words’ (‘-
L’ and ‘-R’), the coverage and usage tend to be rela-
tively lower than the original HWS models. But it is
worth because perplexity has been greatly decreased
and syntactical information can be reflected better in
this way.

We also noticed that for each model (n>2),
perplexity is greatly reduced after applying GLM
smoothing, which is consistent with the results re-
ported by Pickhardt et. al.(2014).

4.2 Extrinsic Evaluation

Perplexity is not a definite way of determining the
usefulness of a language model since a language
model with low perplexity may not work equally
well in a real world application. Thus, we also per-
formed extrinsic experiments to evaluate our model.
In this paper, we use the reranking of n-best trans-
lation candidates to examine how language models
work in a statistical machine translation task.

We use the French-English part of TED talks par-
allel corpus as the experiment dataset. The training
data contains 139761 sentence pairs, while the test
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data contains 1617 sentence pairs. For training lan-
guage models, we set English as the target language.

As for statistical machine translation toolkit, we
use Moses system7 to train the translation model and
output 50-best translation candidates for each french
sentence of the test data. Then we use the 139761
English sentences to train language models. With
these models, 50-best translation candidates can be
reranked. According to these reranking results, the
performance of machine translation system can be
evaluated, which also means, the language models
can be evaluated indirectly.

We use following two measures for evaluating
reranking results.

BLEU (Papineni et al., 2002): BLEU score mea-
sures how many words overlap in a given candidate
translation when compared to a reference transla-
tion, which provides some insight into how good the
fluency of the output from an engine will be.

TER (Snover et al., 2006): TER score measures
the number of edits required to change a system out-
put into one of the references, which gives an indi-
cation as to how much post-editing will be required
on the translated output of an engine.

As shown in Table 2, since the results performed
by our implementation (3-gram+MKN) is almost the
same as that performed by existing language model
toolkits IRSTLM8 and SRILM9, we believe that our
implementation is correct. Based on the results,
considering both BLEU and TER score, DHWS-
3-gram model using GLM smoothing outperforms
other models.

5 Conclusion

We proposed an improved hierarchical word se-
quence language model using directional informa-
tion. With this information, HWS models can be
build more syntactically appropriate while remain-
ing its original advances. Consequently, higher per-
formance can be achieved, both intrinsic and extrin-
sic experiments confirmed our thoughts.

In this paper, we construct HWS structures (bi-
nary trees) based on its original heuristic rule. It is
conceivable that more valid discontinuous patterns

7http://www.statmt.org/moses/
8http://sourceforge.net/projects/irstlm/
9http://www.speech.sri.com/projects/srilm/

Models(+Smoothing) BLEU TER
IRSTLM(+MKN) 31.2 49.1

SRILM(+MKN) 31.3 48.9
3-gram(+MKN) 31.3 49.1
3-gram(+GLM) 31.3 49.2

HWS-3-gram(+MKN) 31.2 48.6
HWS-3-gram(+GLM) 31.2 48.7

DHWS-3-gram(+MKN) 31.2 48.6
DHWS-3-gram(+GLM) 31.3 48.6

Table 2: Performance of SMT system using different lan-
guage models. For the settings of IRSTLM and SRILM,
we use default settings except for using modified Kneser-
Ney as the smoothing method

can be extracted if we use word association infor-
mation to built HWS structures, which is a promis-
ing future study.
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