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Bayesian CP Factorization of Incomplete
Tensors with Automatic Rank Determination
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Abstract—CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion

through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified,

however, the determination of tensor rank remains a challenging problem especially for CP rank. In addition, existing approaches do

not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP

factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior

over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To

learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is

characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint,

while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic

capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of

entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis,

demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of

predictive performance.

Index Terms—Tensor factorizations, tensor completion, rank determination, Bayesian inference, image synthesis, inpainting

Ç

1 INTRODUCTION

TENSORS (i.e., multiway arrays) provide an effective
and faithful representation of the structural properties

of data, in particular, when multidimensional data are
involved. For instance, an image ensemble measured
under multiple conditions can be represented by a higher
order tensor with dimensionality of pixel� person� pose�
illumination. Tensor factorization enables us to explicitly
take into account the structure information by effectively
capturing the multilinear interactions among multiple latent
factors. Therefore, its theory and algorithms have been an
active area of study during the past decade (see e.g., [1], [2]),
and have been successfully applied to various application
fields, such as face recognition [3], [4], social network
analysis, image compression [5], and brain signal processing.
The two most popular tensor factorization frameworks are
Tucker [6] and CANDECOMP/PARAFAC (CP), also known
as canonical polyadic decomposition (CPD) [7], [8], [9].

The problem of missing data can arise in a variety of real-
world applications, which has attracted a great deal of
research interest in tensor completion in recent years. It
can be achieved by either factorization or completion based
schemes. Tensor factorization based completion is to infer
the underlying factors from partially observed entries based
on a multilinear generative model assumption with a fixed
rank, which can thus predict missing data. In [10], CP fac-
torization with missing data was formulated as a weighted
least squares problem, termed CP weighted optimization
(CPWOPT). Some other related methods were also investi-
gated such as structured CPD using nonlinear least squares
(CPNLS) [11] and geometric nonlinear conjugate gradient
(geomCG) [12]. However, tensor factorization scheme is
prone to overfitting due to an incorrect tensor rank and
point estimations of latent factors, resulting in severe deteri-
oration of predictive performance. In contrast, completion
based scheme exploits an automatic rank optimization
and does not make model assumptions, where the rank
minimization is formulated as a convex optimization on the
matrix nuclear norm. This technique has been extended to
tensor completion by defining the nuclear norm of a tensor
[13]. Some variants were also proposed under this frame-
work, such as an inexact splitting method [14] and fast com-
posite splitting algorithms (FCSA) [15]. To improve the
efficiency, Douglas-Rachford splitting technique [16], non-
linear Gauss-Seidal method [17] were also investigated.
Recently, the nuclear norm based optimization was also
applied to a supervised tensor dimensionality reduction
method [18]. The theoretical bound on the number of
observations was studied in [19]. Since completion-based
methods cannot explicitly capture the underlying factors, a
simultaneous tensor decomposition and completion (STDC)
[20] method was introduced in which rank minimization
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was combined with Tucker decomposition. Furthermore,
auxiliary information was also exploited in [20], [21],
resulting in a significant improvement on some specific
applications. However, nuclear norm of a tensor, defined
straightforwardly as a weighted sum of nuclear norm of
mode-n matricizations, is related to multilinear rank rather
than CP rank. It is also noteworthy that the rank mini-
mization based on nuclear norm is sensitive to tuning
parameters, which may tend to over- or under-estimate the
true tensor rank.

It is important to emphasize that our knowledge about
the properties of CP rank, defined by the minimum number
of rank-one terms in CP decomposition, is surprisingly lim-
ited. There is no straightforward algorithm to compute the
rank even for a given specific tensor, and the problem has
been shown to be NP-complete [22]. The lower and upper
bound of tensor rank was studied in [23], [24]. The ill-posed-
ness of the best low-rank approximation of a tensor was
investigated in [25]. In fact, determining or even bounding
the rank of an arbitrary tensor is quite difficult in contrast to
the matrix rank [26], and this difficulty would be signifi-
cantly exacerbated in the presence of missing data.

Probabilistic models for matrix/tensor factorization
have attracted much interest in collaborative filtering and
matrix/tensor completion. Probabilistic matrix factorization
was proposed in [27], and its fully Bayesian treatment using
Markow chain Monte Carlo (MCMC) inference was shown
in [28] and using variational Bayesian inference in [29], [30].
Further extensions of nonparametric and robust variants
were presented in [31], [32]. The probabilistic frameworks
of tensor factorization were presented in [33], [34], [35].
Other variants include extensions of the exponential family
model [36] and the nonparametric Bayesian model [37].
However, the tensor rank needs to be predefined by a tun-
ing parameter selected by either maximum likelihood or
cross-validations, which are computationally expensive
and inaccurate. Another important issue is that the infer-
ence of factor matrices is performed by either point estima-
tion, which is prone to overfitting, or MCMC inference,
which tends to converge very slowly.

To address these issues, we propose a fully Bayesian
probabilistic CP factorization model. Our objective is to
infer the multilinear factors and the predictive distribution
over missing entries given a noisy incomplete tensor, while
CP rank of the underlying true tensor can be determined
automatically and implicitly. To achieve this, we specify a
sparsity-inducing hierarchical prior over multiple factor
matrices with individual hyperparameters associated to
each latent dimension, such that the number of components
in factor matrices is constrained to be minimum. All the
model parameters, including noise precision, are considered
to be latent variables over which the corresponding priors
are placed. Due to complex interactions among multiple fac-
tors, full Bayesian inference is analytically intractable. Thus,
we derive a deterministic solution to approximate the poste-
riors of unknowns under the framework of variational
Bayesian inference. Our method is characterized as a tuning
parameter-free approach that can effectively avoid parame-
ter selections. The extensive experiments and comparisons
on synthetic data illustrate the advantages of our approach
in terms of rank determination, predictive capability, and

robustness to overfitting. Moreover, several real-word appli-
cations, including image completion, restoration, and syn-
thesis, demonstrate that our method outperforms state-of-
the-art approaches, including both tensor factorization and
tensor completion, in terms of the predictive performance.

The rest of this paper is organized as follows. In Section 2,
preliminary multilinear operations and notations are pre-
sented. In Section 3, we introduce our model specification
and its Bayesian inference. An extension of our method
using mixture priors is proposed in Section 4. In Section 5,
we present the comprehensive experimental results for both
synthetic data and real-world applications, followed by our
conclusion in Section 6.

2 PRELIMINARIES AND NOTATIONS

The order of a tensor is the number of dimensions, also
known as ways or modes. Vector, matrix and higher-order
(N � 3) tensor are denoted by a, A and AA respectively.

Given an Nth-order tensor XX 2 RI1�I2�����IN , its ði1; i2; . . . ;
iNÞth entry is denoted by X i1i2...iN , where in ¼ 1; 2; . . . ;

In; 8n 2 ½1; N�.
The inner product of two tensors is defined by hAA;BBi ¼P
i1;i2;:::;iN

Ai1i2:::iNBi1i2:::iN , and the squared Frobenius norm

by kAAk2F ¼ hAA;AAi. As an extension toN variables, the gener-
alized inner product of a set of vectors, matrices, or tensors is
defined as a sum of element-wise products. For example,

given fAðnÞjn ¼ 1; . . . ; Ng, we define�
Að1Þ; . . . ;AðNÞ

�
¼
X
i;j

Y
n

A
ðnÞ
ij : (1)

The Hadamard product is an entrywise product of two
vectors, matrices, or tensors which are of the same sizes.
Given A 2 RI�J and B 2 RI�J , their Hadamard product is

A �� B 2 RI�J . The Hadamard product of a set of matrices
can be simply denoted by

��
n

AðnÞ ¼ Að1Þ ��Að2Þ �� � � � �� AðNÞ: (2)

The Kronecker product [1] of matricesA 2 RI�J and B 2 RK�L

is amatrix of size IK � JL, denoted byA	 B. TheKhatri-Rao

product of matrices A 2 RI�K and B 2 RJ�K is a matrix of
size IJ �K, defined by a columnwise Kronecker product
and denoted by A
 B. In particular, the Khatri-Rao product
of a set of matrices in a reverse order is defined by



n

AðnÞ ¼ AðNÞ 
AðN�1Þ 
 � � � 
Að1Þ; (3)

while the Khatri-Rao product of a set of matrices, except the

nth matrix, denoted by AðnnÞ, is



k 6¼n

AðkÞ ¼ AðNÞ 
 � � � 
Aðnþ1Þ 
Aðn�1Þ 
 � � � 
Að1Þ: (4)

3 BAYESIAN TENSOR FACTORIZATION

3.1 Probabilistic Model and Priors

Let YY be an incomplete Nth-order tensor of size I1 �
I2 � � � � � IN . Yi1i2...iN is observed if ði1; i2; � � � ; iNÞ 2 V,

where V denotes a set of N-tuple indices. For simplicity, we
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also define a binary tensor OO of the same size as YY as an
indicator of observed entries. We assume YY is a noisy obser-
vation of true latent tensor XX , that is, YY ¼ XX þ "", where the
noise term is assumed to be an i.i.d. Gaussian distribution,

i.e., "" �
Q

i1;...;iN
Nð0; t�1Þ, and the latent tensor XX is gener-

ated by a CP model, given by

XX ¼
XR
r¼1

að1Þr 
 � � � 
 aðNÞr ¼ ½½Að1Þ; . . . ;AðNÞ��; (5)

where 
 denotes the outer product of vectors and ½½� � ��� is a
shorthand notation, also termed as the Kruskal operator. CP
factorization can be interpreted as a sum of R rank-one
tensors, while the smallest integer R is defined as CP rank

[1]. fAðnÞgNn¼1 are a set of factor matrices where mode-n

factor matrix AðnÞ 2 RIn�R can be denoted by row-wise or
column-wise vectors

AðnÞ ¼
�
a
ðnÞ
1 ; . . . ; a

ðnÞ
in

; . . . ; a
ðnÞ
In

�T ¼ �aðnÞ�1 ; . . . ; aðnÞ�r ; . . . ; a
ðnÞ
�R
�
:

The CP generative model, together with noise assump-
tion, directly give rise to the observation model, which is
factorized over observed tensor elements

p
�
YYV

��fAðnÞgNn¼1; t� ¼ YI1
i1¼1
� � �
YIN
iN¼1

N
�
Yi1i2...iN j

�
a
ð1Þ
i1
; a
ð2Þ
i2
; . . . ; a

ðNÞ
iN
i; t�1

�Oi1...iN ;

(6)

where t denotes the noise precision, and
�
a
ð1Þ
i1
; a
ð2Þ
i2
; . . . ; a

ðNÞ
iN

�
denotes a generalized inner-product ofN vectors. The likeli-
hood model in (6) indicates that Yi1���iN is generated from

multiple R-dimensional latent vectors
	
a
ðnÞ
in

��n ¼ 1; . . . ; N


,

where each latent vector a
ðnÞ
in

contributes to a set of observa-

tions, i.e., a subtensor whose mode-n index is in, such
that the multilinear interactions are taken into account by
the likelihood function. The essential difference between
matrix and tensor factorization is that the inner product
of N � 3 vectors allows us to model the multilinear interac-
tion structure.

In general, the effective dimensionality of the latent
space, i.e., RankCP ðXXÞ ¼ R, is a tuning parameter whose
selection is quite challenging and computational costly.
Therefore, we seek an elegant automatic model selection,
which can not only infer the rank of the latent tensor XX , but
also effectively avoid overfitting. To achieve this, a set of
continuous hyperparameters are employed to control the
variance related to each dimensionality of the latent space,
respectively. Since the minimum R is desired in the sense
of low rank approximation, a sparsity-inducing prior is
specified over these hyperparameters, resulting in it being
possible to achieve automatic rank determination as a
part of the Baybesian inference process. This technique is
related to automatic relevance determination (ARD) [38] or
sparse Bayesian learning [39]. However, unlike the tradi-
tional methods that place the ARD prior over either latent
variables or weight parameters, such as Bayesian principle
component analysis [40], our method considers all model
parameters as latent variables over which a sparsity-induc-
ing prior is placed with shared hyperparameters.

More specifically, we place a prior distribution over the
latent factors, governed by hyperparameters ll ¼ ½�1; . . . ; �R�
where each �r controls rth component inAðnÞ, which is

p
�
AðnÞ

��ll� ¼ YIn
in¼1
N
�
a
ðnÞ
in

��0;LL�1�; 8n 2 ½1; N �; (7)

where LL ¼ diagðllÞ denotes the inverse covariance matrix,
also known as the precision matrix, and is shared by latent
factor matrices in all modes. We can further define a hyperp-
rior over ll, which is factorized over latent dimensions

pðllÞ ¼
YR
r¼1

Gað�rjcr0; dr0Þ; (8)

where Gaðxja; bÞ ¼ baxa�1e�bx
GðaÞ denotes a Gamma distribution.

The initialization point of the dimensionality of latent
space (i.e., R) is usually set to its maximum possible value,
while the effective dimensionality can be inferred automati-
cally under a Bayesian inference framework. It should be
noted that since the priors are shared across N latent matri-
ces, the same sparsity pattern can be obtained, yielding the
minimum number of rank-one terms. Therefore, our model
can effectively infer the rank of tensor while performing ten-
sor factorization, which can be treated as a Bayesian low-rank
tensor factorization.

To complete the model, we also place a hyperprior over
the noise precision t, that is,

pðtÞ ¼ Gaðtja0; b0Þ: (9)

For simplicity of notation, all unknowns including latent
variables and hyperparameters are collected and denoted
together by Q ¼ fAð1Þ; . . . ;AðNÞ;ll; tg. The probabilistic
graph model is illustrated in Fig. 1, from which we can eas-
ily write the joint distribution of the model as

pðYYV;QÞ ¼ p
�
YYVjfAðnÞgNn¼1; t

�YN
n¼1

p
�
AðnÞjll

�
pðllÞpðtÞ:

By combining the likelihood in (6), the priors of model
parameters in (7), and the hyperpriors in (8) and (9), the
logarithm of the joint distribution is given by (see Section 1
of Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2015.2392756 available online, for details)

Fig. 1. Probabilistic graphical model of Bayesian CP factorization of an
Nth-order tensor.
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‘ðQÞ ¼ � t

2
OO�� YY � ½½Að1Þ; . . . ;AðNÞ��

� �


 


2
F

� 1

2
Tr LL

X
n

AðnÞTAðnÞ

 !
þ M

2
þ a0 � 1

� �
ln t

þ
X
r

P
n In
2
þ
�
cr0 � 1

�� �
ln�r

� �

�
X
r

dr0 �r � b0t þ const;

(10)

where M ¼
P

i1;...;iN
Oi1...iN denotes the total number of

observations. Without loss of generality, we can perform
maximum a posteriori (MAP) estimation of Q by maximiz-
ing (10), which is, to some extent, equivalent to optimizing a
squared error function with regularizations imposed on the
factor matrices and additional constraints imposed on the
regularization parameters.

However, our objective is to develop a method that, in
contrast to the point estimation, computes the full poste-
rior distribution of all variables in Q given the observed
data, that is,

pðQjYYVÞ ¼
pðQ;YYVÞR
pðQ;YYVÞ dQ

: (11)

Based on the posterior distribution of Q, the predictive
distribution over missing entries, denoted by YYnV, can be

inferred by

pðYYnVjYYVÞ ¼
Z

pðYYnVjQÞpðQjYYVÞ dQ: (12)

3.2 Model Learning via Bayesian Inference

An exact Bayesian inference in (11) and (12) would integrate
over all latent variables as well as hyperparameters, which
is obviously analytically intractable. In this section, we
describe the development of a deterministic approximate
inference under variational Bayesian (VB) framework [41]
to learn the probabilistic CP factorization model.

We therefore seek a distribution qðQÞ to approximate the
true posterior distribution pðQjYYVÞ by minimizing the KL
divergence, that is,

KL
�
qðQÞ

����pðQjYYVÞ
�
¼
Z

qðQÞ ln qðQÞ
pðQjYYVÞ

� �
dQ

¼ ln pðYYVÞ �
Z

qðQÞ ln pðYYV;QÞ
qðQÞ

� �
dQ;

(13)

where ln pðYYVÞ represents the model evidence, and its lower

bound is defined by LðqÞ ¼
R
qðQÞ ln pðYYV;QÞ

qðQÞ

n o
dQ. Since the

model evidence is a constant, the maximum of the lower
bound occurs when the KL divergence vanishes, which
implies that qðQÞ ¼ pðQjYYVÞ.

Based on mean-field approximation, it will be assumed
that the variational distribution is factorized w.r.t. each vari-
able Qj such that

qðQÞ ¼ q�ðllÞqtðtÞ
YN
n¼1

qn
�
AðnÞ

�
: (14)

It should be noted that this is the only assumption about the
distribution, while the particular functional forms of qjðQjÞ
can be explicitly derived in turn. The optimised form of the
jth factor based on the maximization of LðqÞ is given by

ln qjðQjÞ ¼ EqðQnQjÞ
½ln pðYYV;QÞ� þ const; (15)

where EqðQnQjÞ
½�� denotes an expectation w.r.t. the q distribu-

tions over all variables exceptQj. Since the distributions of all
parameters are drawn from the exponential family and are
conjugate w.r.t. the distributions of their parents (see Fig. 1),
we can derive the closed-form posterior update rules forQ.

3.2.1 Posterior Distribution of Factor Matrices

As can be seen from the graphical model shown in Fig. 1,
the inference of mode-n factor matrix AðnÞ can be performed
by receiving the messages from observed data and its co-

parents, including other factors AðkÞ; k 6¼ n and the hyper-
parameter t, which are expressed by the likelihood term (6),
and incorporating the messages from its parents, which are
expressed by the prior term (7). By applying (15), it has
been shown that their posteriors can be factorized as inde-
pendent distributions of their rows, which are also Gaussian
(see Section 2 of Appendix, available in the online supple-
mental material, for details), given by

qnðAðnÞÞ ¼
YIn
in¼1
N
�
a
ðnÞ
in
j~aðnÞin

;V
ðnÞ
in

�
; 8n 2 ½1; N� (16)

where the posterior parameters can be updated by

~a
ðnÞ
in
¼ Eq½t�VðnÞin

Eq

�
A
ðnnÞT
in

�
vec
�
YYIðOin¼1Þ

�
V
ðnÞ
in
¼
�
Eq½t�Eq

�
A
ðnnÞT
in

A
ðnnÞ
in

�
þ Eq½LL�

��1
;

(17)

where YYIðOin¼1Þ denotes a subset of the observed entries YYV,
whose mode-n index is in, i.e., the observed entries associ-

ated to the latent factor a
ðnÞ
in

. The most complex term in (17)

is related to

A
ðnnÞT
in

¼
�


k6¼n
AðkÞ

�T
IðOin¼1Þ

; (18)

where ð
k 6¼nA
ðkÞÞT is of size R�

Q
k 6¼n Ik, and each column

is computed by �� k 6¼n a
ðkÞ
ik

with varying mode-k index ik.

The symbol ð�ÞIðOin¼1Þ
denotes a subset of columns sampled

according to the subtensor vecðOO���in���Þ ¼ 1. Hence, Eq½AðnnÞTin

A
ðnnÞ
in
� denotes the posterior covariance matrix of the Khatri-

Rao product of latent factors in all modes except the nth-
mode, and is computed by only the columns corresponding
to the observed entries whose mode-n index is in. In order
to evaluate this posterior covariance matrix, we need to
introduce the following results.

Theorem 3.1. Given a set of independent random matrices

fAðnÞ 2 RIn�Rjn ¼ 1; . . . ; Ng, we assume that 8n; 8in, the

row vectors faðnÞin
g are independent, then

E
h�


n
AðnÞ

�T�

n
AðnÞ

�i
¼
X

i1;...;iN

��
n

�
E
h
a
ðnÞ
in

a
ðnÞT
in

i�
(19)

where E½aðnÞin
a
ðnÞT
in
� ¼ E½aðnÞin

�E½aðnÞTin
� þVarðaðnÞin

Þ.

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

Proof. See Section 3 of Appendix, available in the online
supplemental material, for details. tu

For simplicity, we attempt to compute (19) by multilinear
operations. Let 8n, BðnÞ of size In �R2 denote an expectation

of a quadratic form related to AðnÞ by defining the inth-row
vector as

b
ðnÞ
in
¼ vec

�
Eq

�
a
ðnÞ
in

a
ðnÞT
in

��
¼ vec

�
~a
ðnÞ
in

~a
ðnÞT
in
þV

ðnÞ
in

�
; (20)

then we have

vec
X

i1;...;iN

��
n

�
E
�
a
ðnÞ
in

a
ðnÞT
in

�� !
¼
�


n
BðnÞ

�T
1Q

n
In
; (21)

where 1Q
n
In

denotes a vector of length
Q

n In and all ele-

ments are equal to one.

According to Theorem 3.1 and the computation form in
(21), the term Eq

�
A
ðnnÞT
in

A
ðnnÞ
in

�
in (17) can be evaluated effi-

ciently by

vec
�
Eq

�
A
ðnnÞT
in

A
ðnnÞ
in
�
�
¼
�


k 6¼n

BðkÞ
�T

vecðOO���in���Þ; (22)

whereOO���in ��� denotes a subtensor by fixing model-n index to
in. It should be noted that the Khatri-Rao product is com-
puted by all mode factors except the nth mode, while the
sum is performed according to the indices of observations,

implying that only factors that interact with a
ðnÞ
in

are taken

into account. Another complex term in (17) can also be sim-
plified by multilinear operations, i.e.,

Eq

�
A
ðnnÞT
in

�
vec
�
YYIðOin¼1Þ

�
¼
�


k6¼n

Eq½AðkÞ�
�T

vecfðOO�� YYÞ���in���g:
(23)

Finally, the variational posterior approximation of
factor matrices can be updated by (17) and the posterior
moments, including 8n; 8in, Eq½aðnÞin

�, VarðaðnÞin
Þ, Eq½AðnÞ�,

and Eq½aðnÞin
a
ðnÞT
in
�;Eq½aðnÞTin

a
ðnÞ
in
�, can be easily evaluated,

which are required by the inference of other hyperpara-
meters in Q.

An intuitive interpretation of (17) is given as follows. The
posterior covariance V

ðnÞ
in

is updated by combining the
prior information Eq½LL� and the posterior information from
other factor matrices computed by (22), while the tradeoff
between these two terms is controlled by Eq½t� that is related
to the quality of model fitting. In other words, the better
fitness of the current model leads to more information from
other factors than from prior information. The posterior

mean ~a
ðnÞ
in

is updated first by linear combination of all

other factors, expressed by (23), where the coefficients are
observed values. This implies that the larger observation
leads to more similarity of its corresponding latent factors.

Then, ~a
ðnÞ
in

is rotated by V
ðnÞ
in

to obtain the property of spar-

sity and is scaled according to the model fitness Eq½t�.

3.2.2 Posterior Distribution of Hyperparameters ll

It should be noted that, instead of point estimation via
optimizations, learning the posterior of ll is crucial for

automatic rank determination. As seen in Fig. 1, the
inference of ll can be performed by receiving messages
from N factor matrices and incorporating the messages
from its hyperprior. By applying (15), we can identify
the posteriors of �r; 8r 2 ½1; R� as an independent Gamma
distribution (see Section 4 of Appendix, available in the
online supplemental material, for details),

qllðllÞ ¼
YR
r¼1

Ga
�
�rjcrM; drM

�
; (24)

where crM , drM denote the posterior parameters learned from
M observations and can be updated by

crM ¼ cr0 þ
1

2

XN
n¼1

In;

drM ¼ dr0 þ
1

2

XN
n¼1

Eq

�
aðnÞT�r aðnÞ�r

�
:

(25)

The expectation of the inner product of the rth component
in mode-n matrix w.r.t. q distribution can be evaluated
using the posterior parameters in (16), i.e.,

Eq

�
aðnÞT�r aðnÞ�r

�
¼ ~aðnÞT�r ~aðnÞ�r þ

X
in

�
V
ðnÞ
in

�
rr
: (26)

By combining (25) and (26), we can further simplify the
computation of dM ¼ ½d1M; . . . dRM �

T as

dM ¼
XN
n¼1

diag ~AðnÞT ~AðnÞ þ
X
in

V
ðnÞ
in

 !( )
; (27)

where ~A ¼ Eq½AðnÞ�. Hence, the posterior expectation can be

obtained by Eq½ll� ¼ ½c1M=d1M; . . . ; cRM=dRM �
T , and thus, Eq½LL� ¼

diagðEq½ll�Þ.
An intuitive interpretation of (25) is that �r is updated by

the sum of squared L2-norm of rth component, expressed
by (26), from N factor matrices. Therefore, the smaller of

ka�rk22 leads to larger Eq½�r� and updated priors of factor
matrices, which in turn enforces more strongly the rth com-
ponent to be zero.

3.2.3 Posterior Distribution of Hyperparameter t

The inference of the noise precision t can be performed by
receiving the messages from observed data and its co-
parents, including N factor matrices, and incorporating the
messages from its hyperprior. By applying (15), the varia-
tional posterior is a Gamma distribution (see Section 5 of
Appendix, available in the online supplemental material,
for details), given by

qtðtÞ ¼ GaðtjaM; bMÞ; (28)

where the posterior parameters can be updated by

aM ¼ a0 þ
1

2

X
i1;...;iN

Oi1...iN

bM ¼ b0 þ
1

2
Eq OO�� YY � ½½Að1Þ; . . . ;AðNÞ��

� �


 


2
F

� �
:

(29)

However, the posterior expectation of model error in the
above expression cannot be computed straightforwardly,
and therefore, we need to introduce the following results.

ZHAO ET AL.: BAYESIAN CP FACTORIZATION OF INCOMPLETE TENSORSWITH AUTOMATIC RANK DETERMINATION 5
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Theorem 3.2. Assume a set of independent R-dimensional ran-

dom vectors fxðnÞjn ¼ 1; . . . ; Ng, then

E
��
xð1Þ; . . . ; xðNÞ

�2� ¼ �E�xð1Þxð1ÞT �; . . . ;E�xðNÞxðNÞT ��; (30)

where the left term denotes the expectation of the squared inner
product of N vectors, and the right term denotes the inner
product of N matrices, where each matrix of size R�R
denotes an expectation of the outer product of the nth vector,
respectively.

Proof. See Section 6 of Appendix, available in the online
supplemental material, for details. tu

Theorem 3.3. Given a set of independent random matrices

fAðnÞjn ¼ 1; . . . ; Ng, we assume that 8n; 8in, the row vectors

faðnÞin
g are independent, then

E
�
½½Að1Þ; . . . ;AðNÞ��


 

2

F

�
¼
X

i1;...;iN

�
E
�
a
ð1Þ
i1
a
ð1ÞT
i1

�
; . . . ;E

�
a
ðNÞ
iN

a
ðNÞT
iN

��
:

(31)

Let BðnÞ denote the expectation of a quadratic form related to

AðnÞ with inth-row vector b
ðnÞ
in
¼ vecðE½aðnÞin

a
ðnÞT
in
�Þ; thus, (31)

can be computed by

E½ ½½Að1Þ; . . . ;AðNÞ��


 

2

F
� ¼ 1TQ

n
In

�


n
BðnÞ

�
1R2 :

Proof. See Section 7 of Appendix, available in the online
supplemental material, for details. tu

From Theorems 3.2 and 3.3, the posterior expectation
term in (29) can be evaluated explicitly. Due to the missing
entries in YY, the evaluation form is finally written as (see
Section 8 of Appendix, available in the online supplemental
material, for details)

Eq OO�� YY � ½½Að1Þ; . . . ;AðNÞ��
� �


 


2

F

� �
¼ YYVk k2F � 2vecT ðYYVÞvec

�
½½~Að1Þ; . . . ; ~AðNÞ��V

�
þ vecT ðOOÞ

�


n
BðnÞ

�
1R2 ;

(32)

where ~AðnÞ ¼ Eq AðnÞ
� �

and BðnÞ is computed by (20). Hence,
the posterior approximation of t can be obtained by (29)
together with Eq½t� ¼ aM=bM .

An intuitive interpretation of (29) is straightforward. aM
is related to the number of observations and bM is related to
the residual of model fitting measured by the squared Fro-
benius norm on observed entries.

3.2.4 Lower Bound of Model Evidence

The inference framework presented in the previous section
can essentially maximize the lower bound of model evi-
dence that is defined in (13). Since the lower bound should
not decrease at each iteration, it can be used to test for con-
vergence. The lower bound of the log-marginal likelihood is
computed by

LðqÞ ¼ EqðQÞ½ln pðYYV;QÞ� þHðqðQÞÞ; (33)

where the first term denotes the posterior expectation of
joint distribution, and the second term denotes the entropy
of posterior distributions.

Various terms in the lower bound are evaluated and
derived by taking parametric forms of q distribution, giving
the following results (see Section 9 of Appendix, available
in the online supplemental material, for details)

LðqÞ ¼ � aM
2bM

Eq OO�� YY � ½½Að1Þ; . . . ;AðNÞ��
� �


 


2

F

� �

� 1

2
Tr ~LL

X
n

~AðnÞT ~AðnÞ þ
X
in

V
ðnÞ
in

 !( )

þ 1

2

X
n

X
in

	
ln
��VðnÞin

��
þX
r

	
lnG

�
crM
�


þ
X
r

�
crM 1� ln drM �

dr0
drM

� ��
þ lnGðaMÞ

þ aM 1� ln bM �
b0
bM

� �
þ const:

(34)

An intuitive interpretation of (34) is as follows. The first
term is related to model residual; the second term is related
to the weighted sum of squared L2-norm of each component
in factor matrices, while the uncertainty information is
also considered; the rest terms are related to negative KL
divergence between the posterior and prior distributions of
hyperparameters.

3.2.5 Initialization of Model Parameters

The variational Bayesian inference is guaranteed to converge
only to a local minimum. To avoid getting stuck in poor local
solutions, it is important to choose an initialization point. In
our model, the top level hyperparameters including c0;d0,

a0; b0 are set to 10�6, resulting in a noninformative prior.
Thus, we have E½LL� ¼ I and E½t� ¼ 1. For the factor matrices,

fE½AðnÞ�gNn¼1 can be initialized by two different strategies,

one is randomly drawn from Nð0; IÞ for a
ðnÞ
in

, 8in 2 ½1; In�;

8n 2 ½1; N�. The other is set to AðnÞ ¼ UðnÞSSðnÞ
1
2
, where UðnÞ

denotes the left singular vectors and SS
ðnÞ denotes the diago-

nal singular valuesmatrix, obtained by SVD ofmode-nmatri-

cization of tensor YY. The covariance matrix VðnÞ is simply set
to I. The tensor rank R is usually initialized by the weak
upper bound on its maximum rank, i.e., R � minnPn, where
Pn ¼

Q
i6¼n Ii. In practice, we can also manually define the

initialization value of R for computational efficiency. These
settings using noninformative priors can generally result in
a solution that solely depends on the observed data.

3.2.6 Interpretaion of Automatic Rank Determination

The entire procedure of model inference is summarized
in Algorithm 1. It should be noted that tensor rank is deter-
mined automatically and implicitly. More specifically,
updating ll in each iteration results in a new prior over

fAðnÞg, and then, fAðnÞg can be updated using this new prior
in the subsequent iteration, which in turn affects ll. Hence, if
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the posterior mean of �r becomes very large, the rth compo-

nents in fAðnÞg; 8n 2 ½1; N � are forced to be zero because of
their prior information, and the tensor rank can be obtained
by simply counting the number of non-zero components in
the factor matrices. For implementation of the algorithm,

we can keep the size of fAðnÞg unchanged during iterations;
an alternative method is to eliminate the zero-components

of fAðnÞg after each iteration.

Algorithm 1. Fully Bayesian CP Factorization (FBCP)

Input: an Nth-order incomplete tensor YYV and an indicator
tensor OO.
Initialization: ~AðnÞ;V

ðnÞ
in

; 8in 2 ½1; In�; 8n 2 ½1; N�, a0; b0; c0;d0,
and t ¼ a0=b0, �r ¼ cr0=d

r
0; 8r 2 ½1; R�.

repeat
for n ¼ 1 toN do
Update the posterior qðAðnÞÞ using (17);

end for
Update the posterior qðllÞ using (25);
Update the posterior qðtÞ using (29);
Evaluate the lower bound using (34);
Reduce rank R by eliminating zero-components of AðnÞ

	 

(an optional procedure);

until convergence.
Computation of predictive distributions using (35).

3.3 Predictive Distribution

The predictive distributions over missing entries, given
observed entries, can be approximated by using variational
posterior distribution, that is,

pðYi1...iN jYYVÞ ¼
Z

pðYi1...iN jQÞpðQjYYVÞ dQ

’
ZZ

p
�
Yi1...iN j

	
a
ðnÞ
in



; t�1Þq

�	
a
ðnÞ
in


�
qðtÞ d

	
a
ðnÞ
in



dt:

(35)

We can now approximate these integrations, yielding
a Student’s t-distribution Yi1...iN jYYV � T ð~Yi1...iN ;Si1...iN ; nyÞ
(see Section 10 of Appendix, available in the online supple-
mental material, for details) with its parameters given by

~Yi1...iN ¼
�
~a
ð1Þ
i1
; � � � ; ~aðnÞiN

�
; ny ¼ 2aM;

Si1...iN ¼
bM
aM
þ
X
n

��
k6¼n

~a
ðkÞ
ik

 !T

V
ðnÞ
in
��
k 6¼n

~a
ðkÞ
ik

 !8<
:

9=
;

8<
:

9=
;
�1

:

Thus, the predictive variance can be obtained by

VarðYi1...iN Þ ¼
ny

ny�2S
�1
i1...iN

.

3.4 Computational Complexity

The computation cost of the N factor matrices in (17) is

OðNR2M þR3
P

n InÞ, where N is the order of the tensor,
M denotes the number of observations, i.e., the input data

size. R is the number of latent components in each AðnÞ, i.e.,
model complexity or tensor rank, and is generally much
smaller than the data size, i.e., R�M. Hence, it has linear
complexity w.r.t. the data size and polynomial complexity
w.r.t. the model complexity. It should be noted that, because
of the automatic model selection, the excessive latent

components are pruned out in the first few iterations such
that R reduces rapidly in practice. The computation cost of

the hyperparameter ll in (25) is OðR2
P

n InÞ, which is domi-
nated by the model complexity, while the computation cost

of noise precision t in (29) is OðR2MÞ. Therefore, the overall
complexity of our algorithm is OðNR2M þR3Þ, which
scales linearly with the data size but polynomially with the
model complexity.

3.5 Discussion of Advantages

� The automatic determination of CP rank enables us to
obtain an optimal low-rank tensor approximation,
even from a highly noisy and incomplete tensor.

� Our method is characterized as a tuning parameter-
free approach and all model parameters can be
inferred from the observed data, which avoids the
computational expensive parameter selection proce-
dure. In contrast, the existing tensor factorization
methods require a predefined rank, while the tensor
completion methods based on nuclear norm require
several tuning parameters.

� The uncertainty information over both latent factors
and predictions of missing entries can be inferred by
our method, while most existing tensor factorization
and completion methods provide only the point
estimations.

� An efficient and deterministic Bayesian inference is
developed for model learning, which empirically
shows a fast convergence.

4 MIXTURE FACTOR PRIORS

The low-rank assumption is powerful in general cases, how-
ever if the tensor data does not satisfy an intrinsic low-
rank structure and a large amount of entries are missing, it
may yield an oversimplified model. In this section, we pres-
ent a variant of Bayesian CP factorization model which
can take into account the local similarity in addition to the
low-rank assumption.

We specify a Gaussian mixture prior over factor matrices
such that the prior distribution in (7) can be rewritten as
8in 2 ½1; In�; 8n 2 ½1; N �,

a
ðnÞ
in
jll;
	
a
ðnÞ
k



� win;in Nð0;LL�1Þ þ

X
k6¼in

win;kN
�
a
ðnÞ
k ;bkI

�
;

where
P

k win;k ¼ 1. This indicates that the inth row vector

a
ðnÞ
in

is similar to kth row vectors with the probability of

win;k. Based on our assumption that the adjacent rows
are highly correlated, we can define the mixture coefficients

by wi;j ¼ ziexpð�ji� jj2Þ where zi ¼ 1=
P

j expð�ji� jj2Þ is
used to ensure the sum of mixture coefficients to be 1. For
model learning, we can easily verify that the posterior dis-
tribution is also a mixture distribution. For simplicity, we
set 8k;bk ¼ 0, thus the posterior mean of factor matrix can

be updated first by (17) and followed by Eq½AðnÞ�  
WEq½AðnÞ�, while the posterior covariance fVðnÞin

gInin¼1 keep

unchanged. Furthermore, the inference of all other variables
do not need any changes.

ZHAO ET AL.: BAYESIAN CP FACTORIZATION OF INCOMPLETE TENSORSWITH AUTOMATIC RANK DETERMINATION 7
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5 EXPERIMENTAL RESULTS

We conducted extensive experiments using both synthetic
data and real-world applications, and compared our fully
Bayesian CP factorization (FBCP)1 and its extension using
mixture prior (FBCP-MP) with several state-of-the-art meth-
ods. Tensor factorization based scheme includes CPWOPT
[10], CPNLS [11], [42], and KTD [43], while the completion
based scheme includes HaLRTC and FaLRTC [13], FCSA
[15], hard-completion (HardC.) [14], geomCG [12], and
STDC [20]. Our objective when using synthetic data was to
validate our method from several aspects: i) capability of
rank determination; ii) reconstruction performance given a
complete tensor; iii) predictive performance over missing
entries given an incomplete tensor. Two real-world app-
lications including image inpainting and facial image
synthesis were used for evaluating the completion perfor-
mance. All experiments were performed by a PC (Intel
Xeon(R) 3.3 GHz, 64 GB memory).

5.1 Validation on Synthetic Data

The synthetic tensor data is generated by the following
procedure. N factor matrices fAðnÞgNn¼1 are drawn from a

standard normal distribution, i.e., 8n; 8in; aðnÞin
� Nð0; IRÞ.

Then, the true tensor is constructed by XX ¼ ½½A1; . . . ;AðNÞ��,
and an observed tensor by YY ¼ XX þ "", where "" �

Q
i1;...;iN

Nð0; s2
""Þ denotes i.i.d. additive noise. The missing entries,

chosen uniformly, are marked by an indicator tensor OO.

5.1.1 A Toy Example

To illustrate our model, we provide two demo videos in the
supplemental materials, available online. A true latent ten-
sor XX is of size 10� 10� 10 with CP rank R ¼ 5, the noise

parameter was s2
"" ¼ 0:001, and 40 percent of entries were

missing. Then, we applied our method with the initial rank
being set to 10. As shown in Fig. 2, three factor matrices are
inferred in which five components are effectively pruned
out, resulting in correct estimation of tensor rank. The
lower bound of model evidence increases monotonically,
which indicates the effectiveness and convergence of our

algorithm. Finally, the posterior of noise precision t � 1;000
implies the method’s capability of denoising and the estima-

tion of s2
"" � 0:001, SNR ¼ 10 logðs2

XXt
�1Þ.

5.1.2 Automatic Determination of Tensor Rank

To evaluate the automatic determination of tensor rank (i.e.,
CP rank), extensive simulations were performed under
varying experimental conditions related to tensor size, ten-
sor rank, noise level, missing ratio, and the initialization
method of factor matrices (e.g., SVD or random sample).
Each result is evaluated by 50 Monte Carlo (MC) runs per-
formed on different tensors generated by the same criterion.
There are four groups of experiments. (A) Given complete
tensors of size 20� 20� 20 with R ¼ 5, the evaluations
were performed under varying noise levels and by two dif-
ferent initializations (see Fig. 3a). (B) Given incomplete ten-
sors of size 20� 20� 20 with R ¼ 5 and SNR ¼ 20 dB, the
evaluations were performed under five different missing
ratios, and by different initializations (see Fig. 3b). (C) Given
incomplete tensors with R ¼ 5 and SNR ¼ 0 dB, the evalua-
tions were performed under varying missing ratios and two
different tensor sizes (see Fig. 3c). (D) Given incomplete ten-
sors of size 20� 20� 20 with SNR ¼ 20 dB, the evaluations
were performed under varying missing ratios and two dif-
ferent true ranks (see Fig. 3d).

From Fig. 3, we observe that SVD initialization is slightly
better than random initialization in terms of the determina-
tion of tensor rank. If the tensor is complete, our model can
detect the true tensor rank with 100 percent accuracy when
SNR � 10 dB. Although the accuracy decreased to 70 per-
cent under a high noise level of 0 dB, the error deviation is
only �1. On the other hand, if the tensor is incomplete
with slight noises, the detection rate is 100 percent, when
missing ratio is 0.7, and is 44 percent with an error devia-
tion of only �1, even under a high missing ratio of 0.9. As
both missing data and high noise level are presented, our
model can achieve 90 percent accuracy under the condition

Fig. 2. The top row shows Hinton diagram of factor matrices, where the
color and size of each square represent the sign and magnitude of the
value, respectively. The bottom row shows the posterior of ll, the lower
bound of model evidence, and the posterior of t from left to right.

Fig. 3. Determination of tensor rank under varying conditions. Each verti-
cal bar shows the mean and standard deviation of estimations from
50 MC runs, while the accuracy of detections is shown on the top of the
corresponding bar. The red and blue horizontal dash dotted lines indi-
cate the true tensor rank.

1. The Matlab codes are provided in the supplemental materials,
available online.
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of SNR ¼ 0 dB and 0.5 missing ratio. It should be noted
that, when the data size is larger, such as 50� 50� 50, our
model can achieve 90 percent accuracy, even when SNR ¼
0 dB and the missing ratio is 0.9. If the true rank is larger,
such as R ¼ 15, the model can correctly recover the rank
from a complete tensor, but fails to do so when the missing
ratio is larger than 0.5.

We can conclude from these results that the determina-
tion of the tensor rank depends primarily on the number of
observed entries and the true tensor rank. In general, more
observations are necessary if the tensor rank is larger; how-
ever, when high-level noise occurs, the excessive number of
observations may not be helpful for rank determination.

5.1.3 Predictive Performance

In this experiment, we considered incomplete tensors of size
20� 20� 20 generated by the true rank R ¼ 5 and SNR ¼
30 dB under varying missing ratios. The initial rank was set

to 10. The relative standard error RSE ¼ kX̂X�XXkFkXXkF
, where X̂X

denotes the estimation of the true tensor XX , was used to
evaluate the performance. To ensure statistically consistent
results, the performance is evaluated by 50 MC runs for
each condition. As shown in Fig. 4, our method significantly
outperforms other algorithms under all missing ratios. Fac-
torization-based methods, including CPWOPT, and CPNLS
show a better performance than completion-based methods
when the missing ratio is relatively small, while they per-
form worse than completion methods when the missing
ratio is large, e.g., 0.9. FaLRTC, FCSA, and HardC. achieve
similar performances, because they are all based on nuclear
norm optimization. geomCG achieves a performance com-
parable with that of CWOPT and CPNLS when data is com-
plete, while it fails as the missing ratio becomes high. These
results demonstrate that FBCP, as a tensor factorization
method, can be also effective for tensor completion, even
when an extremely sparse tensor is presented. In addition,
we also conducted two additional experiments that are the
reconstruction of a complete tensor and tensor completion
when SNR ¼ 0 dB (see Sections 11, 12 in Appendix, avail-
able in the online supplemental material).

5.2 Image Inpainting

In this section, image inpainting based on several bench-
mark images, shown in Fig. 5, are used to evaluate the

performance of different methods. The colorful image can
be represented by a third-order tensor of size 200� 200� 3.
We considered four groups of experiments. (A) Structural
image with uniformly random missing pixels. A building facade
image with 95 percent missing pixels under two noise condi-
tions, i.e., noise free and SNR ¼ 5 dB, were considered as
observations. (B)Natural image with uniformly random missing
pixels. The Lena image of size 300� 300 with 90 percent
missing pixels under two noise conditions, i.e., noise free
and SNR ¼ 10 dB, were considered. (C) Non-random missing
pixels. We conducted two experiments for image restoration
from a corrupted image. 1) The Lena image corrupted by
superimposed text.2 Since the location of text pixels are diffi-
cult to detect exactly, we can simply indicate missing entries
by values larger than 200 to ensure that the text pixels are
completely missing. 2) The scrabbled Lena image was used
as an observed image and pixels with values larger than 200
can be marked as missing. (D) Object removal. Given an
image and a mask covering the object area, our goal was to
complete the image without that object. The algorithm
settings of compared methods are described as follows. For
factorization-based methods, the initial rank was set to 50 in
cases of (A) and (B) due to the high missing ratios, and
100 in cases of (C) and (D). For completion-based methods,
the tuning parameters were chosen by RSE evaluated
on the ground-truth image, which gave the best possible
performances.

The visual effects of image inpainting are shown in Fig. 6,
and the predictive performances are shown in Table 1
where case (D) is not available due to the lack of ground-
truth. In case (A), we observe that FBCP and FBCP-MP out-
perform other methods for a structural image under an
extremely high missing ratio and the superiority is more
significant when an additive noise is involved. In case
(B), FBCP-MP obtains the best performance followed by
STDC. However, STDC is severely degraded when noise is
involved, and obtains the same performance as FBCP, while
its visual quality is still much better than others. These indi-
cate that the local similarity in FBCP-MP is suitable for natu-
ral image. In case (C), FBCP and FBCP-MP are superior to
all other methods, followed by STDC. The completion-
based methods obtain relatively smoother effects than
factorization-based methods, but the global color of the
image is not recovered well, resulting in a poor predictive
performance. In case (D), FBCP obtains the most clean
image by removing the object completely while the ghost
effects appear in all other methods. HaLRTC, FaLRTC and
FCSA outperform FBCP-MP, CPWOPT, CPNLS and STDC.

From these results we can conclude that the completion-
based methods generally outperform factorization-based
methods for image completion. However, FBCP signifi-
cantly improves ability of factorization-based scheme by
automatic model selection and robustness to overfitting.

Fig. 4. Predictive performance when SNR ¼ 30 dB.

Fig. 5. Ground-truth of eight benchmark images.

2. A demo video is available in the supplemental materials, avail-
able online.
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on the rank of true image. For instance, a structural image
with an intrinsic low-rank need very fewer observations
than a natural image. Due to the local similarity constrains,
FBCP-MP and STDC can further reduce the necessary num-
ber of observations, which has been shown for Lena image.
However, STDC degrades in presence of the non-random
missing pixels or noise. Moreover, the performance of
HaLRTC and STDC are sensitive to tuning parameters that
must be carefully chosen for each specific condition.

Next, we conducted extensive experiments on eight
images of size 256� 256 shown in Fig. 5 with randomly
missing pixels. Since most of these images are natural
images on which the low-rank approximations require rela-
tively large number of observations, we compared FBCP-
MP with FBCP and other related methods. For FBCP and
FBCP-MP, the same initialization of R ¼ 100 was applied,

while CPWOPT was performed by using the optimal ranks
obtained from FBCP and FBCP-MP and the best perfor-
mance was reported. The parameter selection for other
methods was same with previous experiments. For KTD,
due to large number of tuning parameters, we can only
chose the optimal settings empirically. Fig. 7 shows an
example for visual quality and Table 2 shows averaged
quantitative results in terms of recovery performance and
runtime. Observe that FBCP-MP improves the performance
of FBCP significantly and achieves the best recovery perfor-
mance, especially in the case of high missing rate. The time
costs of FBCP and FBCP-MP are comparable with comple-
tion-based methods and significantly lower than CPWOPT.
STDC obtains the comparable performance with FBCP-MP,
however the parameters must be manually tuned for the
specific condition. More detailed results on each image
are shown visually and quantitatively in the supplemental
materials, available online. These results demonstrate the
effectiveness of mixture priors and the advantages when
the local similarity is taken into account.

5.3 Facial Image Synthesis

For recognition of face images captured from surveillance
videos, the ideal solution is to create a robust classifier that
is invariant to some factors, such as pose and illumination.
Hence, there arises the question whether we can generate
novel facial images under multiple conditions given images
under other conditions. Tensors are highly suitable for
modeling a multifactor image ensemble, and therefore, we
introduce a novel application of tensor factorization app-
roaches for facial image synthesis.

We used the data set of 3D Basel Face Model [44], which
contains an ensemble of facial images of 10 people, each
rendered in nine different poses under three different

TABLE 1
Performance (RSEs) Evaluated on Missing Pixels

Method Facade Lena Non-random

NF N NF N T S

FBCP 0.13 0.17 0.17 0.20 0.13 0.14
FBCP-MP 0.13 0.16 0.10 0.12 0.13 0.14
CPWOPT 0.33 0.41 0.25 0.41 0.18 0.18
CPNLS 0.84 0.84 0.62 0.73 0.22 0.30
HaLRTC 0.15 0.21 0.19 0.21 0.29 0.28
FaLRTC 0.16 0.21 0.19 0.22 0.29 0.29
FCSA 0.19 0.21 0.19 0.21 0.28 0.28
HardC. 0.19 0.25 0.20 0.23 0.31 0.30
STDC 0.14 0.22 0.11 0.20 0.15 0.16

“NF”, “N” indicate noise free or noisy image. “T”, “S” indicate the text
corruption or scrabbled image.

Fig. 6. Visual effects of image inpainting. Seven examples shown from top to bottom are (1) facade image with 95 percent missing; (2) facade image
with 95 percent missing and an additive noise; (3) Lena image with 90 percent missing; (4) Lena image with 90 percent missing and an additive noise;
(5) Lena image with superimposed text; (6) scribbled Lena image; (7) an image of ocean with an object.
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illuminations. As shown in Fig. 8, some images were fully
missing. All 270 facial images were decimated and cropped
to 68� 68 pixels, and were then represented by a fourth-

order tensor of size 4624� 10� 9� 3. Since facial image
does not possess an intrinsic low-rank structure, the vectori-
zation operation was performed such that the whole ensem-
ble satisfies the low-rank assumption. Since some methods
are either computationally intractable or not applicable to
N � 4 order tensor, five algorithms were finally applied on
this data set under different missing ratios. The initial rank
was set to 100 in factorization based methods, while the
parameters of completion based methods were well tuned
based on the ground-truth.

As shown in Fig. 9, the visual quality of image synthesis
obtained by FBCP is significantly superior to those by other
methods. Although both CPWOPT and HaLRTC produce
images that are smooth and blurred, HaLRTC obtains
much better visual quality than CPWOPT. The detailed per-
formances are compared in Table 3, where RSE w.r.t.
observed entries reflects the performance of model fitting,
and RSE w.r.t. missing entries particularly reflects the
predictive ability. Note that RSE ¼ N/A implies that

TABLE 2
The Averaged Recovery Performance (RSE, PSNR, SSIM) and Runtime (Seconds) on Eight Images

with Missing Rates of 70, 80, 90 and 95 Percent

FBCP FBCP-MP CPWOPT STDC HaLRTC FaLRTC FCSA HardC. KTD

70% RSE 0.1209 0.0986 0.1493 0.1003 0.1205 0.1205 0.1406 0.1254 0.1744
PSNR 25.13 26.78 23.35 26.79 25.12 25.12 23.64 24.71 21.72
SSIM 0.7546 0.8531 0.6417 0.8245 0.7830 0.7831 0.7437 0.7730 0.6579

Runtime 83 251 1,807/2,908 32/292 18/139 46/232 9 36 169

80% RSE 0.1423 0.1084 0.1700 0.1095 0.1479 0.1479 0.1675 0.1548 0.2030
PSNR 23.09 25.36 21.52 25.40 22.72 22.72 21.53 22.32 19.80
SSIM 0.6515 0.7941 0.5567 0.7781 0.6716 0.6716 0.6410 0.6579 0.5241

Runtime 76 196 590/2316 30/328 25/122 57/282 9 39 129

90% RSE 0.1878 0.1295 0.2372 0.1316 0.1992 0.1995 0.2342 0.2121 0.2407
PSNR 20.12 23.26 18.08 23.21 19.62 19.61 18.09 19.11 17.80
SSIM 0.4842 0.6956 0.3628 0.6950 0.5005 0.4998 0.4477 0.4790 0.3951

Runtime 69 169 390/1475 32/378 21/127 61/307 9 32 82

95% RSE 0.2420 0.1566 0.3231 0.1600 0.2549 0.2564 0.2777 0.2903 0.3091
PSNR 17.76 21.34 15.35 21.18 17.25 17.19 16.39 16.12 15.41
SSIM 0.3455 0.6031 0.2539 0.5810 0.3676 0.3649 0.3535 0.3369 0.2967

Runtime 66 133 201/881 35/400 24/137 63/313 8 32 58

For methods that need to tune parameters, both the runtime with the best tuning parameter and the overall runtime are reported.

Fig. 7. Tensor completion for Baboon image under missing rates of 70, 80, 90 and 95 percent are shown from top to bottom. The left column shows
observed images with randomly missing pixels, while the recovered images by nine different methods are shown from left to right.

Fig. 8. Facial images under multiple conditions including people,
poses and illuminations. Some of the images chosen randomly are
fully missing.
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HaLRTC and FaLRTC do not model the observed entries.
The inferred rank by FBCP is within the range of [98,
100]. Observe that completion based methods including
HaLRTC, FaLRTC and HardC. achieve better perfor-
mance than CPWOPT. FBCP demonstrates the possibility
that factorization-based scheme can significantly outper-
form completion-based methods. An interpretation is that
HaLRTC based on rank minimization of unfolding matri-
ces is prone to underestimate the tensor rank, while
CPWOPT is prone to overfitting due to the point estima-
tion based on maximum likelihood. By contrast, FBCP
can infer CP rank more accurately and its predictive dis-
tribution obtained by integrating over latent factors can
effectively prevent overfitting.

6 CONCLUSION

We proposed a fully Bayesian CP factorization which
can naturally handle incomplete and noisy tensor data. By
employing hierarchical priors over all unknown parame-
ters, we derived a deterministic model inference under a
fully Bayesian treatment. The most significant advantage is
automatic determination of CP rank. Moreover, as a tuning
parameter-free approach, our method avoids the parameter
selection problem and can also effectively prevent overfit-
ting. In addition, we proposed a variant of our method by
using mixture priors, which shows advantages on natural
images with a highly missing rate. Empirical results vali-
dated the effectiveness in terms of discovering the ground-
truth of tensor rank and imputing missing values for an
extremely sparse tensor. Several real-world applications,
such as image completion and image synthesis, demon-
strated the superiority of our methods over state-of-the-art
techniques. Due to several interesting properties, our meth-
ods would be attractive for many potential applications.
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