
Introduction to C++ Coding Style

Xie Saining

Shanghai Jiao Tong University

Oct 18, 2011

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 1 / 25

Contents I

1 Header Files
The #define Guard
Header File Dependencies
Inline Function
Function Parameter Ordering
Names and Order of Includes

2 Scoping
Local Variables
Static and Global Variables

3 Classes
Doing Work in Constructors
Default Constructors
Access Control
Declaration Order
Write Short Functions
Xie Saining (SJTU) lecture on CS110 Oct/18/2011 2 / 25

Contents II

4 Other C++ Features
Default Arguments
Variable-Length Arrays and alloca()
Preincrement and Predecrement

5 Formatting
Line Length
Horizontal Whitespace
Vertical Whitespace

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 3 / 25

Header Files The #define Guard

The #define Guard

Tip: All header files should have #define guards
to prevent multiple inclusion.

Format: <PROJECT>_<PATH>_<FILE>_H_

Example: foo/src/bar/baz.h

#ifndef FOO_BAR_BAZ_H_
#define FOO_BAR_BAZ_H_
...
#endif FOO_BAR_BAZ_H_

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 4 / 25

Header Files Header File Dependencies

Listing 1: sample B

//a.h
#include "b.h"
class A
{
....
private:

B b;
};
//b.h
#include "a.h"
class B
{
....
private:

A a;
};

Listing 2: sample B

//a.h
//#include "b.h"
class B;
class A
{
....

private:
B *b;

};
//b.h
#include "a.h"
class B
{
....

private:
A a;

};

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 5 / 25

Header Files Header File Dependencies

Listing 3: sample B

//a.h
#include "b.h"
class A
{
....
private:

B b;
};
//b.h
#include "a.h"
class B
{
....
private:

A a;
};

Listing 4: sample B

//a.h
//#include "b.h"
class B;
class A
{
....

private:
B *b;

};
//b.h
#include "a.h"
class B
{
....

private:
A a;

};

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 5 / 25

Header Files Header File Dependencies

Header File Dependencies

How can we use a class Foo in a header file without access to its
definition?

We can declare data members of type Foo? or Foo&

We can declare (but not define) functions with arguments, and/or
return values, of type Foo.

We can declare static data members of type Foo. this is because
static data members are defined outside the class definition.

On the other hand,you must include the header file for Foo if your class
subclasses Foo or has a data member of type Foo.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 6 / 25

Header Files Header File Dependencies

Header File Dependencies

How can we use a class Foo in a header file without access to its
definition?

We can declare data members of type Foo? or Foo&

We can declare (but not define) functions with arguments, and/or
return values, of type Foo.

We can declare static data members of type Foo. this is because
static data members are defined outside the class definition.

On the other hand,you must include the header file for Foo if your class
subclasses Foo or has a data member of type Foo.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 6 / 25

Header Files Header File Dependencies

Header File Dependencies

How can we use a class Foo in a header file without access to its
definition?

We can declare data members of type Foo? or Foo&

We can declare (but not define) functions with arguments, and/or
return values, of type Foo.

We can declare static data members of type Foo. this is because
static data members are defined outside the class definition.

On the other hand,you must include the header file for Foo if your class
subclasses Foo or has a data member of type Foo.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 6 / 25

Header Files Header File Dependencies

Header File Dependencies

How can we use a class Foo in a header file without access to its
definition?

We can declare data members of type Foo? or Foo&

We can declare (but not define) functions with arguments, and/or
return values, of type Foo.

We can declare static data members of type Foo. this is because
static data members are defined outside the class definition.

On the other hand,you must include the header file for Foo if your class
subclasses Foo or has a data member of type Foo.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 6 / 25

Header Files Inline Function

Inline Function

Tip: Define functions inline only when they are small say 10 lines or
less.

Definition: You can declare functions in a way that allows the
compiler to expand them inline rather than calling them through the
usual function call mechanism.

You will gain a deeper understanding working on the Tiger Compiler
Project.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 7 / 25

Header Files Function Parameter Ordering

Function Parameter Ordering

Tip: When defining a function, parameter order is: inputs, then
outputs.

This is not a hard-and-fast rule. Parameters that are both input and
output (often classes/structs) muddy the waters, and, as always,
consistency with related functions may require you to bend the rule

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 8 / 25

Header Files Function Parameter Ordering

Function Parameter Ordering

Tip: When defining a function, parameter order is: inputs, then
outputs.

This is not a hard-and-fast rule. Parameters that are both input and
output (often classes/structs) muddy the waters, and, as always,
consistency with related functions may require you to bend the rule

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 8 / 25

Header Files Names and Order of Includes

Names and Order of Includes

Tip: Use standard order for readability and to avoid hidden
dependencies: C library, C++ library, other libraries..h, your
project.s .h.

Within each section it is nice to order the includes alphabetically.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 9 / 25

Header Files Names and Order of Includes

Names and Order of Includes

Listing 5: An Example

#include "foo/public/fooserver.h" //preferred position
#include <sys/types.h>
#include <unistd.h>
#include <hash_map>
#include <vector>
#include "base/basictypes.h"
#include "base/commandlineflags.h"
#include "foo/public/bar.h"

For example, the includes in
google-awesome-project/src/foo/internal/fooserver.cc
might look like above.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 10 / 25

Scoping Local Variables

Local Variables

Tip: Place a function.s variables in the narrowest scope possible,
and initialize variables in the declaration.

C++ allows you to declare variables anywhere in a function. We
encourage you to declare them in as local a scope as possible,

Listing 6: An Example

int i;
i = f(); //Bad:initialization separate from declaration.
int j = g(); //Good:declaration has initialization.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 11 / 25

Scoping Local Variables

Local Variables

Warning:
if the variable is an object, its constructor is invoked every time it
enters scope and is created, and its destructor is invoked every time it
goes out of scope.

Listing 7: sample A

for (int i = 0; i < 1000000;
++i) {

Foo f;
f.DoSomething(i);
}

Listing 8: sample B

Foo f;
for (int i = 0; i < 1000000;

++i) {
f.DoSomething(i);
}

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 12 / 25

Scoping Local Variables

Local Variables

Warning:
if the variable is an object, its constructor is invoked every time it
enters scope and is created, and its destructor is invoked every time it
goes out of scope.

Listing 9: sample A

for (int i = 0; i < 1000000;
++i) {

Foo f;
f.DoSomething(i);
}

Listing 10: sample B

Foo f;
for (int i = 0; i < 1000000;

++i) {
f.DoSomething(i);
}

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 12 / 25

Scoping Static and Global Variables

Static and Global Variables

Tip: Static or global variables of class type are forbidden: they cause
hard-to-find bugs due to indeterminate order of construction and
destruction.

Objects with static storage duration, including global variables, static
variables, static class member variables, and function static variables,
must be Plain Old Data (POD): only int, char, float, and void, and
arrays of/structs of/pointers to POD. Static variables must not be
initialized with the result of a function; and non-const static variables
must not be used in threaded code.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 13 / 25

Classes Doing Work in Constructors

Doing Work in Constructors

Tip: Do only trivial initialization in a constructor. If at all possible,
use an Init() method for non-trivial initialization.

If your object requires non-trivial initialization, consider having an
explicit Init() method and/or adding a member flag that indicates
whether the object was successfully initialized.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 14 / 25

Classes Default Constructors

Default Constructors

Tip: You must define a default constructor if your class defines
member variables and has no other constructors.Otherwise the
compiler will do it for you, badly.

if you have no other constructors and do not define a default
constructor, the compiler will generate one for you. This compiler
generated constructor may not initialize your object sensibly.

If your class inherits from an existing class but you add no new
member variables, you are not required to have a default constructor.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 15 / 25

Classes Access Control

Access Control

Tip: Make all data members private, and provide access to them
through accessor functions as needed. Typically a variable would be
called foo and the accessor function foo(). You may also want a
mutator function set foo().

The definitions of accessors are usually inlined in the header file.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 16 / 25

Classes Declaration Order

Declaration Order

Tip: Use the specified order of declarations within a class: public:
before private:, methods before data members (variables), etc.

public: section, then protected: section, then private: section.
If any of these sections are empty, omit them.

Within each section,

Typedefs and Enums
Constants

Constructors
Destructor

Methods, including static methods
Data Members, including static data members

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 17 / 25

Classes Write Short Functions

Write Short Functions

Tip: Prefer small and focused functions.

If a function exceeds about 40 lines, think about whether it can be
broken up without harming the structure of the program.

Long function results in bugs that are hard to find

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 18 / 25

Other C++ Features Default Arguments

Default Arguments

Tip: We do not allow default function parameters.

We require all arguments to be explicitly specified, to force
programmers to consider the API and the values they are passing for
each argument rather than silently accepting defaults they may not be
aware of.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 19 / 25

Other C++ Features Variable-Length Arrays and alloca()

Variable-Length Arrays and alloca()

Tip: We do not allow variable-length arrays or alloca().

NOT part of Standard C++.

Data-dependent, lack of portability, hard to transplant, modify, and
debug.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 20 / 25

Other C++ Features Preincrement and Predecrement

Preincrement and Predecrement

Tip: Use prefix form (++i) of the increment and decrement
operators with iterators and other template objects.

post-increment (or decrement) requires a copy of i to be made, which
is the value of the expression. If i is an iterator or other non-scalar
type, copying i could be expensive.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 21 / 25

Formatting Line Length

Line Length

Tip: Each line of text in your code should be at most 80 characters
long.

Exception: if a comment line contains an example command or a
literal URL longer than 80 characters, that line may be longer than 80
characters for ease of cut and past

Exception: an #include statement with a long path may exceed 80
columns. Try to avoid situations where this becomes necessary.

Exception: you needn.t be concerned about header guards that
exceed the maximum length.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 22 / 25

Formatting Horizontal Whitespace

Horizontal Whitespace

Tip: Use of horizontal whitespace depends on location. Never put
trailing whitespace at the end of a line.

See some examples.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 23 / 25

Formatting Vertical Whitespace

Vertical Whitespace

Tip: Minimize use of vertical whitespace.

See some examples.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 24 / 25

Appendix Further Reading

Further Reading I

Google Style Guide.
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Cpplint
A tiny Software(Actually a python script file)
http://google-
styleguide.googlecode.com/svn/trunk/cpplint/cpplint.py
2000.

Xie Saining (SJTU) lecture on CS110 Oct/18/2011 25 / 25

	Header Files
	The #define Guard
	Header File Dependencies
	Inline Function
	Function Parameter Ordering
	Names and Order of Includes

	Scoping
	Local Variables
	Static and Global Variables

	Classes
	Doing Work in Constructors
	Default Constructors
	Access Control
	Declaration Order
	Write Short Functions

	Other C++ Features
	Default Arguments
	Variable-Length Arrays and alloca()
	Preincrement and Predecrement

	Formatting
	Line Length
	Horizontal Whitespace
	Vertical Whitespace

	Appendix

