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Abstract— Sparse representation-based classifier (SRC),
which represents a test sample with a linear combination of
training samples, has shown promise in pattern classification.
However, there are two shortcomings in SRC: (1) the /»-
norm used to measure the reconstruction fidelity is noise-
sensitive and (2) the /;-norm induced sparsity did not consider
the correlation among the training samples. Furthermore, in
real applications, face images with similar variations, such
as illumination or expression, often have higher correlation
than those from the same subject. Therefore, we propose
to improve the performance of SRC from two aspects: (1)
replace the noise-sensitive />-norm with an M-estimator to
enhance its robustness and (2) emphasize the sparsity of the
number of classes instead of the number of training samples,
which leads to the group sparsity. The proposed robust group
sparse representation (RGSR) can be efficiently optimized
via alternating minimization under the Half-Quadratic (HQ)
framework. Extensive experiments on representative face data
sets show that RGSR can achieve competitive performance in
face recognition and outperforms several state-of-the-art meth-
ods in dealing with various types of noise such as corruption,
occlusion and disguise.

I. INTRODUCTION

Sparse representation (SR) (e.g., [1], [2]) is an efficient
statistical signal modeling tool which has become a promis-
ing model in many machine learning and computer vision
problems. When applied to image clustering or classification,
SR represents an image using a small number of atoms
parsimoniously chosen out of an over-complete dictionary.
The ¢p-norm is the original definition of sparsity, which
counts the number of non-zero elements in a vector. As the
closest convex surrogate, the ¢;-norm is widely used as an
alternate to measure the sparsity of representation coefficient.
Many fast approaches have been proposed to optimize such
{1-norm minimization SR models (e.g., [3]).

Recently, many studies [4], [5] have shown that the /¢;-
norm induced sparse models perform well in low-correlation
settings. However, if samples from the same class or man-
ifold are highly correlated, the ¢;-norm minimization will
encounter the stability problems. Generally, it tends to
randomly select a single representative sample and ignore
other correlated samples. This leads to a sparse solution but
misses the correlated information in data, which often causes
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suboptimal performance. Specifically, for face recognition
task in uncontrolled environment, the variation information
(e.g., illumination and expression) may be more significant
than the identity. In this case, it is possible that face images
from different subjects with similar variations could have
higher correlation than those from the same subject but with
different variations. Therefore, we propose to consider the
label information of training samples and emphasize the
sparsity of the number of classes instead of the number of
training samples, which leads the group sparsity.

Moreover, for most real-world applications, data are usu-
ally noisy or significantly corrupted. The original SR and
its many variants usually use the sum of squared error
or the fo-norm error function to measure the quality of
signal reconstruction, which implicitly assumes that the noise
follows the Gaussian distribution. However, it is not the
case for real world problems which do not conform to the
assumptions made by the model. The least-squares error is
sensitive to outliers, which will greatly degrade the quality
of approximation if there exists a single corrupted point.
Therefore, it is necessary to replace the quadratic form of
residuals by lowering down the weight of noisy or corrupted
region of samples. Instead of minimizing the non-quadratic
and possibly non-convex loss function, we propose to use
the M-estimator [6] technique, which can be optimized by
HQ minimization.

By conducting extensive experiments on representative
face data sets, the results show that RGSR achieves compet-
itive performance in classification. RGSR outperforms state-
of-the-art methods in dealing with various types of noise
such as corruption, occlusion and disguise.

The rest of this paper is organized as follows. In Section II,
we give a brief overview of SRC and the HQ minimization.
The proposed RGSR model will be presented in Section
II. In Section IV, we conduct experiments to show the
effectiveness of RGSR. Section V concludes the paper.

II. RELATED WORK
A. Sparse Representation-Based Classifier

The SRC was proposed in [7] for face recognition. Gener-
ally, the dictionary matrix A = [A, Ay, -+, A] is formed
by stacking the training samples together, where A; is the
subset of training samples from class 7 and c is the number
of classes. For each test sample y, the sparse representation
coefficient can be computed via ¢;-norm regularized mini-
mization problem

& = arg ming, ||y—Aa||§+)\Ha||1, (D



where A is the tradeoff parameter; then the classification is
made by identity(y) = arg min;{error;}, where error; =
ly—A;&ill2, & = [&1; ;- - - 5 & and &; is the coefficient
vector associated with the i-th class. It was claimed in
[7] that the success of SRC is mainly caused by the /¢;-
norm sparsity imposed on the coding efficient. However,
this ¢;-norm induced sparsity treats each element in «
equally, which does not consider the correlation of samples
in dictionary A. Therefore, it performs well only when A is
under low-correlation settings. In this paper, we use training
data X € R*" (d,n denote the dimensionality and number
of training samples, respectively) as dictionary.

B. The Half-Quadratic Minimization

This section reviews the background of half-quadratic
modeling based on conjugate function theory [8], [9] for
convex Or non-convex minimization.

Conjugate Function. Given a differentiable function
f(v): § € R™ — R, the conjugate f*(p): R* — R of
the function f(-) is defined as [10]

f*(p) = infyes p’v — f(v). 2)

The domain of f*(p) is bounded above on S [10]. f*(p)
is the pointwise supremum of a family of convex functions
of p, which is also a convex function. Based on conjugate
function theory, a loss function in image restoration and
signal recovery can be defined as [11], [12], [13]

f(v) = ming {¢)(v,p) + ¢(p)}, 3)

where f(-) is a potential loss function such as a certain M-
estimator, v is a set of adjustable parameters of a linear
system, p is an auxiliary variable in HQ optimization,
(v, p) is a quadratic function, and (+) is the dual potential
function of f(-).

For face recognition application, we use the multiplicative
form quadratic function of ¢ (v, p) as ¥ (v,p) = Y, piv,
where v; is the coding residual for each pixel and p; is the
learned weight for such pixel. p; will be a smaller value
which can alleviate its influence if such pixel is corrupted.
Thus, the learned p can adjust the influence of each pixel
according to their corruption level. However, the widely used
{5-norm loss function, actually employs the constant weight
despite of whether the pixel is corrupted or not.

III. ROBUST GROUP SPARSE REPRESENTATION

Specifically, using group sparse representation w.r.t. a test
sample y, we have

¢(e) = miny,{¢(e, W) + (W)}, )

where e £ Xa—y € R? and w € R? are the coding
residual and the pixel-level weight for face image, respec-
tively. Here we consider ¢ in multiplicative form (e, v) =
Zle w;e? which plays the role as error detection [14].
The first term in (1) which uses the /5-norm to measure
coding residual can be easily dominated by a few outliers
with large errors. This can be illustrated in Fig. 1, where the
£5-norm induces more penalty for large fitting errors than the
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Fig. 1. Potential loss functions and their corresponding weight functions
in half-quadratic minimization.

¢1-norm and Logistic loss function (a type of M-estimator
we use in this paper). Accordingly, the {3-norm uses a
constant weight for both small and large errors. However, M-
estimator can learn the weight w to adapt whether the pixel
is corrupted or not, which can greatly alleviate the influence
of outliers. In general, M-estimator uses small weight w; for
large e; to make it robust to outliers as shown in Fig. 1.

Therefore, by replacing the f;-norm with M-estimator
¢(+), we can obtain the following objective

min, ¢(Xa —y) + AR (), (5)

where R () is the group sparsity regularizer which will
be explained later. Using the multiplicative form of ¢ as
PY(Xa—y,w) =" wilyi— >oi_1 ijaj)?, we have the
following minimization of the augmented objective

min Y- (wilyi = Y wy0;)” + pw) + AR(@). (6)

We will use J (o, w) to denote the above objective function.
Following the HQ optimization framework [11], [14], a local
minimizer (o, w) of J(a, w) can be alternately calculated
by the following rules

wi ™ = w(yi — Zj i), (7
o't = arg min, HWl/Q(y — Xat)||§ +AR(a), (8)

where ! is an estimated coefficient vector for the ¢-th iter-
ation, w(-) is the weight function derived from the conjugate
of ¢(+). w(-) satisfies that

Y(ei,w(e)) + pwle)) < vle,wi) +p(w).  (9)

Here, W is a diagonal matrix with each entry W;; = wf-“.

The optimization of a*! can be rewritten as the following
regularized quadratic problem

a'tt = argmin, |Xa — y||2 + A\R(«), (10)

where X = VWX and y = vWy. The robust improve-
ment of group sparse representation is given in Alg. 1.

Based on HQ framework [11], [14], we use the Logistic
weight function to determine w for fair comparison with
RSC in [15], whose loss function ¢(-) and weight function
w(+) (as shown in Fig. 1) are respectively defined as

—1, 1+ exp(pd — pef)
24 1+ exp(ud) ’

(.L)(B) _ eXp(:u(S 7 ILLG,?)
Y 1+ exp(pd — pe?)’

plei) = (11

(12)



where parameter y controls the decreasing rate of weight and
parameter J is the demarcation point.

Algorithm 1 Robust Improvement Based on HQ
Input: Training data X, test sample y and regularization
parameter ), initial guess al;
Output: Representation coefficient o, weight vector w.
1: t=0;
2: while not converged do
w W —wly - Y ayal);

4 X=VWHX and y = VWitly;
5:  a'tt =argmin, | Xa — 3|3 + \R(a);
6: t=t+1;
7: end while
Consider a = [af,--- 70[‘151"... a\ls \7 . ’al‘g(;“’

where {Sx},k = 1,2,---,c is the partition of training
samples from different classes and |Si| is the number of
samples in class k, and then the RGSR model can be
reformulated as

min 3 (wi(y: = Y wi0) +e(w)) + A fles, o
13)

Obviously, (10) is equivalent to
o't = argming [Xa = I3+ 2D fles, 2 (14)

Set its derivative w.r.t. o to zero and we can obtain a simple
method for updating o't as

a=(XTX+ L)' XTy,
0

15)

1
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The whole procedure of optimizing the RGSR model is
summarized in Alg. 2. The stop criteria for the outer loop
and inner loop are respectively defined as

w2/ l|w']l2 < e

— obj"|/|obj"| < €2,

Hwt+1
|Objk+1

where obj is the objective value of (14), €1 and &5 are small
positive values (0.05 and 0.001 in our experiments).

The diagram of RGSR is shown in Fig. 2. The convergence
analysis of Alg. 2 will be given below.

Lemma 1: [16] For arbitrary two non-zero vectors u and
v, the following inequality holds

w3
[ulj2 = <|vll2 -
2[[vll2

IvIi3
2[vll2

Theorem 2: The alternating optimization of objective
J(a, w) in (13) by Alg. 2 converges.
Proof: First we show that the inner loop monotonically
decreases the objective of (14). It can be easily verified that
(15) is the solution to the following problem

& = argming, | Xa — y|2 + Aa’La

Algorithm 2 Robust Group Sparse Representation Model
Input: Training data X, test sample y, regularization pa-
rameter \ and initial guess yY,_;
Output: Coefficient o« and feature weight vector w.
1: t=0;
2: // Outer loop for optimizing weight vector w
3: while not converged do
4. Compute residual et =y —yt_:
5. Compute wit! = w(e') based on the selected M-
estimator and let W'™! = Diag(w'*1!);
6: X =+WIHIX and y = VWitly;
7. // Inner loop for optimizing a’*! based on (14)
8 k= 0;
9. Initialize a®;
10:  while not converged do
1 Compute L* based on (16);
12: oF 1l = (XTX + A\LF)~1XTy;
13: kE=Fk+1;
14:  end while

15:  Compute the reconstruction yit! = Xa!*!
16: t=t+1;
17: end while
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Fig. 2. The diagram of RGSR model. For an occluded test sample, RGSR
learns the weight map which can mask the corresponding area of training
samples shown in red rectangle. The learned coefficients for intra-class
samples are measured by ¢2-norm, while that for inter-class samples are
measured by ¢1-norm. This results in the structured sparsity.

and thus we have

|Xé& - y)2 4+ A\aTLé < [ Xa — 32 + AdaTLa.  (17)
Based on Lemma 1, the following inequalities hold
. ll6es, 113 s, |13
AQ_llas, 2= - <A lleslla— -
2las A giag ;< AL leslemA 2 g T

AY s, l2 = Aa"La <A las, |2 — Aa"La (18)
Sk Sk'

Add both sides of (17) and (18) together and we can obtain
Xa=yl3+AD_  lasll < [Xa=yl3+AD les.»,

which means that the solution in optimizing o satisfies
J(att witl) < J(at, with).

According to the property of weight function w(-)
shown in inequality (9), we have that for a fixed a‘t!,



J(at,wit!) < J(a!,w'). Combining with the recent con-
clusion J(a!tt witl) < J(af, wiTl), we get

J( with) < J(af, wiTh) < J(af, wh).

Thus, {---,J(a!,w),J(a!,witl), J(a!Tt with) ...}
generated by Alg. 2 converges as t — oc. [ ]

IV. EXPERIMENTAL STUDIES

We evaluate the performance of RGSR on benchmark
face data sets: AR [17] and Extended Yale B [18], [19].
We conduct experiments under two settings: (1) FR without
occlusion but with variations such as illumination and ex-
pression changes and (2) FR with three types of occlusions:
random pixel corruption/block occlusion and real disguise.

There are three parameters involved in RGSR model: the
regularization parameter \ and the Logistic weight function
related parameters (p,d). In this paper, A is set as 0.001
by default. According to the properties of (u,d), smaller §
(larger w) is encouraged if the image is grossly corrupted,
which can group more pixels into outliers. For a corrupted
image, the squared error vector is 7 = [e3,e3,---, €3] (e
is the coding residual w.r.t. the i-th pixel) and its ascending
sorted version is m,. We set ¢ as m,(|7d]) and p = ¢/é.
Thus, two new parameters (¢, 7) are introduced to build the
tight connection to the corruption level instead of using (u, d)
directly [15]. In our experiments, the corruption level for the
second setting is higher than the first one and smaller 7 is
preferred; thus we set (¢, 7) respectively as (8,0.8) and (8,0.6)
for both settings.

A. Face Recognition without Occlusion

In this experimental setting, we compare RGSR with
nearest neighbor (NN), nearest subspace (NS), linear support
vector machine, SRC [7], collaborative representation based
classification (CRC) [20] and RSC [15].

Similar to general FR methods, we perform experiments
in the PCA subspace, in which the Eigenface [21] features
are used as input. By applying PCA to the training data, (14)
will become min, |[P(Xa — )3 + X s, llees, |2, where
P is the projection matrix.

1) AR: As in [7], a subset with only illumination and
expression changes which contains 50 males and 50 females
was chosen from the AR data set [17] in our experiments. For
each subject, the seven images from Session 1 were used for
training, the other seven images from Session 2 for testing.
The image size is cropped to 60x43 pixels. The comparison
of RGSR and its competing methods is given in Table I.
RGSR achieves the best results among all methods in all
dimensions. RGSR consistently performs better than RSC
because the structured sparsity is encouraged than the /;-
norm induced flat sparsity.

2) Extended Yale B: The Extended Yale B data set
[18], [19] contains about 2414 frontal face images from 38
individuals. We used the cropped and normalized 54 x48
images, which were taken under varying illuminations. We
randomly split the database into two halves. One half (about
32 images per subject) was used as training samples, and the

TABLE I
FACE RECOGNITION RATES ON AR.

Dim 30 54 120 300

NN 62.5% | 68.0% | 70.1% | 71.3%
NS 66.1% | 70.1% | 75.4% | 76.0%
SVM 66.1% | 69.4% | 74.5% | 76.0%
SRC[7] 73.5% | 83.3% | 90.1% | 93.3%
CRC[20] | 64.4% | 80.5% | 90.0% | 93.4%
RSC[15] | 71.4% | 86.8% | 94.0% | 96.0%
RGSR 73.7% | 87.7% | 94.4% | 96.7%

other half for testing. Table II shows the recognition rates
versus feature dimension by the competing methods. RSGR
has much performance improvement in higher dimensions.
In this experiment, the training samples from each class
are sufficient (about 32) and they are more uncorrelated
in lower dimensional subspace when comparing with AR
data set; thus the ¢;-norm is more appropriate to regularize
the representation of samples with big variations. RGSR
has limited improvement over RSC in higher dimensional
subspace.

TABLE II
FACE RECOGNITION RATES ON EXTENDED YALE B.

Dim 30 84 150 300

NN 66.3% | 85.8% | 90.0% | 91.6%
NS 63.6% | 94.5% | 95.1% | 96.0%
SVM 924% | 949% | 96.4% | 97.0%
SRC[7] 89.1% | 95.1% | 96.8% | 97.9%
CRC[20] | 74.0% | 929% | 96.5% | 98.0%
RSC[15] | 913% | 981% | 98.4% | 99.4%
RGSR 88.2% | 96.4% | 98.6% | 99.6%

B. Face Recognition with Occlusion

In this section, we test the robustness of RGSR to differ-
ent types of occlusions including random pixel corruption,
random block occlusion and real disguise.

1) Face Recognition with Random Pixel Corruption: To
be identical to the experimental settings in [7], we used
Subsets 1 and 2 (717 images, normal-to-moderate lighting
conditions) of the Extended Yale B database for training,
and used Subset 3 (453 images, more extreme lighting
conditions) for testing. The face images are resized to 96 x84
pixels. For each test image, we replaced a certain percentage
of its pixels by uniformly distributed random values within
[0,255]. The corrupted pixels were randomly chosen from
test image and the locations are unknown.

We compare RGSR with SRC, CRC, correntropy-based
sparse representation (CESR) [22] and RSC. Fig. 3 shows
the results of different models under the corruption level
from 0% to 90%. All the models except CRC perform well
when the corruption level is lower than 60%. However,
when the percentage is more than 60%, the performance of
SRC was greatly reduced. Even with 90% pixels corrupted,
RGSR still obtains an acceptable accuracy (55.85%). A
representative example of RSC and RGSR with 80% random
pixel corruption is shown in Fig. 4. The corrupted face
image is difficult to recognize even for human; however,



both RSC and RGSR can accurately estimate the weight map
and recover the clean image. Both the corrupted pixels and
shadow region are reflected in the learned weight maps. The
reconstructed images are faithful to the original image but
with better visual quality. From the learned coefficients, we
find only one sample from the correct class plays a main role
in reconstruction for RSC; while for RGSR, all the samples
from the correct class have large coefficients. Therefore, the
reconstructed face image by RGSR is cleaner than that by
RSC especially for the right half face (lower illumination).
The coefficients obtained by RGSR has obvious grouping
effect and are smoother than those of RSC.

b » » » . » a
g 08f ——SRC
< 06l CRC
=2 CESR
S04 ——RSC
S —=—RSTL
X 0.2+

o

0 10 20 30 40 50 60 70 80 90
Corruption level (%)

Fig. 3. Recognition rates versus different percentage of pixel corruption.
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Fig. 4. Recognition under 80% random pixel corruption. First-row are
respectively the original image, corrupted image, weight maps obtained via
RSC and RGSR, reconstructed images via RSC and RGSR; Second-row:
learned coefficients via RSC and RGSR (best viewed in color).

2) Face Recognition with Block Occlusion: In this part,
we test the robustness of RGSR model to block occlusion.
We also used the same experimental settings as in [7],
i.e., Subsets 1 and 2 of Extended Yale B for training and
Subset 3 for testing. The images were resized to 96x84
pixels. We compare RGSR with SRC, CRC, Gabor-SRC (use
Gabor features to construct the occlusion dictionary) [23],
CESR and RSC. Fig. 5 shows the change trend of different
models under the level of the occluded area from 0% to
50%. Obviously, RGSR gets promising results even if the
occlusion level is high. Fig. 6 gives a representative example
under 40% random block occlusion. From the coefficients
learned by RSC, we can find that many training samples from
the wrong classes contribute to the reconstruction, which
blurs the area around the lip in the reconstructed image.
There are only three non-zero values w.r.t. the samples
from correct class, which means that the ¢;-norm sparsity
encourages to select representative samples when they are
highly correlated. For RGSR, the reconstruction is mainly
achieved by the training samples from the correct class
because they have similar non-zero values and samples from
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Fig. 5. Recognition rates versus different percentage of block occlusion.
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Fig. 6. Recognition under 40% block occlusion. First-row are respectively
the original image, occluded image, weight maps obtained via RSC and
RGSR, reconstructed images via RSC and RGSR; Second-row: learned
coefficients via RSC and RGSR (best viewed in color).

3) Face Recognition with Real Disguise: A subset from
AR data set is used in this experiment, which consists of
2,599 face images from 100 subjects (about 26 samples per
subject), 50 males and 50 females. We conduct two tests:
one follows the experimental setting in [7], while the other
follows [15] and is more challenging. The images are resized
to 42x30 pixels.

In the first test, 800 images (8 samples per subject) of
non-occluded frontal views with various facial expressions
in Session 1 and 2 were used for training, while two separate
subsets (with sunglasses and scarves) of 200 images (1
sample per subject per Session, with neutral expression) for
testing. The recognition rates of different models are listed
in Table III. RGSR achieves 100% recognition rate under
the sunglass disguise and 97.5% under the scarf disguise,
which are respectively 13% and 38% improvements w.r.t.
SRC. Though RSC performs well on both disguises, RGSR
still has respectively 1.5% and 1% improvement over it.

TABLE III
RECOGNITION RATES ON AR WITH DISGUISE OCCLUSION.

Algorithms | Sunglasses | Scarves
SRC [7] 87.0% 59.5%
CRC [20] 68.5% 90.5%
GSRC [23] 93% 79%

CESR [22] 99% 42%

RSC [15] 98.5% 96.5%
RGSR 100% 97.5%

In the second test, we use more complex disguises (dis-
guise with variations of illumination and longer data acqui-
sition interval). 400 images (4 neutral images with different
illuminations per subject) of non-occluded frontal views in
Session 1 were used for training, while the disguise images (3



images with various illuminations and sunglasses or scarves
per subject per Session) in Session 1 and 2 for testing.
Table IV shows the results of different competing models.
RGSR obtains much improvement w.r.t. RSC, about 4.3%
(Session 1) and 6.4% (Session 2) for the sunglass disguise;
for the scarf disguise, the improvements are respectively
2% (Session 1) and 4% (Session 2). Fig. 7 illustrates the
classification process of RGSR on a representative example.
Compared to RSC, the reconstructed image by RGSR has
better visual quality around the eye corner for the disguised
test image, which can easily remove the sunglass disguise.
The coefficients learned by RGSR have obvious grouping
effect, which enforces training samples from the same class
have similar coefficients. And there are samples from only a
few wrong classes which have large values. But for RSC,
the coefficients have large values across each class and
correspondingly the coding residual for each class has similar
variation tendency.

TABLE IV
RECOGNITION RATES ON AR WITH SUNGLASSES OR SCARF IN SESSION
1 AND SESSION 2.

Algorithms Sg-sl Sc-sl Sg-s2 Sc-s2
SRC [7] 89.3% | 323% | 573% | 12.7%
CRC [20] 437% | 30.7% | 17.7% | 13.7%
GSRC [23] | 87.3% | 85.0% | 45.0% | 66.0%
CESR [22] | 95.3% 38% 79% 20.7%
RSC [15] 94.7% | 91.0% | 80.3% | 72.7%
RGSR 99.0% | 93.0% | 86.7% | 76.7%
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Fig. 7. An example of FR with disguise. First-row are respectively face

without disguise, sunglass disguised test image, the weight maps obtained
via RSC and RGSR, the reconstructed images via RSC and RGSR; Mid-
row: learned coefficients associated with each training sample via RSC and
RGSR; Third-row: residuals of each class via RSC and RGSR.

V. CONCLUSION

This paper proposed the robust group sparse
representation-based classifier by improving SRC from
two aspects: using robust M-estimator to measure the
representation fidelity and the group sparsity constraint
on the coefficients. The optimization method to proposed
RGSR model is efficient and we provide its convergence

analysis. The RGSR model was evaluated under different
conditions, including variations of illuminations, expressions,
occlusion and combined corruption. Our experimental results
demonstrated that RGSR performs well especially under
high-dimensional cases and outperforms many state-of-the-
art methods including robust sparse coding.
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