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Abstract 

The conventional Mongolian-Chinese sta-

tistical machine translation (SMT) model 
uses Mongolian words and Chinese words 

to practice the system. However, data 

sparsity, complex Mongolian morphology 
and Chinese word segmentation (CWS) er-

rors lead to alignment

errors and ambiguities. Some other works 
use finer-grained Mongolian stems and 

Chinese characters, which suffer from in-

formation loss when inducting translation 

rules. To tackle this, we proposed a meth-
od of using finer-grained Mongolian stems 

and Chinese characters for word alignment, 

but coarser-grained Mongolian words and 
Chinese words for translation rule induc-

tion (TRI) and decoding. We presented a 

heuristic technique to transform Chinese 

character-based alignment to word-based 
alignment. Experimentally, our method 

outperformed the baselines: fully finer-

grained and fully coarser-grained, in terms 
of alignment quality and translation per-

formance.  

1 Introduction 

Mongolian is an agglutinative language and has 
complex morphology. The current scale of Mon-

golian-Chinese parallel corpus is very small. These 

two reasons make data sparsity a very serious 

problem in Mongolian-Chinese SMT. Using finer-

grained Mongolian stems rather than Mongolian 

words can reveal the word semantics and alleviate 
data sparsity. On the other hand, CWS is a neces-

sary process to separate Chinese words, because 

Chinese words are not naturally separated by space 

(Jiang et al., 2009). CWS can achieve high accura-
cy, but does not necessarily guarantee better per-

formance of alignment (Chang et al., 2008; Zhang 

et al., 2008; Xiao et al., 2010). Besides, CWS also 
brings errors (Xiao et al., 2010). Using of finer-

grained Chinese characters, which are separated 

without using of CWS, can avoid the CWS errors 

and alleviate data sparsity. However, coarser-
grained basic units are proved perform better in 

translation rule induction (TRI). (Philipp Koehn et 

al., 2003).  
  So inspired by the work of (Xi et al., 2011; Xi et 

al., 2012), we proposed a method that uses differ-

ent granularity respectively for alignment and TRI. 
We train a finer-grained alignment using Mongoli-

an stems and Chinese characters. Afterwards, we 

realign it to Chinese words and Mongolian words 

alignment for the following TRI and decoding. We 
design a technique to convert finer-grained align-

ment to coarser-grained alignment. The conversion 

can be unambiguous after carefully processing the 
differences brought by Mongolian word lemmati-

zation and CWS. 

In the experiments, our method outperformed 
the baselines of fully finer-grained and fully coars-

er-grained, in terms of alignment quality and trans-

lation performance. The experiments indicate that 

using finer-grained basic units for alignment and 
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coarser-grained basic units for TRI performs better 

than other granularity combinations. 
The rest of the paper is organized as follows: 

Section 2 explains how our method designed and 

how can it have good influence on alignment and 

translation. Section 3 demonstrates the realignment 
model and analyzes how it works for better align-

ment. Section 4 describes the evaluations. Section 

5 is the conclusion. 

2 Design of different Granularity Align-

ment 

The conventional practice of SMT uses Mongolian 

and Chinese words in the process of word align-

ment and TRI (Brown et al., 1993). We proposed a 
method of using finer granularity for word align-

ment but coarser granularity for TRI to enhance 

the Mongolian-Chinese SMT system. The process 

of the method is depicted in Figure 1: 

 

Figure 1. Process of the method 

(1) In the first step, we get the finer-grained 

alignment by using Mongolian stems and Chinese 

characters as basic units; 
(2) In the realignment procedure, we transform 

finer-grained alignment into coarser-grained 

alignment through a converting technique; 
(3) In the step of TRI and decoding, we use the 

coarser-grained alignment. 

Mongolian words are formed by stems and suf-

fixes (Hou et.al., 2000). For some examples: when 
a noun plays different constituents in sentence, like 

subject or object, the case suffixes added to it are 

different; a verb adds different inflectional suffixes 

when it is under different tenses or followed by 

different nouns; a word has different forms (with 
the same word stem but different suffixes) when it 

is in different positions of the sentence. Therefore, 

Data sparsity is a very serious problem in Mongo-

lian-Chinese SMT because of the complex Mongo-
lian morphology and the small scale parallel cor-

pus. Mongolian stems-based alignment can miti-

gate this problem, because Mongolian words in 
different forms but with the same semantic mean-

ing will become one same stem after removing 

some suffixes. Besides, using Chinese characters 
for alignment can avoid the errors brought by 

CWS. Table 1 shows the token distribution of 

Mongolian words and Mongolian stems in corpus. 

We can see that the unique tokens in stem-based 
corpus reduce almost 10% than those in word-

based corpus. Table 2 shows the frequency distri-

bution of words and characters of Chinese corpus. 
The tokens whose frequency is no than 4 has a 

lower percentage in character-based corpus. We 

see that the unique tokens in character segment 
corpus are only one-third of those in word segment 

corpus. In the fined-grained Chinese corpus, the 

frequency of 77.88% tokens are equal to or more 

than 5, while the percentage of word tokens in 
coarser-grained Chinese corpus is only 38.74%. 

The above statistical data prove that coarser-

grained word alignment suffers from more serious 
data sparsity than finer-grained word alignment.  
 

 Word Stem 

Total Tokens 37140 29861 

Unique Tokens 20859 14340 

Percentage (%) 56.16 48.02 

Table 1. Unique tokens of Mongolian 

word and stem 

Frequency Word (%) Character (%) 

1 31.25 9.34 

2 14.91 5.85 

3 8.84 3.47 

4 6.26 3.46 

5+ 38.74 77.88 

Table 2. Frequency distribution of 

Chinese word and character 
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Figure 2. Realignment from finer-grained to coarser-grained 

 

However, comparing to finer-grained tokens, 

coarser-grained tokens have more complete se-
mantic information. State-of-the-art SMT models 

achieve excellent results by extracting phrases to 

induct the translation rules (Philipp Koehn et al., 
2003). When the phrase-based translation models 

try to extract and score the phrases by getting lexi-

cal translation table, the probability of words to 
words can express more semantic information than 

stems to characters (Deng and Zhou, 2009). More-

over, when we use language model, the position 

information expressed by Mongolian word suffix-
es might be ignored by using Mongolian stems. 

Therefore, we still use coarser-grained units to 

induct the translation rules. 

3 Realignment 

The realignment from Mongolian stems to Mongo-

lian words is an easy method of one-to-one map-
ping because there is no position changing. We 

build a heuristic model to describe the Chinese 

realignment. We set e and f as the source (Mongo-
lian) and target (Chinese) sentence in finer-grained 

alignment. Given finer-grained source sentence 

(Mongolian)    and target sentence (Chinese)   , 

we can get the coarser-grained alignment a by the 
realignment model as equation (1): 

                          
                      (1) 

In the model,    is the finer-grained alignment 

getting from   and   .       
      is the alignment 

model used in our alignment training which can be 

given as log-linear model by (Och and Ney, 2005; 

Liu et al., 2005) as equation (2). 
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The conversion model         can be modeled 

based on (Zhang, 2003) as equation (3):  

                                                      (3) 

It is easy to understand that the transformation 

from a finer-grained sentence to its coarser-grained 

sentence is unambiguous. An example of conver-
sion shows in figure 2, we can get the word align-

ment from Mongolian words to Chinese words by 

converting Chinese characters into Chinese words. 

“没关系” is a Chinese word which means “It does 

not matter”. It is composed of three characters 

“没”, “关” and “系”. The alignment from Mongo-

lian words to Chinese characters “没”, “关” and 

“系” is “0-0, 0-1, 0-2, 1-1, 2-2”, the alignment 

from Chinese characters to Chinese word “没关系” 

is “0-0, 1-0, 2-0”, so the realignment from Mongo-

lian words to Chinese word is “0-0, 1-0, 2-0”. An-

other example shows in figure 2 is the alignment 
from Mongolian word “ ᠳᠤᠷᠠᠲᠠᠢ ” to Chinese word 

“乐意”, which means “with pleasure”. Comparing 

with Chinese words, Chinese characters carry 

more uncertain meaning. “关” is a verb which 

means “close”, but when it is followed by “系”, 

which is also a verb and means “tie”, the meaning 

of “关系” is “relation” and it is a noun. So using 

Chinese characters as basic unit may induce more 

interference alignment options. However, the re-

call score gets higher when we apply Chinese 
characters to do the alignment. Because we find 

that when we get the word alignment by realigning 
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Figure 3. Comparing coarser-grained alignment with realignment 

from Chinese character-based alignment rather 

than by Chinese words directly, there are fewer 
invalid alignment options. We believe this prob-

lem is avoided by the feature of co-occurrence and 

distortion used by alignment models which ex-
plained in detail by (Xi et al., 2012). 

Moreover, we find that our method can mitigate 

word alignment errors which caused by incorrect 

CWS result. As shows in figure 3, the correct 

segmentation should be “飞机 着陆 时” but not 

“飞机 着 陆时”. The correct alignment should 

make No.1, No.2, No.3, No.4 and No.5 of Mongo-

lian words align to the No.1 and No.2 of Chinese 

words, but Chinese word-based alignment only 
gets the right alignment 1-2, but wrongly aligns 

No.3 of Mongolian word to the Chinese comma as 

showed in the fourth row of figure 3. In our meth-
od, we can get a more precise alignment result 

based on characters “着”, “陆” and “时”. The rea-

lignment based on a wrong word segmentation 

result will lead to a wrong word alignment inside 

the phrase “着 陆时”. However, as showed in the 

fifth row of the figure 3, we find that because of 

the better character-based alignment, the phrase 

“着 陆时” as a whole still can be realigned more 

precisely to its corresponding Mongolian phrase. 

In conclusion, due to a more precise Chinese 

character-based alignment, our realignment based 
on Chinese word segmentation (even based on a 

wrong word segmentation result) can get a more 

precise word alignment result.  

4 Experiments 

We implement Moses as our basic SMT system 

and built it as follows: alignment performed by 
GIZA++ (Och and Ney, 2003). A phrase-based 

MT decoder similar to the work of (Koehn et al., 

2007) was used with the decoding weights opti-

mized by MERT (Och, 2003). We use a 3-gram 

language model. Mongolian language resources 
and Mongolian processing tools are scarce. 

CWMT’2009 (Zhao et al., 2012) was used for the 

experiments. It is a small training set when com-
pares to major language training set because as a 

small language, public Mongolian and Chinese 

parallel corpus is limit. The lemmatization tool we 

used is the same as (Yu and Hou, 2011; Hou et.al., 
2009). Table 3 shows the data set in detail. Mo is 

the abbreviation of Mongolian and Ch is the ab-

breviation of Chinese. 

 Train Dev Test 

Bilingual sentence pairs 66808 1000 1000 

Scale 18.3MB 214KB 213KB 

Total Mo words/stems 869168 11239 11134 

Total Ch words 846574 8765 8697 

Total Ch characters 1096551 12569 12526 

Table 3. Data set 

We manually aligned 100 pairs of bilingual 

sentence to evaluate the alignment performance 
including precision, recall, F-score and AER (Da-

vid et al., 2003). As table 4 shows, after using fin-

er-grained stem-based as basic units: precision has 

been increased from 62.75% to 63.82%; recall has 
been increased from 75.91% to 83.47% and im-

proved significantly by using Chinese characters; 

AER has been reduced 2.74% from 39.44 to 38.36. 
These evaluations prove that our method of using 

finer-grained for alignment enhances the quality of 

SMT alignment and reduce the AER. The good 
performance in alignment partly because of the 

process of data sparsity we argued in section 2 and 

partly because of the good realignment we dis-

cussed in section 3. 
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Mongolian Chinese Precision Recall F-score AER 

word word 62.75 75.91 69.33 39.44 

stem word 62.94 77.39 70.17 38.83                                                                                                                                                                                                                                                                                                      

word character 63.71 82.25 72.98 38.89 

stem character 63.82 83.47 73.65 38.36 

Table 4. Alignment evaluation of Precision, 

Recall and F-score 

To evaluate the translation performance of tour 

method, we do experiments on all kinds of gram-

matical components including: fully coarser-

grained, different grained units for alignment and 
TRI. We also evaluate the influence on using fin-

er-grained and coarser-grained units on source or 

target language. In the experiments of translation, 
we set conventional Mongolian-Chinese SMT sys-

tem as baseline 1. We also set baseline 2, baseline 

3 and baseline 4 which use finer-grained for both 
alignment and TRI to compare with our systems.     

From table 5 we can see that all our three sys-

tems outperform the baseline 1. The comparison 

between our systems and the baseline 1 shows that 
using finer-grained basic units in alignment out-

performs the conventional Mongolian-Chinese 

SMT. The BLEU of System 3 is higher than sys-
tem 1 and system 2, which proves that using finer-

grained for both source language and target lan-

guage achieve better performance than using it on 

one language. 

  Alignment TRI BLEU 

Baseline1 Mo word word 
21.88 

Ch word word 

System 1 Mo stem word 
22.15 

Ch word word 

System 2 Mo word word 
23.36 

Ch character word 

System 3 Mo stem word 
23.49 

Ch character word 

Table 5. Translation evaluation of proposed 

systems and Baseline 1. 

In the comparison of table 6, baseline 2 uses 
finer-grained basic units for Mongolian alignment 

and TRI, while system 1 uses finer-grained basic 

units only for Mongolian alignment but not TRI. 

System 1 outperformed Baseline 2 indicates that 
using coarser-grained Chinese units for TRI is 

more proper and applying our method to source 

language of Mongolian is successful. 

  Alignment TRI BLEU 

Baseline 2 Mo stem stem 
21.97 

Ch word word 

System 1 Mo stem word 
22.15 

Ch word word 

Table 6. Compare our System 1 with Baseline 2. 

In the comparison of table 7, baseline 3 uses 

finer-grained basic units for Chinese alignment 

and TRI, while system 2 uses finer-grained basic 
units only for Chinese alignment but not TRI. Sys-

tem 3 outperformed Baseline 4 indicates that using 

coarser-grained Chinese units for TRI is more 
proper and applying our method to target language 

of Chinese is successful. 

  Alignment TRI BLEU 

Baseline 3 Mo word word 
23.19 

Ch character character 

System 2 Mo word word 
23.36 

Ch character word 

Table 7. Compare our System 2 with Baseline 3. 

In the comparison of table 8, baseline 4 uses 

finer-grained basic units for both Mongolian and 
Chinese alignment and TRI, while system 3 uses 

finer-grained basic units only for Mongolian and 

Chinese alignment but not TRI. System 1 outper-
formed Baseline 2 indicates that using coarser-

grained units in both Chinese and Mongolian for 

TRI is more proper and our method is successful 

in the evaluation. 

  Alignment TRI BLEU 

Baseline 4 Mo stem stem 
22.73 

Ch character character 

System 3 Mo stem word 
23.49 

Ch character word 

Table 8. Compare our System 3 with Baseline 4. 

These comparisons of table 5 to table 8 proved 
that:  

(1) Using finer-grained for alignment performed 

better then coarser-grained (table 5) because finer-

grained basic units can enhance the alignment 
quality (table 4).  

(2) Using coarser-grained for TRI, which means 

using finer-grained only for alignment rather than 
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using them though the whole translation process is 

better (table 8), because stems and characters are 
too finer to induct the translation rules. 

(3)Using our method of finer-grained for align-

ment and coarser-grained for TRI improved the 

conventional SMT system and outperformed other 
grammatical components (table 5 and table 8);  

(4) Using our method only in one side of source 

language or target language also performed better 
(table 6 and table 7). 

5 Conclusion 

We presented a method of using finer-grained 
Mongolian stems and Chinese characters as basic 

units for alignment, but coarser-grained Mongolian 

and Chinese words for TRI. Our method outper-
forms four baselines, mitigates the data sparsity 

and enhances the alignment quality and translation 

performance. Through the experiments we find 
some conclusions as follows: applying finer-

grained units can perform a better word alignment 

result; Using finer-grained basic units for align-

ment, but coarser-grained for TRI can be a more 
efficient way than fully finer-grained or fully 

coarser-grained; using our method for both source 

language and target language can achieve better 
performance than using it for either source or tar-

get language. We do the same experiments on the 

Chinese-Mongolian SMT system and get the same 
conclusion. The experiments indicate that using 

finer-grained basic units for alignment and coars-

er-grained basic units for TRI performs better than 

other granularity combination. We also find that 
using Chinese characters contribute more than us-

ing Mongolian stems in Chinese-Mongolian SMT, 

which partly because of the errors brought by 
lemmatization. If we can combine more features 

(Elming and Habash, 2007) to do the realignment, 

and have a higher accuracy tool of lemmatization, 

our method can be better. 
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