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Abstract

A significant cost in obtaining acoustic training data is the generation of accurate transcriptions. When no transcription is available,
unsupervised training techniques must be used. Furthermore, the use of discriminative training has become a standard feature of state-of-
the-art large vocabulary continuous speech recognition (LVCSR) system. In unsupervised training, unlabelled data are recognised using
a seed model and the hypotheses from the recognition system are used as transcriptions for training. In contrast to maximum likelihood
training, the performance of discriminative training is more sensitive to the quality of the transcriptions. One approach to deal with this
issue is data selection, where only well recognised data are selected for training. More effectively, as the key contribution of this work, an
active learning technique, directed manual transcription, can be used. Here a relatively small amount of poorly recognised data is man-
ually transcribed to supplement the automatic transcriptions. Experiments show that using the data selection approach for discriminative
training yields disappointing performance improvement on the data which is mismatched to the training data type of the seed model.
However, using the directed manual transcription approach can yield significant improvements in recognition accuracy on all types
of data.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

A recent trend in building large vocabulary speech recog-
nition systems is to use very large acoustic model training
sets to improve parameter estimation and hence recognition
performance (Evermann et al., 2005). For some tasks, such
as automatic transcription of Broadcast data, it is fairly
easy to obtain thousands of hours of audio from radio

and television shows. However, in order to train acoustic
models, word level transcriptions are required. Hence, a
major cost of using large amounts of broadcast data for
training is the provision of accurate manual transcriptions.

In some cases, approximate manual transcriptions, such
as closed captions, are available. These approximate tran-
scriptions can be used with lightly-supervised training
(Lamel et al., 2002; Chan and Woodland, 2004). Here a
biased language model is created from the approximate
transcriptions and used to recognise the audio data. This
leads to low error rate semi-automatic transcriptions which
yield good performance for hidden Markov model (HMM)
parameter estimation using both maximum likelihood
(ML) (Lamel et al., 2002) and discriminative criteria (Chan
and Woodland, 2004). However, in some cases, for
instance broadcast news transcription in Arabic and Man-
darin, even approximate transcriptions are not available.
Here unsupervised training techniques must be used.
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In unsupervised training, a seed model is normally used
to recognise the untranscribed audio. Then automatically
generated transcriptions are used during training. Most
previous studies of unsupervised training examined Maxi-
mum Likelihood (ML) estimation techniques (Kemp and
Waibel, 1999; Lamel et al., 2001; Lamel et al., 2002; Wessel
and Ney, 2005; Riccardi and Hakkani-Tur, 2003; Kamm
and Meyer, 2002). These studies have found that iterative
addition of unsupervised data and confidence score based
data selection can yield reduction in word error rate
(WER). However, the majority of state-of-the-art speech
recognition systems make use of discriminative training
approaches, such as Minimum Phone Error (MPE) (Povey
and Woodland, 2002). Recently, unsupervised discrimina-
tive training has been investigated (Ma et al., 2006; Wang
et al., 2007; Yu and Gales, 2007). As discriminative
schemes aim to reduce the recognition error of the training
data with respect to the (assumed) “correct” transcription,
it is not surprising that discriminative training is more sen-
sitive to the accuracy of the transcriptions than ML train-
ing. Furthermore, if the transcriptions for untranscribed
audio data are automatically generated, then the set of
most probable alternative hypotheses required in discrimi-
native training tends to be closer to the “correct” transcrip-
tion than if manual transcriptions had been used. The
discrimination ability of the trained model may then be
reduced. These sensitivities may limit the size of perfor-
mance improvements if the training data has a high error
rate with the seed model, such as when the unlabelled data
is mismatched to that used in seed model training. There-
fore, when testing on mismatched data, the performance
gains are often small. For example, Broadcast Conversa-
tion (BC) data is normally spontaneous speech, where filled
pauses, word fragments, reduced articulation or mispro-
nunciation, and non-speech events such as laughter and
coughing may frequently happen. In contrast, Broadcast
News (BN) data consists mainly of prepared speech. Thus
the two types of speech usually have large acoustic and lin-
guistic differences (Nakamura et al., 2007) and typically BC
data has higher error rates than BN data. It has been
reported that the associated performance improvement
using unsupervised discriminative training on the BC test
set is much smaller than for BN data (Wang et al., 2007).
This paper investigates an effective approach to improve
the performance of unsupervised discriminative training.

For transcription generation in unsupervised training,
two strategies may be used. The standard approach is to
automatically recognise the audio using a seed model. Data
selection can then be applied to remove data that are
believed to be poorly transcribed. The retained data are
then added to the original training dataset and used to
train the acoustic model and optionally the language model
(Kemp and Waibel, 1999; Lamel et al., 2002; Wang et al.,
2007). An alternative strategy, based on the theory of
active learning (Cohn et al., 1994) is proposed in this work.
Here, a small amount of data, which is believed to be
poorly recognised, is selected automatically. This subset

is then manually transcribed to supplement the fully auto-
matic transcriptions (Kamm and Meyer, 2002; Riccardi
and Hakkani-Tur, 2003). In this work, this approach is
applied to discriminative training. This is referred to as
directed manual transcription (Yu and Gales, 2007) and is
investigated in detail. The underlying assumption is that
the inclusion of correctly transcribed high error rate data
is likely to be more useful for improving the quality of
the acoustic model.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the unsupervised training procedures. The
sensitivity of discriminative training to errorful transcrip-
tion is discussed in Section 3. In Section 4, two strategies
for transcription generation are investigated in the context
of a state-of-the-art discriminatively trained system for the
recognition of Mandarin broadcast audio.

2. Unsupervised training for LVCSR

This section describes the basic unsupervised training
procedure for large vocabulary continuous speech recogni-
tion (LVCSR) systems. Seed acoustic models and language
models have been trained on some supervised data. The
general procedure is to first recognise the untranscribed
audio using the seed models. Data selection approaches
may then be used to filter out poorly recognised data.
The untranscribed audio with the automatic transcriptions
are then added to the original training set for acoustic (ML
and discriminative) and/or language model training. In this
work, unsupervised training for the acoustic models is the
focus because the effect of adding unlabelled data for lan-
guage model training has been shown to have a smaller
effect (Yu and Gales, 2007).

The complete procedure requires segmentation of the
unlabelled data, automatic transcription generation, data
selection and model training. The approach implemented
in this work is described in more detail as an example of
this overall procedure.

2.1. Automatic transcription generation

The initial stage for unsupervised training is automatic

segmentation of the untranscribed audio. The procedure
described in Sinha et al. (2006) is also used here. First,
advertisement removal is run by detecting repeated blocks
of audio data, for example jingles or commercials. Acoustic
segmentation is then performed based on Gaussian mixture
models (GMM) of different sound types. The data is split
into wide-band speech and telephone (narrow-band)
speech during this process. Segments of music are dis-
carded. Finally gender detection and speaker clustering
are used to generate speaker labels for adaptation.

Given the automatic segmentation, automatic transcrip-
tions are then generated using the seed models trained on
the original supervised data. In this work, in order to gen-
erate transcriptions with low word error rate, a multi-pass
recognition system with discriminatively trained acoustic
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models and unsupervised adaptation is employed. This sys-
tem is normally used as the lattice generation stage in the
state-of-the-art Cambridge multi-pass speech recognition
framework (Evermann and Woodland, 2003), often
referred to as a P1-P2 system. The adapted decoding sys-
tem has two stages:

� P1: Gender-independent models trained with the MPE
criterion are used to generate initial transcriptions with
a trigram language model and relatively tight beam-
widths.
� P2: The 1-best hypotheses from the P1 stage are used to

generate adaptation transforms for gender-dependent
MPE trained models. Here least square linear regression
and diagonal variance transforms are estimated. Using
the adapted MPE trained models, lattices are generated
using a trigram language model with a wider beam-
width. These lattices are then rescored using a 4-gram
language model.

In this work, the Viterbi 1-best recognition result of the
P2 stage is used as the transcription for unsupervised train-
ing, as this is felt to give a better balance between deletions
and insertions. However, in order to perform effective data
selection in the later stage, confidence scores associated
with each word are normally required. Therefore, addi-
tional confusion network (CN) decoding (Mangu, 2000)
is performed on the P2 lattices. This yields another set of
transcriptions with associated confidence scores. Note,
these transcriptions are only used in the data selection stage
rather than in the training stage. This is because CN decod-
ing tends to increase the deletion rate.

2.2. Data selection

One fundamental issue in unsupervised training is that
both the audio and transcriptions are not manually
checked to ensure both appropriateness and quality for
acoustic model training. This may lead to two problems:

(1) the audio are not guaranteed to be in the target
language;

(2) the quality of the automatic transcriptions may be
very poor, which may significantly affect the model
training.

Both problems occur in the task considered in this work
to transcribe Mandarin Chinese broadcasts. In Mandarin
broadcasts there are some shows that have significant levels
of English content. For carefully selected data, such as that
used for the 2003 and 2004 NIST Mandarin broadcast news
(BN) transcription evaluations, the percentage of English
data is typically in the range of 1–2%. However for some
shows this percentage is significantly higher. Rather than
relying on the use of confidence scores to remove these large
segments of data during data selection, it would be prefera-
ble to eliminate the complete broadcast from the training set

as they are unlikely to be appropriate for training Mandarin
acoustic models. In this work, the adapted decoding system
described above is a dual language system that can output
both Mandarin and English. Detection of non-Mandarin
shows is performed by setting a threshold on the percentage
of English words recognised for that show and on the over-
all show-level confidence score as described below. Though
the dual language system was based on English and Manda-
rin, it is found to detect other non-Mandarin data such as
shows containing a large percentage of German speech.

After removing broadcast shows unsuitable for training,
further data selection may then be performed in order to fil-
ter out the poorly transcribed unlabelled data (Wang et al.,
2007; Ma et al., 2006). The selection can be done at seg-
ment-level or show-level, and both are based on the confi-
dence scores generated in the P2 stage. Show or segment
level confidence scores are calculated by averaging the con-
fidence scores of each word using the same formulae:

CS ¼
P
W2SCWTWP
W2STW

; ð1Þ

where S can be one show or one segment, CS is the aver-
aged confidence score of S; CW is the confidence score of
word W within S calculated by the adapted decoding sys-
tem, TW is the duration of word W. A threshold on CS is
set to split the unlabelled data into two parts. Those seg-
ments with higher confidence scores than the threshold
are retained, while those below the threshold are removed.
This approach has previously been adopted in Chan and
Woodland (2004), Ma et al. (2006), Wang et al. (2007),
where it was shown to improve the performance of both
ML and discriminative training on the data with the same
genre as the training data of the seed model.

2.3. Directed manual transcription

Though the data selection approach introduced in the
previous section can yield improvements on the data of
the same type as the training data, the gains for discrimina-
tive training are limited when the data is from a different
genre to the seed model (Wang et al., 2007; Yu and Gales,
2007). This data tends to have higher error rate. To address
this problem, based on the framework of active learning
(Cohn et al., 1994), the proposed strategy is to incorporate
some supervised data for the poorly recognised genre. This
approach can be implemented within the unsupervised
training framework described earlier. Rather than discard-
ing the segments whose confidence scores fall below the set
threshold CS, those segments are manually transcribed to
supplement the automatic transcriptions used in the data
selection. This is the directed manual transcription approach
(Yu and Gales, 2007). Compared to previous research on
active learning for speech recognition (Kamm and Meyer,
2002; Riccardi and Hakkani-Tur, 2003), this work concen-
trates on the performance improvement of discriminative

training, which is a key issue in state-of-the-art LVCSR
systems.
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Directed manual transcription is based on confidence
scores. Poorly recognised genre will dominate the data
selection for manual transcription. This is because the seed
model will normally recognise the unlabelled data of
matched type better than data which are mismatched. Con-
sequently the confidence scores are higher for matched
data. For example, the Mandarin broadcast task contains
two different types of audio: broadcast news (BN) and
broadcast conversation (BC). Experiments have shown
that the two types of data have significant differences in
both the acoustic and transcription statistics (Wang et al.,
2007). As the seed models in this work are trained on
supervised BN data, the untranscribed BC data will have
lower confidence scores.2

Fig. 1 shows the confidence score distribution of BN and
BC data used in this work. Those confidence scores were
generated using the seed model trained on BN dominant
data set. Details are described in Section 4. It can be
observed that both confidence score distributions have
two peaks, corresponding to BN and BC data with the
BC data normally having lower confidence scores. As the
type of the data is labelled at the show level, the difference
between the two types is more distinct in Fig. 1(a). In con-
trast,the use of segment-level confidence scores yields a
smoother distribution and allows finer grained data selec-
tion. The initial investigation of directed manual transcrip-
tion (Yu and Gales, 2007) used show-level confidence
scores. In this work, segment-level confidence score selec-
tion is used unless explicitly stated.

3. Discriminative training with unlabelled data

After data selection and/or directed manual transcrip-
tion, transcriptions for a subset of the untranscribed audio
are available. These data are then added to the original

transcribed training set. The acoustic models are then
trained using this combined training set in the standard
fashion. The general procedure is to first perform maxi-
mum likelihood (ML) training. These initial models are
then refined using MPE training.

ML training with untranscribed audio is proved to be
fairly insensitive to the transcription quality (Kemp and
Waibel, 1999; Lamel et al., 2001; Lamel et al., 2002). How-
ever, discriminative MPE training has been shown to be far
more sensitive to the transcription quality (Wang et al.,
2007). This section will discuss discriminative training in
detail and the issues associated with unsupervised discrim-
inative training.

3.1. Discriminative training

Discriminative training criteria explicitly aim to reduce
the recognition errors on the training data. Thus these cri-
teria not only take into account the correct word sequence,
but also incorrect, confusable hypotheses. One class of dis-
criminative criteria is based on minimizing the Bayes risk
(MBR) (Doumpiotis et al., 2003). This can be expressed as

Mdl ¼ arg min
M

X
r

X
H

P ðHjOðrÞ;MÞL H;HðrÞref
� �( )

;

ð2Þ
whereM is the model parameter set, r is the index of utter-
ances, HðrÞref is the correct transcription for utterance r,

L H;HðrÞref
� �

is a loss function defining the difference be-

tween any possible hypothesis H and the correct transcrip-
tion HðrÞref. From Eq. (2), the posterior probability of the
hypothesis P ðHjOðrÞ;MÞ is required, which can be ex-
pressed as

P ðHjOðrÞ;MÞ ¼ pðOðrÞjHÞPðHÞP
�HpðOðrÞj �HÞP ð �HÞ

: ð3Þ
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Fig. 1. Confidence score distribution of BC and BN Mandarin data using seed acoustic model trained on BN data.

2 As the length of the automatic segments vary a lot, the counts of
segment-level confidence scores are based on the accumulated duration.
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Due to the use of the above posterior distribution, it is nec-
essary to calculate a number of confusable hypotheses �H.
These confusable competing hypotheses are normally gen-
erated using an existing STT system. Lattices are used in
this work as a compact representation of multiple hypoth-
eses. Usually word lattices are converted to phone lattices
before discriminative training. In this paper, the minimum
phone error (MPE) criterion is employed, where Lð�Þ is de-
fined as the phone error of each hypothesis (Povey and
Woodland, 2002). With this loss function, reference tran-
scriptions are used to calculate the average phone accuracy
of the confusable hypotheses lattices generated from an
STT system. Then, two sets of lattices are used for MPE
training. The numerator lattices consist of phone arcs with
accuracies higher than the average phone accuracy, while
the denominator lattices consist of the rest low accuracy
phone arcs. Details about the MPE lattice definition can
be found in Povey (2003).

The MPE criterion can be optimised using the weak-
sense auxiliary function described in Povey (2003). The
final parameter update formulae are extensions of the stan-
dard Baum–Welch algorithm. The new mean of Gaussian
component m can be updated as below (Povey and Wood-
land, 2002):

lðmÞ ¼
P

tc
n
mðtÞot �

P
tc
d
mðtÞot þ Dml̂ðmÞ þ sIl

ðmÞ
MLP

tc
n
mðtÞ �

P
tc
d
mðtÞ þ Dm þ sI

; ð4Þ

where ot is the observation at time t, cnmðtÞ is the posterior
occupancy of component m at time t calculated using
forward-backward algorithm given the numerator lat-
tices, cdmðtÞ is the occupancy calculated given the denomi-
nator lattices, Dm is a smoothing constant to ensure
convergence of the weak-sense auxiliary function, l̂ðmÞ is
the estimated mean vector of the previous iteration,

l
ðmÞ
ML ¼

P
tc
ML
m ðtÞot

� �
=
P

tc
ML
m ðtÞ

� �
is the ML estimate of the

mean vector used to increase the generalisation ability
of the final discriminative estimates, sI is a constant to
control the weighting of the ML estimate.

In order for discriminative training to operate well, there
should be sufficient difference between the reference tran-
scription and the competing hypotheses. To achieve this,
an ML model with a weakened language model, normally
a heavily pruned bigram or unigram, is normally used in
the decoding STT system to generate competing hypothe-
ses (Povey, 2003). The standard rationale for this is that
the weakened language model increases the number of con-
fusions in the data, hence improving the generalisation of
discriminative training to unseen data.

3.2. Issues in unsupervised discriminative training

For unsupervised discriminative training, the use of a
“weakened” language model for generating the denomina-
tor lattices is important. Competing confusable hypotheses
are normally generated using the same STT system as the
system generating the “reference”. However, they need to

be sufficiently different for discriminative training. If the
same language model and acoustic models are used, then
the best path of the transcription and the competing
hypotheses must, by definition, be the same.3 This may
limit any possible reductions in error rate from discrimina-
tive training. However, even if a weakened language model
is used, this problem still exists. This effect can be illus-
trated by comparing the character error rate (CER) for
scoring the best path of the competing hypotheses (denom-
inator) against different types of reference transcriptions.

Table 1 shows the performance (CER %) of the 1-best
hypothesis in the denominator lattices generated using
the “weakened” language model and either the manual
transcriptions or the automatically-derived transcriptions.
The results are quoted on subset1 of the Mandarin training
data, see Section 4.1 for details. Note the automatically-
derived transcriptions use the multi-pass adaptation frame-
work with 4-gram language models described in Section
2.1. As expected, in Table 1, the CER is lower when using
the automatically-derived transcriptions compared to the
manual transcriptions. This illustrates the bias from using
the same acoustic models discussed in the previous section.
To get an idea of the accuracy of the transcriptions gener-
ated using the multi-pass adaptation framework, the per-
formance on two types of test data was evaluated. For
the BN and BC data, CERs of 24.2% and 11.7% respec-
tively were obtained.

The issues discussed above can also be illustrated by
looking at the approximate MPE criterion computed dur-
ing training. For this experiment the S0 training data was
either augmented by subset1 with the manual transcrip-
tions (S1), or the automatically-derived transcriptions
(S2). Fig. 2 shows the approximate expected phone error
rate, based on the two different types of reference transcrip-
tions, against MPE iteration for these two systems. The
MPE criterion for the S2 system is consistently lower than
that of the S1 system. Thus using the automatically-derived
transcriptions yields an artificially low expected phone
error rate compared to the accurate manual transcriptions.
Thus the MPE trained system may not be able “correct”
errors due to the incorrect transcriptions.

The above results have not used any data selection
approaches. Using data selection can reduce the error rate
of the transcriptions in the selected data. Thus it would be
expected that the differences between the equivalent S1 and

Table 1
% CER of the best path of denominator lattices against two types of
reference transcriptions.

Reference type BC BN

Manual 42.4 22.1
Auto. 31.9 17.7

3 In this case, it is still possible to discriminatively update the system as
the expected loss is used for MPE training. However, this is only of
theoretical interest.
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S2 systems above would be decreased. However, a side-
effect of selecting data that the seed system recognises well
is that the data most useful for improving the models, the
data on which the system performs poorly, will be exactly
the data removed during data selection. This has resulted
in limited reductions in error rate using data selection with
discriminative training (Wang et al., 2007). This limitation
will be discussed in more detail in the next section.

4. Experimental investigation of unsupervised discriminative
training

This section discusses the recognition performance using
unsupervised discriminative training. A Mandarin broad-
cast transcription task is used. The seed model will be
trained primarily on BN-style data. This allows the perfor-
mance for both relatively low error rate, matched BN data,
and high error rate, mismatched BC data, to be investi-
gated. The data summary and experimental setup is
described in Section 4.1. Then, the two unsupervised train-
ing strategies are discussed in detail in the following
sections.

4.1. Data summary and experimental setup

As discussed in Section 2, the starting point for unsuper-
vised training is seed acoustic models trained on supervised
data, here referred to as S0. The training data set for S04 is
shown in Table 2. The dominant type of the S0 data set is
BN-style, while BC-style data comprises only about 10% of
the whole data set. Therefore, the seed model trained on S0
is expected to yield worse performance on BC-style untran-
scribed data than on BN-style data.

The primary dataset used for unsupervised training
experiment includes broadcast news, broadcast conversa-
tion and some non-Mandarin shows. For these data, man-
ual transcriptions as well as manual segmentations are

available. This allows a contrast to the use of unsupervised
training with standard supervised training. This data set
was used in both supervised and unsupervised training.
Non-Mandarin shows were removed before supervised
training. This data set is referred to as subset1. S1 is the
model trained on the combination of the S0 training data
and subset1 data set with manual transcriptions and seg-
mentations. The same audio was also used in unsupervised
training as if the manual transcriptions were not available.
In unsupervised training, automatic non-Mandarin show
detection was first performed. The untranscribed audio
was decoded using the system described in Section 2.1 with
the seed model S0. Two thresholds were then used in the
show level selection. The first was a show-level confidence
score of 55%, the second was a threshold of 20% for the
percentage of English. Four shows were detected as non-
Mandarin and these were manually checked. Three of the
shows contained large amounts of English interviews and
the other show contained only songs. The amount of data
removed using this show selection approach depends sig-
nificantly on the care taken in selecting the sources and
the shows recorded. In previous work on the BN data
released under the DARPA EARS program, a far larger
percentage of shows were detected as English (Sinha
et al., 2006). After automatic non-Mandarin show detec-
tion, the remaining audio was used to train models with
unsupervised training techniques. This is the S2 system,
which uses the same broadcast audio data as S1 but with
some unlabelled data. It is worth noting that, since auto-
matic segmentation and automatic removal of non-Manda-
rin shows were required, the actual amount of data used
for unsupervised training of the S2 system (before confi-
dence score based data selection) is slightly less than the
data for the S1 system.

In addition to subset1, a second dataset, subset2, with
no manual transcription was also used in some experi-
ments. Systems trained on the combination of subset1, sub-
set2 and the S0 training data set are referred to as S3. This
was used to investigate whether increasing the amount of
unlabelled data will continuously improve the system per-
formance. In the above systems, BN-style data is always
dominant. It is also useful to know the performance of dif-
ferent types of data when the training data has a balanced
combination of BC and BN data. To get such an unsuper-
vised training data set, the BN part of subset1 and the BC
part of subset2 were added to the S0 data set, forming the
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Fig. 2. Expected phone error on training data for MPE training.

Table 2
Training data summary and different acoustic models.

Sys. Data Trans. type Size (h)

BN BC ALL

S0 Baseline Manual 155.6 19.7 186.4
S1 +Subset1 363.2 150.8 514.0

S2 +Subset1 Auto. 352.3 152.2 504.5
S3 +Subset1/2 654.0 303.2 957.2
S4 +Subset1(BN)/2(BC) 352.3 303.2 655.5

4 This training data set also includes 11.1 h of English data including
10 h of randomly selected TDT4 English data and 1 h of English data
contained in the Mandarin data set.
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S4 system in Table 2. Here, the amount of BN and BC
training data are approximately the same.

Two test sets were used to evaluate different systems:
bnmdev06 and bcmdev05. bnmdev06 comprises 3.6 h
of data taken from a range of BN sources. It includes some
of the standard existing test sets described in Sinha et al.
(2006), dev04f (0.5 h), eval03m (0.6 h) and eval04

(1.0 h). In addition a more recent set of 4 shows (1.6 h)
taken from July to October 2006 were also used. The eval-
uation data for BC, bcmdev05, comprises 2.5 h of data
taken from 5 BC shows during March 2005.

In all acoustic systems, the basic acoustic features were
13 Cepstral coefficients (including energy) and their deriva-
tives, derived from Mel-Frequency Perceptual Linear Pre-
diction (MF-PLP) analysis (Woodland et al., 1997) and
segment level Cepstral Mean Normalisation (CMN)
(Woodland et al., 1994). The static coefficients were
appended with 1st, 2nd and 3rd order derivatives to form
a 52-dimensional feature vector and then projected using
a Heteroscedastic Linear Discriminant Analysis (HLDA)
(Kumar, 1997) transform to 39-dimensions. As Mandarin
is a tonal language, smoothed log pitch frequency features
were also extracted along with the 1st and 2nd order deriv-
atives (Gales et al., 2005) and appended to the other fea-
tures. State-clustered triphone HMMs, with 6K distinct
states and an average of 36 Gaussian components per state
were used for all systems. The same decision tree and
HLDA transform was used for all systems in this paper.

The baseline language model used in the experiments
was trained using various sources including the LDC Chi-
nese giga-word release and web download data. In addi-
tion, manual transcriptions associated with the acoustic
data for the S0 baseline were also used for language model
training. All text was processed using a simple character-
to-word segmenter based on longest-first match. The
multi-character word-list for this consists of about 51K
words. Any Chinese character that was not present in the
multi-character word-list was processed as an individual
word. The total word-list, including single-character Man-
darin words and the 10K most frequent English words, was
68K words. Three separate language model (LM) compo-
nents were built and interpolated to construct the baseline
language model. The first component, broadcast news, was
trained using about 1074M words of text. This component
was interpolated with a general English LM at a ratio of
9:1 for the interpolation weights. The use of English com-
ponent is because, during the recognition of unlabelled
audio, English needs to be output for non-Mandarin show
detection. The second is a broadcast conversation compo-
nent, trained only on the transcriptions for the 19 h of
BC data, 0.24M words. Finally, the third component was
built using web-data from Phoenix TV (PHX).5 This train-
ing set consists of 64M words, which was checked to ensure

there is no overlap with any of the test or unlabelled data.
This data was found to be suitable for both BN and BC
transcription. Word-based trigram and 4-gram LMs were
then trained for each component and interpolated and
merged to form the final language model.

The baseline (S0) acoustic and language models were
used to recognise the untranscribed audio. An adapted
decoding framework was used, i.e. the P1-P2 system
described in Section 2.1. All experiments on the test data-
sets bnmdev06 and bcmdev05 used unadapted Viterbi
decoding with the trigram baseline LM unless explicitly
stated. The initial performance comparison between super-
vised and unsupervised training is shown in Table 3:

The second row of Table 3 is the performance of super-
vised training, which can be treated as the upper bound of
unsupervised training performance. For ML training, the
CER reduction of supervised training compared to S0 is
2.3% on bnmdev06 and 3.2% on bcmdev05. For MPE
training, the corresponding CER reductions are 3.1% and
3.6%, respectively. The CER reductions of both ML and
MPE training on bcmdev05 are better than those on
bnmdev06. This is because the relative amount of BC data
was significantly increased in S1. However, a different trend
appears in unsupervised training with automatic transcrip-
tions (S2). With ML training, S2 led to a larger CER reduc-
tion over S0 on bcmdev05 (1.6%) than on bnmdev06

(1.3%). In contrast, for MPE training, the CER reduction
on bcmdev05 is only 0.6%, which is less than half of that
on bnmdev06 (1.6%). The relative gain from supervised
training can also be calculated to show the effectiveness
of unsupervised training. For the S2 MPE system, the pro-
portion of the CER reduction from supervised MPE train-
ing is much bigger on BN (57%), while on BC, it is only
17%. This demonstrates that the higher error rate of BC
data can significantly affect the performance of unsuper-
vised discriminative training. If the type of the test data
is well matched to the well recognised unlabelled data,
the performance gain is closer to that from supervised
training, otherwise, it may be greatly limited.

One option to improve the performance on BC-style test
data is to add more unlabelled data. This was investigated
by adding subset2 data into unsupervised training pool to
build the S3 system. Table 3 shows that this only yielded
small additional MPE gains on bcmdev05 (0.2%). It can
be seen that performance of unsupervised training with

Table 3
Unadapted decoding performance using HMMs estimated with supervised
and unsupervised training.

System S0 + (h) bnmdev06 bcmdev05

Man. Auto. ML MPE ML MPE

S0 0 0 15.1 13.6 29.3 25.4
S1 327.6 0 12.8 10.5 26.1 21.8

S2 0 318.1 13.8 12.0 27.7 24.8
S3 0 770.8 13.3 11.6 27.7 24.6
S4 0 469.1 13.8 12.2 27.3 24.7

5 Thanks to SRI and the GALE Nightingale team for making this data
available.

658 K. Yu et al. / Speech Communication 52 (2010) 652–663



Author's personal copy

770.8 h data is disappointingly compared to supervised
training with less than half of the data on bcmdev05. This
is because, due to the use of the same adapted decoding
system, the automatic transcriptions generated for the
additional subset2 data are still of low quality for the BC
portion. To examine whether the large quantities of BN
data has taken some possible gains away from the BC data,
a system was built by adding just the BC data from subset2,
which led to an approximately balanced training data set.
This is the S4 system, whose performance is shown in the
last row of Table 3. For bnmdev06, the CER reductions
of the S4 system over the S2 system are smaller than those
of the S3 system. This is because the proportion of the BN-
style training data in the S4 system is reduced compared to
the S3 system. However, even with a large increase in the
absolute and relative amount of the BC-style data, the per-
formance gain of discriminative training on bcmdev05 is
small. The S4 system yielded a significant6 gain of 0.4%
on bcmdev05 for ML training compared to the S2 system,
but an insignificant gain of 0.1% for MPE training. Unsu-
pervised discriminative training on the additional data is
clearly not effective for the BC-style test data. Therefore,
simply adding more unlabelled data will not be further dis-
cussed. Instead, data processing strategies on the automatic
transcriptions will be used to get improvements. Note that
all experiments in the following sections will be based on
the subset1 data set.

4.2. Data selection

To obtain larger improvements from discriminative
training, data selection approaches can be used to filter
out poorly recognised data (Wang et al., 2007; Yu and
Gales, 2007). As indicated in Section 2.2, data selection
may be performed based on the confidence scores. In this
work, unless explicitly stated, the segment-level confidence
score was used, as preliminary experiments yielded better
performance than show-level data selection.

When performing confidence score based data selection,
the selection threshold is normally empirically set. The
impact of the thresholds on unsupervised training data
selection performance was initially investigated. Four
thresholds 0.7, 0.77, 0.8 and 0.86 were used. Fig. 3 shows
the relative reduction in CER of unsupervised training with
automatic transcriptions from supervised training. The
x-axis shows the percentage of data retained after confi-
dence score based data selection. The y-axis shows the per-
centage of the CER reduction from unsupervised training
relative to supervised training, Gc. For a confidence score
threshold c; Gc is calculated using

Gc ¼ 100
Ec � ES0

ES1� ES0
; ð5Þ

where Ec is the CER of the model trained on unlabelled
data selected using confidence score threshold c. ES1 is
the CER of supervised training and ES0 is the performance
of the baseline S0 model, which are shown in Table 3. This
gives an idea of how close the unsupervised training perfor-
mance gains are to the “ideal” supervised training gains.

From Fig. 3, for both BN-style and BC-style test sets,
adding unlabelled data yielded reduction in CER over the
baseline S0. However, the improvements did not always
increase as more data were selected. This is expected
because if too little data are selected, they will contribute
less to model training; if too much data are selected, the
quality of some of the selected data is poor. Either may
limit the reduction in CER. A trade-off threshold should
be empirically selected to balance these two issues. Further-
more, it can be observed that the relative reduction in CER
on bnmdev06 is always greater (about double) than that
on bcmdev05. As indicated in Section 2.2, there is always
a large amount of BN data selected when confidence score
based selection is used. Hence, the small reduction in CER
with MPE training on bcmdev05 is also expected. The fig-
ure illustrates that the performance improvement on the
data of mismatched genre is smaller for discriminative
training.

Fig. 3 shows that using an appropriate confidence score
can yield reduction in error rate for discriminative training.
However, using confidence scores reduces the quantity of
the training data. To investigate this issue, confidence
scores were used to select data from the subset2 data set.
The threshold used is the one corresponding to the best
improvement on bcmdev05 in Fig. 3, 0.77. Experiments
show that with the additional subset2 data, the MPE
trained model can obtain a 0.5% absolute reduction in
CER on bnmdev06 while no gain was obtained on bcm-

dev05. This is because simple data selection discards the
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Fig. 3. Reduction in CER (%) from unsupervised MPE training with
automatic transcriptions relative to that from supervised training.

6 Wherever the term “significant” is used in CER comparison, a pair-
wise significance test was done using NIST provided scoring toolkit
sctk-1.2. The significance difference was reported using the Matched-
Pair Sentence-Segment Word Error (MAPSSWE) test (Gillick and Cox,
1989) implemented at NIST (Pallett et al., 1990) at a significance level of
5%, or 95% confidence.
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poorly recognised data, which is just the data expected to
help most in improving the performance on the BC-style
test data. This experiment shows that even with data selec-
tion, the use of only automatic transcriptions cannot yield
substantial improvements on the test data of mismatched
type. Hence, the alternative strategy of using directed man-
ual transcription has been investigated.

4.3. Directed manual transcription

As discussed in Section 2.3, in order to improve the rec-
ognition performance on mismatched data, the data with
low average confidence scores can be selected for manual
transcription rather than discarded. This allows poorly
transcribed data to be used. The selected data along with
their manual transcriptions are then used together with
the other automatically transcribed data for acoustic model
training. Though the directed manual transcription (Yu and
Gales, 2007) method requires some manual effort, it is still
much less costly than manual transcription of the complete
dataset. The aim is to find a reasonable trade-off between
the increase in cost and the recognition performance. To
find an appropriate operating point, different confidence
score thresholds were used to select different amount of
data to be manually transcribed.

Experiments show that BC data was always predomi-
nantly selected for all thresholds. This is consistent with
Fig. 1(b) as BC data normally has lower confidence scores.
Therefore, confidence score based selection implicitly per-
forms a BC/BN segment selection. This implicit selection
may contribute to the increased gain on the BC test set.

Fig. 4 gives the proportion of CER reduction from
supervised MPE training when adding varying amount of
manual transcriptions. The x-axis is the proportion of the
unlabelled data that is manually transcribed. It can be seen
that the reductions in CERs increase as more data is added
at the cost of producing the additional manual transcrip-
tions. The CER reduction on BC is larger than on BN

when transcribing a small amount of data. This is because
the confidence score based data selection tends to select BC
data due to the poor performance. At the threshold of 0.77,
transcribing 18% of the data can yield 58% of the complete
supervised training improvement for BC data. This is
believed to be a good trade-off between the cost and gain
and hence is used for further experiments.

Given the confidence score threshold, there are several
data selection strategies that could be used. Table 4 gives
a comparison of unsupervised MPE training with different
strategies. Only performance of MPE training is shown
here as ML training is more robust.

Table 4 shows the results of a range of combinations of
automatic and manual transcriptions of subset1. Using
complete manual transcriptions (S1) can yield a 3.1% abso-
lute reduction in CER on BN and a 3.6% absolute
improvement on BC, compared to the baseline S0 system.
Using automatic transcriptions for all the data, S2 yielded
a 1.6% reduction in CER on BN and 0.6% on BC. The rel-
ative CER reductions from supervised training are shown
in the last two columns. S2 yielded 52% relative for BN
and only 17% on BC. The fourth row shows the perfor-
mance using confidence score based data selection, which
reduced the CER on both test sets. However, the relative
improvement on BC is still poor. The sixth row shows
the performance of directed manual transcriptions together
with automatic transcriptions, which is referred to as S2c.
By transcribing about 18% of the unlabelled data, the
S2c system obtained a significantly larger reduction in
CER on BC (2.1%). This is comparable to the improve-
ment on BN (2.2%). The relative CER reductions com-
pared to the ideal S1 system are also greatly improved.
As a contrast, the fifth row shows the performance when
only manual transcriptions were used. Compared to the
S2c system, purely adding the data with manual transcrip-
tions yielded significantly poorer performance on bnm-

dev06 while better performance on bcmdev05. This is
expected because the data with manual transcriptions are
mostly BC data, while the data with automatic transcrip-
tions are mostly BN data, hence, the model set is heavily
tuned to the BC data. It is also clear that adding the
selected automatic transcriptions is beneficial for the BN
data, while for the BC data, it is just slightly better than
the use of only manual transcriptions. This is because there
was significantly less BC data in the selected automatic
transcriptions due to the high error rate. Compared to
the S1 system, 56% of the supervised training gain was
obtained by only using the manually transcribed data. This
illustrates that the poorly recognised data helps most on
the mismatched type of data.

The above experiments showed the advantage of adding
manual transcriptions for lower confidence score segments
during unsupervised training. It is also interesting to know
whether this selection approach is preferable to random
selection.

Table 5 gives the comparison between confidence score
based directed manual selection and random selection.
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Fig. 4. Reduction in CER (%) from unsupervised MPE training with
directed manual transcriptions relative to that from supervised training.
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The second row in Table 5 is the random selection from all
unlabelled data, which has similar amount of data as the
S2c system in Table 4. This is equivalent to the automated
data selection approach, but does not require any recogni-
tion on the selected data to be manually transcribed. It can
be observed that using confidence score based selection sig-
nificantly outperforms random selection on both test sets
for MPE training. In particular, the improvement on bcm-
dev05 over random selection is larger than on bnmdev06

since directed selection favours BC data. The third row is
the random selection only on the BC part of the unlabelled
data, which ensures only BC data is selected. In this exper-
iment, correct BC labels are assumed to be known in
advance. In practice, this approach requires a BC/BN clas-
sification stage, which may lead to more errors. Even if the
ideal BC labels were used, the confidence score based selec-
tion still obtained better results on both test sets for MPE
training, though the improvements are smaller. This fur-
ther demonstrates that the essential issue in unsupervised
discriminative training is the high error rate transcriptions.
Though the confidence score based selection approach is
better than random selection, from Fig. 4, the curves have
some portions with constant reduction in CER or small
increase. This implies that there is room to further improve
the confidence score based approach.

4.4. System refinement

The previous section has described the basic systems
using directed manual transcriptions. This section will dis-
cuss some refinements.

One possibility is to use the additional transcriptions for
language model estimation. The basic procedure is to build
separate language model components for the manually
transcribed data. Then the two newly estimated compo-
nents are interpolated with the three language model com-
ponents described in Section 4.1. Table 6 shows the
performance of the S2c system, where unlabelled data with
58.9 h of directed manual transcriptions were incorporated
for both acoustic and language model building.

From Table 6, rebuilding the language model did not
give additional improvements on any of the test sets.
Therefore, further system refinement discussions will only
concentrate on acoustic model training.

4.4.1. Speaker adaptation

All previous experiments are unadapted single-pass
decoding experiments. This section will investigate how
discriminative training on untranscribed audio performs
after adaptation. The two-pass adapted system described
in Section 2.1 was used to test the adaptation performance.

From Table 7, after adaptation, the supervised training
S1 system yielded a 2.3% absolute reduction in CER on
bnmdev06 and 3.8% on bcmdev05 compared to the base-
line S0 system. Using complete automatic transcription, the
S2 system obtained 39% of the supervised training
improvement on bnmdev06, while only 24% on bcm-

dev05. With 18% data manually transcribed, the S2c sys-
tem yielded 60% of the CER reduction on bnmdev06 and
59% on bcmdev05. The relative improvement on the BC

Table 4
Unadapted decoding performance (%) of unsupervised MPE systems trained on subset1 data with different amount of manually or automatically
transcribed data.

Sys. S0 + (h) CER (%) CER reduction rel. to supv. train (%)

Man. Auto. bnmdev06 bcmdev05 bnmdev06 bcmdev05

S0 0 0 13.6 25.4 – –
S1 327.6 0 10.5 21.8 100 100

S2 0 318.1 12.0 24.8 52 17
– 0 251.3 11.7 24.4 62 28
– 58.9 0 12.7 23.4 29 56
S2c 58.9 251.3 11.4 23.3 71 58

Table 5
Unadapted decoding performance (%) of MPE trained system trained on
subset1 data with directed manual selection and random selection.

Sys. S0 + (h) CER (%)

Man. Auto. bnmdev06 bcmdev05

S2c 58.9 251.3 11.4 23.3
Random (ALL) 58.9 248.7 11.7 23.9
Random (BC Only) 58.9 254.6 11.5 23.6

Table 6
Unadapted single-pass CER (%) of S2c MPE system. Both acoustic model
and language model were rebuilt with directed manual transcription.

Update bnmdev06 bcmdev05

AM 11.4 23.3
AM + LM 11.4 23.3

Table 7
Adapted decoding performance of unsupervised training and supervised
training systems with adaptation.

Sys. S0 + (h) CER (%)

Man. Auto. bnmdev06 bcmdev05

S0 0 0 11.7 24.2
S1 327.6 0 9.4 20.4
S2 0 318.1 10.8 23.3
S2c 58.9 251.3 10.3 22.0
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data is even larger than the relative improvement in una-
dapted single-pass decoding. This further illustrates the
effectiveness of using directed manual transcription.

4.4.2. Level of data selection

The previous experiments on directed manual transcrip-
tion are all based on segment-level confidence scores
because the segment based selection is felt to be finer than
show-level selection. However, in practice, it is not always
convenient to manually transcribe non-contiguous seg-
ments. Manual transcriptions are often produced at the
show level. It is therefore interesting to contrast the two
levels of data selection.

Table 8 gives the comparison between show-level and
segment-level selection of directed manual transcription.
For the show level selection, a threshold of 0.80 was used
to yield similar quantity of data for manually transcribed
data as the S2c system (the second row). With a similar
amount of manual transcriptions (58.9 hours), segment
level selection outperforms show level selection on both test
sets for MPE training with and without adaptation. Com-
paring show level selection to the baseline S0 performance
in Table 7 and 4 shows that, for unadapted decoding per-
formance, the proportion of the supervised training
improvement are 61% for BN and 50% for BC; for adapted
performance, the proportions are 52% for BN and 55% for
BC. Those relative gains are still good and just slightly
smaller than the segment level selection. This illustrates
that show level selection can also be effective for discrimi-
native training with directed manual transcription.

5. Conclusions

Sensitivity to transcription errors is an important issue
in unsupervised discriminative training for LVCSR. A
standard approach to deal with this issue is to only use
automatic transcriptions of unlabelled data for discrimina-
tive training. With this approach, the performance of unsu-
pervised discriminative training can be poor if the initial
recognition system to generate the automatic transcription
has too high error rate for particular data types. In this
work, an alternative approach, discriminative training with
directed manual transcription, is discussed in detail to
address the problem. In this approach, a small amount of
poorly transcribed data are manually transcribed to sup-
plement the automatic transcription. The performance of
unsupervised and directed manual transcription based
MPE training were evaluated on a Mandarin transcription
task, where both Broadcast Conversation (BC) and Broad-

cast News (BN) data were used. Experiments show that
incorporating directed manual transcription can effectively
improve the discriminatively trained system on the BC data
compared to the traditional unsupervised approach in both
unadapted and adapted decoding. With more data manu-
ally transcribed, the MPE improvements on both BC and
BN became larger. A reasonable trade-off between the
CER improvements and increased manual transcription
cost can be obtained by performing confidence score based
data selection with the confidence score distribution of the
unlabelled data. It was shown that confidence score based
data selection outperforms random data selection. Though
segment-level confidence score yielded better performance,
show-level confidence scores can also lead to reasonable
improvements and is easier to use in practice.
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