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Abstract. In this paper we study geometrical structures of the manifold of Finite Impulse Response (FIR) filters,
and develop a natural gradient learning algorithm for blind deconvolution. First, A Lie group structure is introduced
to the FIR manifold and the Riemannian metric is then derived by using the isometric property of the Lie group.
The natural gradient on the FIR manifold is obtained by introducing a nonholonomic transformation. The Kullback-
Leibler divergence is introduced as the measure of mutual independence of the output signals of the demixing model
and a feasible cost function is derived for blind deconvolution. An efficient learning algorithm is presented based
on the natural gradient approach and its stability analysis is also provided. Finally, we give computer simulations
to demonstrate the performance and effectiveness of the proposed natural gradient algorithm.
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1. Introduction

Independent component analysis (ICA) is to find a
linear transformation of a vector of sensor signals
(random variables) to new random variables that are
maximally statistically independent. Since Jutten and
Herault [1] introduced the concept of blind source
separation (BSS), ICA has attracted considerable at-
tention in the fields of signal processing and neural
networks. There are diverse applications of ICA, cov-
ering from telecommunications [2], acoustics [3, 4],
image enhancement [5], seismic data processing [6] to
biomedical signal processing (EEG/MEG) [7, 8]).

Comon [9] first formulated the BSS problem in the
framework of independent component analysis and
presented cost functions by approximating mutual in-
formation of sensor signals. Cichocki and Unbehauen
[10, 11] presented a robust learning algorithm, which is
still one of the most popular ICA algorithms. Bell and
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Sejnowski elucidated blind source separation in the in-
fomax principle. The natural gradient algorithm (equiv-
alently the relative gradient algorithm) was developed
by Amari et al. [12] and Cardoso and Laheld [13].
The fixed point algorithm (FastICA) was presented by
Hyvarinen and Oja [14]. Stability analysis of the
learning algorithms was also provided [13, 15]. Fur-
thermore, some theoretical problems, such as con-
vergence and efficiency of the learning algorithms
were solved in the framework of the semiparametric
model [16].

On the other hand, blind deconvolution/equalization
was also developed independently in the field of com-
munications [17–19]. The blind deconvolution/equali-
zation is different from the traditional system identifi-
cation and estimation. Generally, blind deconvolution
uses only the sensor signals to estimate the original
source signals, without knowing the source signals and
the mixing system. Various algorithms, such as Buss-
gang algorithms [17–20], higher-order statistics ap-
proach [21, 22], information-theoretic approaches
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[23–25] and the subspace method [26–28] have been
developed for solving the blind deconvolution problem.
Identifiability of blind deconvolution has also been dis-
cussed for single input multiple output (SIMO) systems
[28, 29] and multiple input multiple output (MIMO)
systems [27, 30, 31]. The blind deconvolution model
was also extended to dynamical systems and the state
space approach [32] was developed for blind decon-
volution in the dynamical environment. The problem
of blind separation of nonlinear mixtures was also
discussed in [33].

However, most theoretical works, such as the geo-
metrical structures of demixing model, stability and
convergence, treat only blind source separation of in-
stantaneous mixtures [13, 15, 16, 34, 35], and it is only
recently that the natural gradient approach has been
developed for multichannel blind deconvolution [23],
where the demixing model is a doubly infinite impulse
response (IIR) filter. Usually, it is necessary to use a
doubly FIR filter as a demixing model in applications.
The geometrical structures on the doubly FIR filter are
different from the doubly IIR filter. The doubly FIR
filters do not have self-closed operations, such as mul-
tiplications and inverse. Therefore, it is difficult to in-
troduce the geometrical structures for the doubly FIR
filters by the same procedure as for the doubly IIR
filters.

In this paper, we surmount the difficulty by decom-
posing the doubly FIR filter into the product of two FIR
filters. The geometrical structures are defined on the
differential manifold of nonsingular FIR filters. First,
a Lie group structure is introduced to the FIR manifold
and Riemannian metric is then derived by using the
isometric property of the Lie group. A novel approach
is developed to derive the natural gradient on the FIR
manifold. Introducing a nonholonomic transformation,
we obtain an explicit expression of the natural gradient.
The blind deconvolution problem is then formulated as
an optimization problem and an efficient learning algo-
rithm is developed using the natural gradient approach.
Stability analysis of the natural gradient algorithm is
provided for the first time in blind deconvolution case.
Finally, we give computer simulations to demonstrate
performance and effectiveness of the proposed learning
algorithm.

2. Problem Formulation

As a convolutive mixing model, we consider a mul-
tichannel linear time-invariant (LTI) system of the

form

x(k) =
∞∑

p=0

Hps(k − p), (1)

where Hp is an n × n-dimensional matrix of mixing
coefficients at time-lag p, called the impulse response
at time p, s(k) = (s1(k), . . . , sn(k))T an n-dimensional
vector of source signals, mutually independent and
identically distributed, and x(k) = (x1(k), . . . , xn(k))T

is an n-dimensional vector of sensor signals. For sim-
plicity, we use the notation

H(z) =
∞∑

p=0

Hpz−p, (2)

where z is the z-transform variable or the delay ope-
rator, defined by z−1x(k) = x(k − 1). H(z) is called the
mixing filter. Thus the mixing model (1) can be rewrit-
ten in the operator form

x(k) = H(z)s(k). (3)

The goal of multichannel blind deconvolution is to
retrieve the source signals only using the sensor sig-
nals x(k) and some knowledge of source distributions
and statistics. Generally, we carry out the blind decon-
volution with another multichannel LTI and noncausal
system of the form

y(k) = W(z)x(k) =
∞∑

p=−∞
Wpx(k − p), (4)

where W(z) = ∑∞
p=−∞ Wpz−p, y(k) = [y1(k), . . . ,

yn(k)]T is an n-dimensional vector of the outputs and
Wp is an n × n-dimensional coefficient matrix at time
lag p, which are the parameters determined during
training. The system (4) is usually known as the demix-
ing model, and W(z) is called the demixing filter.
See Fig. 1 for illustration of the blind deconvolution
problem.

Figure 1. Illustration of blind deconvolution problem.
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The global transfer function is defined by

G(z) = W(z)H(z). (5)

Generally speaking, blind deconvolution does not seek
the inverse of the mixing filter. In blind deconvolution,
we cannot observe the vector s(k) of original signals
and the unknown mixing filter H(z) as well. This im-
plies that there are three types of inherent ambigui-
ties in the solution to blind deconvolution problem. We
cannot identify the order in arranging the components
s1(k), . . . , sn(k) into the vector s(k), the time origin and
the magnitude of each component si (k). Therefore, the
task of blind deconvolution is to find a demixing filter
W(z) such that

G(z) = W(z)H(z) = PΛD(z), (6)

where P ∈ Rn×n is a permutation matrix, D(z) =
diag{z−d1 , . . . , z−dn }, and Λ∈ Rn×n is a nonsingular
diagonal matrix.

The objective of blind deconvolution is to find a
demixing filter W(z) such that its output signals y(k)

are maximally spatially mutually independent and tem-
porarily i.i.d.. In practice, we have to implement the
blind deconvolution problem with a doubly finite im-
pulse response (FIR) filter

W(z) =
N∑

p=−N

Wpz−p, (7)

where N is the length of the demixing filter. It is diffi-
cult to directly introduce geometrical structures, such
as the Lie group and Riemannian metric to the dou-
bly FIR manifold. Instead, we first introduce geomet-
rical structures on the one-sided FIR filter manifold,
and derive an efficient learning algorithm for the FIR
filters. Using the filter decomposition approach [36],
we can decompose a doubly FIR filter into the prod-
uct of two one-sided FIR filters, W(z) = L(z)R(z−1),
where L(z) = ∑N

p=0 Lpz−p is a causal FIR filter and
R(z−1) = ∑N

p=0 Rpz p an anti-causal FIR filter. Refer
to [36] for more details. Therefore, the learning algo-
rithm for one-sided FIR filters can used to train both
filters L(z) and R(z−1), respectively.

3. Geometrical Structures of Nonsingular
FIR Manifold

In this section we introduce some geometrical struc-
tures, such as the Lie group and Riemannian metric,

to the manifold of FIR filters. Such structures are use-
ful for the derivation of efficient learning algorithms
[34].

The set of all FIR filters W(z) of length N, having
the constraint W0 is nonsingular, is denoted by

M(N )

=
{

W(z) | W(z) =
N∑

p=0

Wpz−p, det(W0) �= 0

}
.

(8)

M(N ) is a manifold of dimension n2(N + 1), which is
referred to as the nonsingular FIR manifold. It is easy
to prove that the manifold is a differential manifold.
The tangent space at W(z) ∈ M(N ) is given by

TW(M(N )) =
{

P(z) | P(z) =
N∑

p=0

Ppz−p

}
. (9)

In general, multiplication of two filters in M(N )

makes a new filter with length 2N. This means that
multiplication in ordinary sense is not self-closed in
the manifold M(N ). In order to explore possible geo-
metrical structures of M(N ), we define the algebraic
operations of filters in the Lie group framework.

3.1. Lie Group

In the manifold M(N ), Lie operations multiplica-
tion ∗ and inverse † are defined as follows: for any
B(z), C(z) ∈ M(N ),

B(z) ∗ C(z) =
N∑

p=0

p∑
q=0

BqC(p−q)z
−p, (10)

B†(z) =
N∑

p=0

B†
pz−p, (11)

where B†
p are recurrently defined by B†

0 = B−1
0 , B†

p =
− ∑p

q=1 B†
p−qBqB−1

0 , p = 1, . . . , N . It is not difficult
to verify that both B(z)∗C(z) and B† still remain in the
manifold M(N ) and the manifold M(N ) forms a Lie
Group with the above operations. The identity element
is E(z) = I. Moreover, the Lie group has the following
properties

A(z) ∗ (B(z) ∗ C(z)) = (A(z) ∗ B(z)) ∗ C(z), (12)

B(z) ∗ B†(z) = B†(z) ∗ B(z) = I. (13)
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In fact the Lie multiplication of two B(z), C(z) ∈
M(N ) is the truncated form of the ordinary multipli-
cation up to order N, that is

B(z) ∗ C(z) = [B(z)C(z)]N , (14)

where [B(z)]N is a truncating operator such that any
terms with orders higher than N in the polynomial B(z)
are omitted.

3.2. Riemannian Metrics

A Lie group has an important property that admits an
invariant Riemannian metric. Let TW(M(N )) be the
tangent space of M(N ) at W(z), and P(z), Q(z) ∈
TW(M(N )) be the tangent vectors. We introduce the
inner product with respect to W(z) as 〈P(z), Q(z)〉W(z)

in the following way. Since M(N ) is a Lie group,
any B(z) ∈M(N ) defines an onto-mapping: W(z) →
W(z) ∗ B(z). The multiplication transformation maps
a tangent vector P(z) at W(z) to a tangent vector
P(z) ∗ B(z) at W(z) ∗ B(z). Therefore we can define
a Riemannian metric on M(N ), such that the right
multiplication transformation is isometric, that is, it
preserves the Riemannian metric on M(N ),

〈P(z), Q(z)〉W(z)

= 〈P(z) ∗ B(z), Q(z) ∗ B(z)〉W(z)∗B(z), (15)

for any P(z), Q(z) ∈ TW(M(N )). If we define the inner
product at the identity E(z) by

〈P(z), Q(z)〉E(z) =
N∑

p=0

tr
(
PpQT

p

)
, (16)

then 〈P(z), Q(z)〉W(z) is automatically induced by

〈P(z), Q(z)〉W(z) = 〈P(z) ∗ W(z)†, Q(z) ∗ W(z)†〉E(z).

(17)

The Riemannian metric of the differential manifold
M(N ), denoted by G(W), can be explicitly calculated
from Eq. (17) by introducing the Kronecker (tensor)
product and the vec operator [37]. Due to its complex-
ity, we will not pursuit further on the explicit expression
of G(W). Actually, Eq. (17) provides us sufficient in-
formation to derive the natural gradient algorithm for
blind deconvolution.

4. Natural Gradient

The FIR manifold M(N ) is in the Riemannian space.
The ordinary gradient is not optimal direction for min-
imizing a cost function defined on the Riemannian
space. The steepest search direction is given by the
natural gradient. It has been demonstrated that the
natural gradient approach is an efficient technique
for solving iterative estimation problems [34]. In this
section, using the Lie group on M(N ) we intro-
duce a novel approach to derive the natural gradi-
ent without calculating the inverse of the Riemannian
metric.

Assume that l(W(z)) is a cost function defined on the
manifold M(N ). Since the parameters are in a matrix
format, we define the ordinary gradient and natural gra-
dient in the same matrix format. The ordinary gradient
is denoted by

∇l(W(z)) = ∂l(W(z))

∂W(z)
=

N∑
p=0

∂l(W(z))

∂Wp
z−p, (18)

where

∂l(W(z))

∂Wp
=

(
∂l(W(z))

∂Wp,i j

)
n×n

, p = 0, 1, . . . , N .

(19)

The natural gradient ∇̃l(W(z)) is defined as the steep-
est ascent direction of the cost function l(W(z)) as
measured by the Riemannian metric on M(N ).

In order to derive the natural gradient on the mani-
fold M(N ), we introduce the following notations. The
operator vec transforms a matrix A = [a1, a2, . . . , an]
to a vector vec(A), defined by

vec(A) = [
aT

1 , aT
2 , . . . , aT

n

]T
. (20)

We further define the vec operator for a filter P(z) in
TW(M(N )) as

vec(P(z)) = vec([P0, P1, . . . , PN ]). (21)

Here, we present an alternative way to derive the natu-
ral gradient on the manifold M(N ). According to the
definition of the natural gradient [34], we have

vec(∇̃l(W(z)) = G(W)−1vec(∇l(W(z)). (22)

For any FIR filter P(z) = ∑N
p=0 Ppz−p in the tangent

space TW(M(N )), we take the inner product with P(z)
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on the both sides of the above equation

〈P(z), ∇l(W(z)〉E(z)

= 〈vec(P(z)), G(W)vec(∇̃l(W(z))〉
= 〈P(z), ∇̃l(W(z))〉W(z). (23)

Lemma 1. The natural gradient ∇̃l(W(z)) of the cost
function l(W(z)) satisfies the following equation

〈P(z), ∇̃l(W(z))〉W(z) = 〈P(z), ∇l(W(z))〉E(z), (24)

for any P(z) ∈ TW(M(N )).

The Eq. (24) has an geometrical interpretation: if we
consider the filter P(z) as an element in TW(M(N )),
then the inner product of P(z) and ∇̃l(W(z)) at W(z) is
independent of W(z). This property is called isometry.
Actually, this lemma provides us a new way to calculate
the natural gradient. Using Eqs. (17) and (24), we can
derive the natural gradient ∇̃(W(z)) in the following
way,

〈vec(P(z)), vec(∇l(W(z))〉
= 〈vec(P(z)), vec(∇̃l(W(z)) ∗ W−1(z)

∗ W−T (z−1))〉, (25)

for any P(z) in TW(M(N )). Comparing the two sides
of the above equation, we obtain

∇̃l(W(z)) = ∇l(W(z)) ∗ WT (z−1) ∗ W(z). (26)

In fact for blind deconvolution, it will become much
easier to calculate the natural gradient if we introduce
a new differential variable,

dX(z) = dW(z) ∗ W†(z) = [dW(z)W−1(z)]N . (27)

Consider the differential dl(W(z)) with respect to X(z)
and W(z), respectively,

dl(W(z)) =
〈
∂l(W(z))

∂X(z)
, dX(z)

〉

=
〈
∂l(W(z))

∂W(z)
, dW(z)

〉

=
〈
∂l(W(z))

∂W(z)
∗ WT (z−1), dX(z)

〉
. (28)

From the above equation, we deduce

∂l(W(z))

∂X(z)
= ∂l(W(z))

∂W(z)
∗ WT (z−1). (29)

Substituting the above relation into (26), we obtain the
following theorem

Theorem 1. The natural gradient on the differential
manifold M(N ) is given by

∇̃l(W(z)) = ∂l(W(z))

∂X(z)
∗ W(z). (30)

It should be noted that dX(z) = [dW(z)W−1(z)]N is
a nonholonomic basis, which has a definite geometrical
meaning and proves to be useful in blind separation
algorithms [15]. In fact, the differential dX(z) defines a
channel error with respect to the variation of the output
of the demixing model,

dy(k) = dW(z)x(k)

= dW(z) ∗ W†(z) ∗ W(z)x(k)

= dX(z)y(k). (31)

With this properties of the reparameterization, we
can develop learning algorithms with the equivariance
property [13].

5. Measure of Independence

The purpose of blind deconvolution is to find a FIR fil-
ter W(z) such that the output of the demixing model is
maximally mutually independent and temporarily i.i.d..
The Kullback-Leibler Divergence has been used as a
cost function for blind deconvolution [23] to measure
the mutual independence of the output signals. Assume
that py(y) is the joint probability density function of
random variable y, and pi (yi ) is the i-th marginal prob-
ability density function of yi . The Kullback-Leibler
Divergence between py(y) and qy(y) = ∏n

i=1 pyi (yi )

is given by

D(p, q) =
∫

py(y) log

(
py(y)∏n

i=1 pi (yi )

)
dy, (32)

or equivalently, we rewrite it into the mutual informa-
tion form

l(W) = −H(y, W) +
n∑

i=1

H(yi , W), (33)

where H(y, W) = −∫
p(y, W) log p(y, W) dy, H(yi ,

W) = −∫
pi (yi ) log pi (yi ) dyi . The divergence l(W) is

a nonnegative functional, which measures the mutual
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independence of the output signals yi (k). The out-
put signals y are mutually independent if and only if
l(W) = 0. Therefore, the Kullback-Leibler Divergence
D(p,

∏n
i=1 pi (yi )) can be used as a cost function for

blind deconvolution. However, there are several un-
knowns in the cost function: the joint probability den-
sity function py(y) and the marginal probability density
functions pi (yi ). In the appendix, we show that the en-
tropy H(y) can be simplified as

H(y) = −log |det(W0)| + const. (34)

Therefore, the cost function derived from the mutual
information becomes

l(y, W(z)) = −log |det(W0)| −
n∑

i=1

H(yi , W). (35)

In order to implement the statistical on-line learning,
we reformulate the cost function as

l(y, W(z)) = −log |det(W0)| −
n∑

i=1

log q(yi ), (36)

where q(yi ) is an estimator of the true probability den-
sity function of the source signal. Actually, the choice
of the distribution q(yi ) is equivalent to the choice of
its corresponding activation function. We will discuss
the problem further in the following sections.

6. Learning Algorithm

In this section, we apply the stochastic natural gradi-
ent approach to derive a learning algorithm for online
training FIR filters. First, we introduce the following
lemma.

Lemma 2 ([2]). If the matrix W0 is nonsingular,

d log |det(W0)| = tr
(
dW0W−1

0

)
, (37)

where tr is the trace operation of matrices.

For the gradient of l(y, W(z)) with respect to W(z),
we calculate the total differential dl(y, W(z))

dl(y, W(z)) = d

(
−log |det(W0)| −

n∑
i=1

log q(yi )

)

= −tr
(
dW0W−1

0

) + ϕ(y)T dy, (38)

where ϕ(y) is a vector of nonlinear activation
functions,

ϕi (yi ) = −d log qi (yi )

dyi
= −q ′

i (yi )

qi (yi )
. (39)

By introducing the nonholonomic transform (27), we
rewrite Eq. (38) as

dl(y, W(z)) = −tr(dX0) + ϕ(y)T dX(z)y. (40)

From the above equation, we easily obtain the partial
derivatives of l(y, W(z)) with respect to X(z),

∂l(y, W(z))

∂Xp
= −δ0,pI + ϕ(y)yT (k − p),

p = 0, . . . , N (41)

Using the natural gradient descent learning rule, we
present a novel learning algorithm as follows

	Wp = −η

p∑
q=0

∂l(y, W(z))

∂Xq
Wp−q

= η

p∑
q=0

(δ0,qI − ϕ(y)yT (k − q))Wp−q , (42)

for p = 0, 1, . . . , N , where η is the learning rate. In
particular, the learning algorithm for W0 is described
by

	W0 = η(I − ϕ(y)yT )W0. (43)

It is worth noting that algorithm (42) is essentially
different from the one in [23]. First, algorithm (42)
has a triangle structure, i.e. 	Wp depends only on
W0, . . . , Wp, given output signals y(k). Secondly,
from the implementation point of view, we need to
decompose the demixing filter into the product of two
FIR filters if it is noncausal. The decomposition pro-
vides us a new way to train the demixing filter such that
its coefficients decay as N becomes larger.

The algorithm (42) has two important properties,
uniform performance (the equivariant property) [13]
and non-singularity of W0. In multichannel blind de-
convolution, an algorithm is equivariant if its dynam-
ical behavior depends on the global transfer function
G(z) = W(z) ∗ H(z), but not on the specific mixing
filter H(z). In fact the learning algorithm (42) has the
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equivariant property in the Lie group sense. Multiply-
ing both sides of Eq. (42) by the mixing filter H(z) in
the Lie group sense, we obtain

	G(z) = −η
∂l(y, W(z))

∂X(z)
∗ G(z). (44)

where G(z) = W(z) ∗ H(z). From Eq. (41) we know
∂l(y,W(z))

∂X(z) is formally independent of the mixing channel
H(z). This means that the algorithm (42) is equivariant.

Another important property of the learning algo-
rithm (43) is that it keeps the non-singularity of W0

provided the initial W0 is nonsingular [38, 39]. In
fact if we denote the inner product of two matrices by
〈A, B〉 = tr(AT B), we can easily calculate the deriva-
tive of the determinant |W0| in the following way

d|W0|
dt

=
〈
∂|W0|
∂W0

,
dW0

dt

〉
=

〈
|W0|W−T

0 ,
dW0

dt

〉
(45)

= tr
(|W0|W−1

0 (I − ϕ(y)yT )W0
)

= tr
(
I − ϕ(y)yT )|W0|

)
. (46)

This equation results in

|W0(t)| = |W0(0)| exp

( ∫ t

0
tr(I − ϕ(y(τ ))yT (τ ))dτ

)
.

(47)

Therefore the matrix W0 is nonsingular whenever the
initial matrix W0(0) is nonsingular.

This means that the learning algorithm (42) keeps
the filter W(z) on the manifold M(N ) if the initial
filter is on the manifold. This property implies that the
equilibrium point of the learning algorithm satisfy the
following equations

E{ϕ(y(k))yT (k − p)} = 0, for p = 1, . . . , N , (48)

E{I − ϕ(y(k))yT (k)} = 0. (49)

The nonlinear activation function ϕ(y) originally is
defined by (39). The choice ofϕ(y) depends on both the
statistics of the source signals and stability conditions
of the learning algorithm.

7. Stability of Learning Algorithm

In this section, we analyze stability of the learn-
ing algorithm (42). Since the learning algorithm for

updating Wp, p = 0, 1, . . . , N , is a linear combination
of Xp, p = 0, 1, . . . , N , the stability of learning algo-
rithm for Xk, k = 0, 1, . . . , N implies the stability of
the learning algorithm (42). Suppose that the separating
signals y = (y1, . . . , yn)

T are not only spatially mutu-
ally independent but also temporally independent and
identically distributed. Now consider the learning al-
gorithm for updating Xp in continuous time way,

dXp

dt
= η(δ0,pI − ϕ(y(k)y(k − p)T ),

p = 0, 1, . . . , N . (50)

To analyze the asymptotic properties of the learn-
ing algorithm, we take expectation on the above
equation

dXp

dt
= η(δ0,pI − E[ϕ(y)yT (k − p)]),

p = 0, 1, . . . , N . (51)

If the variational matrix at equilibrium point is negative
definite, then system (51) is stable in the vicinity of the
equilibrium point. Taking a variation δXp on Xp, we
have

dδXp

dt
= −ηE[ϕ′(y)δyyT (k − p)

+ϕ(y(k))δyT (k − p)], p = 0, 1, . . . , N ,

(52)

where δy(k− p) = δW(z)u(k− p) = δX(z)y(k− p) =∑N
j=0 δXpy(k − p − j). Using the mutual indepen-

dence and i.i.d. properties of the output signals yi ,

i = 1, . . . , n and the normalized condition (49), we
deduce

dδX0

dt
= −η

(
E[(ϕ′(y)δX0y)yT ] + δXT

0

)
, (53)

dδXp

dt
= −η(E[(ϕ′(y)δXpy(k − p)y(k − p)T ]),

p = 1, . . . , N . (54)

The above two equation systems can be rewritten into
the following component form:

dδX0,i j

dt
= −η

(
κiσ

2
j δX0,i j + δX0, j i

)
, (55)

dδX0, j i

dt
= −η

(
κ jσ

2
i δX0, j i + δX0,i j

)
, (56)
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for i �= j , and

dδX0,i i

dt
= −η(mi + 1)δX0,i i , (57)

dδXp,i j

dt
= −ηκiσ

2
j δXp,i j , (58)

for p = 1, . . . , N , and i, j = 1, . . . , n, where

mi = E
[
ϕ′(yi )y2

i

]
, κi = E[ϕ′

i (yi )], σ 2
i = E[|yi |2],

i = 1, . . . , n. (59)

For any i �= j , (55) and (56) are a self-closed sub-
systems, their stability conditions are given by

κi > 0, for i = 1, . . . , n, (60)

κiκ jσ
2
i σ 2

j > 1, for i, j = 1, . . . , n. (61)

Similarly, the stability conditions for (57) and (58) are
as follows

mi + 1 > 0, for i = 1, . . . , n, (62)

κi > 0, for i = 1, . . . , n. (63)

In summary, we have the following theorem

Theorem 2. The stability conditions for (53) and
(54) are

mi + 1 > 0, (64)

κi > 0, (65)

κiκ jσ
2
i σ 2

j > 1, (66)

for all i, j (i �= j).

The stability conditions are identical to the ones
derived by Amari et al. [15] for instantaneous blind
source separation. Two families of activation func-
tions have been discussed in [15]. In general, the non-
linear activation function ϕ(y) = y3 + αy, 0 < α � 1,

is good for sub-Gaussian signals, and ϕ(y) =
tanh(γ y), 0 < γ < 2, is good for super-Gaussian sig-
nals, respectively. Refer to [15] for the detailed analysis
for the instantaneous mixture.

8. Simulations

In order to implement the natural gradient algorithm,
it is necessary to estimate first the length of the

demixing filter. The model selection criteria, such as
the Minimum Description Length (MDL) and Akaike
Information-theoretic Criterion (AIC) can be used to
select the model length N. Generally, the choice of the
length N of the demixing filter usually depends on the
mixing filter and error tolerance of recovered signals.
Although we do not know the mixing filter in the blind
deconvolution, we can estimate roughly the length N of
the demixing filter by MDL criterion. The overestimate
of N will not affect significantly the outcome of the nat-
ural gradient learning, but will increase the computing
cost. Computer simulations show that the parameters
in the overestimate range will automatically converge
to zero.

To evaluate the performance of the proposed learning
algorithms, we employ the multichannel inter-symbol
interference, denoted by MISI , as a criterion,

MISI =
n∑

i=1

∑n
j=1

∑N
p=0 |Gpi j | − maxp, j |Gpi j |

maxp, j |Gpi j |

+
n∑

j=1

∑n
i=1

∑N
p=0 |Gpi j | − maxp,i |Gpi j |

maxp,i |Gpi j | .

(67)

It is easy to show that MISI = 0 if and only if G(z) is
of the form (6).

We give two examples to demonstrate the behav-
ior and performance of the natural gradient algorithm
(42). In both examples the mixing models are the three
channel ARMA model

x(k) +
10∑

i=1

Ai x(k − i)

= B0s(k) +
10∑

i=1

Bi s(k − i) + v(k), (68)

where s ∈ R3 is the vector of source signals, x ∈ R3 is
the vector of sensor signals and v ∈ R3 is the vector of
noises. The matrices Ai and Bi are randomly chosen
such that the mixing system is stable. The nonlinear
activation function is chosen ϕ(y) = y3 + 0.01y.

Example 1. In this simulation, the sources s are cho-
sen to be i.i.d signals uniformly distributed in the
range (−1, 1), which are generated by computer, and v
are the Gaussian noises with zero mean and a covari-
ance matrix 0.1 I. We perform 100 trials to demonstrate
the natural gradient learning performance. In each trial,
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Figure 2. MISI performance of the natural gradient algorithm.

the mixing model is a 3 channel stable and minimum
phase ARMA model, which is randomly chosen by
computer. We employ both the natural gradient algo-
rithm and the Bussgang algorithm [20] to train the
demixing system. The simulation shows that the natu-
ral gradient learning algorithm can easily recover the
source signals in the sense of (6).

Figure 2 illustrates 100 trial ensemble average MISI

performance of the natural gradient learning algo-
rithm and the Bussgang algorithm. It is observed that
the natural gradient algorithm usually needs less than
2000 iterations to obtain satisfactory results, while the
Bussgang algorithm needs more than 20000 iterations
since there is a long plateau in the Bussgang learning.

Example 2. In this example, we give a computer sim-
ulation with a non-minimum phase mixing model, and
compare the natural gradient algorithm with the IIR
method in [23]. Assume that source signals are i.i.d
quadrature amplitude modulated (QAM). The noise
v(k) is Gaussian and zero mean with a covariance
matrix 0.1I. The mixing model is a 3 channel non-
minimum phase ARMA model, which is randomly
generated by computer. Figure 3 plots the coefficients
of transfer function H(z). Since the mixing system is
a non-minimum phase system, we cannot find a causal
filter to inverse the mixing system. Thus it is not appro-
priate to apply directly the natural gradient algorithm

to the demixing model. In order to surmount the diffi-
culty, we decompose the demixing filter in the follow-
ing form [36]

W(z) = L(z)R(z−1), (69)

where L(z) = ∑N
p=0 Lpz−p is a causal FIR filter and

R(z−1) = ∑N
p=0 Rpz p is an anti-causal FIR filter. We

can see that both L(z) and R(z−1) are one-sided FIR
filter. Refer to [36] for more details. Now, we apply the
natural gradient algorithm both to L(z) and R(z−1).

Figure 4 illustrates the coefficients of the global
transfer function G(z) = W(z) ∗ H(z) after 3000 itera-
tions. Figure 5 shows the output signal constellations
of the demixing system by using the natural gradient
algorithm (42) at three different time intervals: the first
row plots the output signals from iteration k = 1 to 200,
the second row plots those from k = 1001 to 1200 and
the third row plots those from k = 2001 to 2200, re-
spectively. Figure 6 shows the corresponding output
signal constellations of the demixing system by using
the IIR method in [23]. It is observed that the method
proposed in this paper has better performance than the
one in [23] both in convergence rate and stability. From
a large number of computer simulations, we also see
that the algorithm (42) has a wider convergent range
than the one in [23]. It is worth noting that the out-
put signals may converge to the characteristic QAM
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Figure 3. The transfer function H(z) of the mixing filter.

Figure 4. The global transfer function G(z) after convergence.
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Figure 5. The output signal constellations of the demixing system by the algorithm (42) to treat the nonminimum phase filter.

Figure 6. The output signal constellations of the demixing system by the algorithm in [23].

constellation, up to an amplitude and phase rotation
factors ambiguities.

9. Conclusion

In this paper we have investigated geometrical struc-
tures of the FIR manifold and developed an efficient

learning algorithm for blind deconvolution. The
demixing filter manifold is not in Euclidean but in
Riemannian space. In the Riemannian space, the steep-
est ascent direction is defined by the natural gradient,
which is related to the Riemannian metric. In this pa-
per, we deduce the Riemannian metric by using the
isometric property of the Lie group and develop a new
approach for deriving the natural gradient. Although
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the derivation is complicated, the expression of the
natural gradient is concise and easy to implement for
blind deconvolution. Computer simulations show that
the natural gradient algorithm has much better perfor-
mance of learning than the ordinary gradient algorithm.
It should be noted here that the natural gradient ap-
proach can also be used to treat the nonminimum phase
filter.

Appendix: Derivation of Cost Function

In order to derive the cost function for blind deconvo-
lution, we have to calculate the entropy H(y, W) of y.
Consider y as a stochastic process y(k), k = 1, 2, . . ..
The entropy is defined by [40]

H(y) = lim
L→∞

1

L
H(y(1), . . . , y(L)). (70)

Lemma 3. If s = {s(k)} is a stochastic process, and
s(1), s(2), . . . are i.i.d. random variables, then

H(s) = lim
L→∞

H(s(1), s(2), . . . , s(L))

L

= lim
L→∞

LH(s(1))

L
= H(s(1)). (71)

Lemma 4. If x is an n-dimensional vector of random
variables and A ∈ Rn×n is a nonsingular matrix,
then

H(Ax) = log |det(A)| + H(x). (72)

Now we consider the global transfer function in Lie
group sense,

y(k) = G(z)s(k) = [W(z)H(z)]N s(k), (73)

We consider n observations {xi (k)} and n output
signals {yi (k)} with length L.

S(L) =




s(1)

s(2)

...

s(L)


, Y(L) =




y(1)

y(2)

...

y(L)


, (74)

Since the asymptotic property of y do not depend
on the initial conditions of s(k), we set s(k) = 0, for

k = 0, −1, . . . ,−N +1. Under this condition, the vec-
tor Y(L) is a linear transformation of S(L),

Y(L) = WS(L), (75)

where W is given by

W =




G0 0 · · · 0 0

G1 G0 · · · 0 0
... G1

. . .
...

...

0 0
. . . G0 0

0 0 · · · G1 G0




. (76)

Here we presume that the delay length N of FIR filter
W(z) is much smaller than L. Hence we have

H(Y(L)) = (log |det(W)| + H(S(L))) . (77)

According to the lemma 3 and 4, we calculate the
entropy H(y)

H(y) = lim
L→∞

1

L
H(y(1), . . . , y(L))

= lim
L→∞

1

L
H(Y(L))

= lim
L→∞

1

L
(log |det(W)| + H(S(L)))

= log |det(G0)| + H(s(1))

= log |det(W0)| + (log |det(H0)| + H(s(1))) .

(78)

The last two terms can be removed from the cost func-
tion for blind deconvolution, because they do not de-
pend on the demixing filter W(z).

References

1. C. Jutten and J. Herault, “Blind Separation of Sources, Part I:
An Adaptive Algorithm Based on Neuromimetic Architecture,”
Signal Processing, vol. 24, 1991, pp. 1–10.

2. S. Haykin (Ed.), Blind Deconvolution, Englewood Cliffs, NJ:
Prentice-Hall, 1994.

3. T.W. Lee, A.J. Bell, and R. Lambert, “Blind Separation of De-
layed and Convolved Sources,” in Advances in Neural Informa-
tion Processing Systems, vol. 9, Cambridge, MA: MIT Press,
1996, pp. 758–764.

4. K. Torkkola, “Blind Separation of Convolved Sources Based on
Information Maximization,” in Proc. of the 1996 IEEE Work-
shop Neural Networks for Signal Processing (NNSP’96), vol. 6,



Geometrical Structures of FIR Manifold 43

S. Usui, Y. Tohkura, S. Katagiri, and E. Wilson (Eds.), New
York, NY: IEEE Press, 1996, pp. 423–432.

5. W. Kasprzak and A. Cichocki, “Hidden Image Separation
from Incomplete Image Mixtures by Independent Component
Analysis,” in Proc. of 13th Int. Conf. on Pattern Recognition
(ICPR’96), IEEE Computer Society Press, 1996, pp. 394–398.

6. D. Donoho, On Minimum Entropy Deconvolution, Applied
Times Series Analysis II, San Diego, CA: Academic Press, 1981.

7. S. Makeig, A.J. Bell, Tzyy-Ping Jung, and T.J. Sejnowski,
“Independent Component Analysis of Electroencephalographic
Data,” in Advances in Neural Information Processing Systems,
D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo (Eds.), vol. 8,
Cambridge, MA: The MIT Press, 1996, pp. 145–151.

8. R. Vigario, V. Jousmaki, M. Hamalainen, R. Hari, and E. Oja,
“Independent Component Analysis for Identification of Artifacts
in Magnetoencephalographic Recordings,” in Advances in Neu-
ral Information Processing System, vol. 10, 1997, pp. 229–235.

9. P. Comon, “Independent Component Analysis: A New Con-
cept?” Signal Processing, vol. 36, 1994, pp. 287–314.

10. A. Cichocki and R. Unbehauen, “Robust Neural Networks with
On-line Learning for Blind Identification and Blind Separation
of Sources,” IEEE Trans. Circuits and Systems I: Fundamentals
Theory and Applications, vol. 43, no. 11, 1996, pp. 894–906.

11. A. Cichocki, R. Unbehauen, and E. Rummert, “Robust Learning
Algorithm for Blind Separation of Signals,” Electronics Letters,
vol. 30, no. 17, 1994, pp. 1386–1387.

12. S. Amari, A. Cichocki, and H.H. Yang, “A New Learning Al-
gorithm for Blind Signal Separation,” in Advances in Neural
Information Processing Systems (NIPS’95), vol. 8, G. Tesauro,
D.S. Touretzky, and T.K. Leen (Eds.), Cambridge, MA: The MIT
Press, 1996, pp. 757–763.

13. J.-F. Cardoso and B. Laheld, “Equivariant Adaptive Source
Separation,” IEEE Trans. Signal Processing, vol. SP-43, 1996,
pp. 3017–3029.

14. A. Hyvärinen and E. Oja, “A Fast Fixed Point Algorithm for
Independent Component Analysis,” Neural Computation, vol. 9,
1997, pp. 1483–1492.

15. S. Amari, T. Chen, and A. Cichocki, “Stability Analysis of Adap-
tive Blind Source Separation,” Neural Networks, vol. 10, 1997,
pp. 1345–1351.

16. S. Amari and J.-F. Cardoso, “Blind Source Separation—
Semiparametric Statistical Approach,” IEEE Trans. Signal Pro-
cessing, vol. 45, 1997, pp. 2692–2700.

17. R.W. Lucky, “Techniques for Adaptive Equalization of Digi-
tal Communication Systems,” Bell Sys. Tech. J., vol. 45, 1966,
pp. 255–286.

18. Y. Sato, “Two Extensional Applications of the Zero-Forcing
Equalization Method,” IEEE Trans. Commun., vol. COM-23,
1975, pp. 684–687.

19. J.R. Treichler and B.G. Agee, “A New Approach to Multipath
Correction of Constant Modulus Signals,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-31, 1983, pp. 349–372.

20. S. Bellini, “Bussgang Techniques for Blind Deconvolution
and Equalization,” in S. Haykin (Ed.), Blind Deconvolution,
Englewood Cliffs, NJ: Prentice Hall, 1994, pp. 8–59,

21. O. Shalvi and E. Weinstein, “New Criteria for Blind Deconvolu-
tion of Nonminimum Phase Systems (Channels),” IEEE Trans.
Info. Theory, vol. 36, 1990, pp. 312–321.

22. J.A. Cadzow, “Blind Deconvolution vis Cumulant Extrema,”
IEEE Signal Processing Mag., vol. 13, 1996, pp. 24–42.

23. S. Amari, S. Douglas, A. Cichocki, and H. Yang, “Novel On-
line Algorithms for Blind Deconvolution using Natural Gradient
Approach,” in Proc. 11th IFAC Symposium on System Identifica-
tion, SYSID’97, Kitakyushu, Japan, July 8–11, 1997, pp. 1057–
1062.

24. A.J. Bell and T.J. Sejnowski, “An Information Maximization
Approach to Blind Separation and Blind Deconvolution,” Neural
Computation, vol. 7, 1995, pp. 1129–1159.

25. Y. Hua, “Fast Maximum Likelihood for Blind Identification of
Multiple FIR Channels,” IEEE Trans. Signal Processing, vol. 44,
1996, pp. 661–672.

26. K. Abed-Meraim, J.F. Cardoso, A. Gorokhov, P. Loubaton, and
E. Moulines, “On Subspace Methods for Blind Identification of
SIMO-FIR Systems,” IEEE Trans. on Signal Processing, vol. 45,
1997, pp. 42–56.

27. A. Gorokhov and P. Loubaton, “Blind Identification of MIMO-
FIR System: A Generalized Linear Prediction Approach,” Signal
Processing, vol. 73, 1999, pp. 105–124.

28. E. Moulines, P. Duhamel, J.F. Cardoso, and S. Mayrargue, “Sub-
space Methods for the Blind Identification of Multichannel FIR
Filters,” IEEE Trans. Signal Processing, vol. 43, 1995, pp. 516–
525.

29. L. Tong, G. Xu, and T. Kailath, “Blind Identification and
Equalization Base on Second-Order Statistics: A Time Domain
Approach,” IEEE Trans. Information Theory, vol. 40, 1994,
pp. 340–349.

30. J.K. Tugnait and B. Huang, “Multistep Linear Predictors-
Based Blind Identification and Equalization of Multiple-Input
Multiple-Output Channels,” IEEE Trans. on Signal Processing,
vol. 48, 2000, pp. 26–38.

31. Y. Hua and J.K. Tugnait, “Blind Identifiability of FIR-MIMO
Systems with Colored Input using Second Order Statistics,”
IEEE Signal Processing Letters, vol. 7, 2000, pp. 348–350.

32. L. Zhang and A. Cichocki, “Blind Separation of Filtered Source
using State-Space Approach,” in Advances in Neural Informa-
tion Processing Systems, vol. 11, M.S. Kearns, S.A. Solla, and
D.A. Cohn (Eds.), Cambridge, MA: MIT Press, 1999, pp. 648–
654.

33. H. Yang, S. Amari, and A. Cichocki, “Information-Theoretic
Approach to Blind Separation of Sources in Non-Linear Mix-
ture,” Signal Processing, vol. 64, no. 3, 1998, pp. 291–300.

34. S. Amari, “Natural Gradient Works Efficiently in Learning,”
Neural Computation, vol. 10, 1998, pp. 251–276.

35. L. Zhang, A. Cichocki, and S. Amari, “Natural Gradient Al-
gorithm for Blind Separaiton of Overdetermined Mixture with
Additive Noise,” IEEE Signal Processing Letters, vol. 6, no. 11,
1999, pp. 293–295.

36. L. Zhang, A. Cichocki, and S. Amari, “Multichannel Blind De-
convolution of Nonminimum Phase Systems using Informa-
tion Backpropagation,” in Proceedings of the Fifth International
Conference on Neural Information Processing (ICONIP’99),
Perth, Australia, Nov. 16–20, 1999, pp. 210–216.

37. J. Schott, Matrix Analysis for Statistics, New York: John Wiley
& Sons, 1991.

38. H. Yang, “Serial Undating Rule for Blind Separation Derived
from the Method of Scoring,” IEEE Trans. Signal Processing,
vol. 47, no. 8, 1999, pp. 2279–2295.

39. H. Yang and S. Amari, “Adaptive On-line Learning Algorithms
for Blind Separation: Maximum Entropy and Minimal Mutual
Information,” Neural Comput., vol. 9, 1997, pp. 1457–1482.



44 Zhang, Cichocki and Amari

40. T. Cover and J. Thomas, Elements of Inofrmation Theory, New
York: John Wiley & Sons, 1991.

Liqing Zhang received the B.S. degree in Mathematics from
Hangzhou University, China, in 1983 and Ph.D. degree in Computer
Science from Zhongshan University, China, in 1988. After gradua-
tion, he joined South China University of Technology, as a lecturer.
From 1990 to 1995, he served as Associate Professor and in 1995,
he was promoted to Full Professor in College of Electronic and In-
formation Engineering, South China University of Technology. He
is currently working in the RIKEN Brain Science Institute, Japan as
a Research Scientist.

His research interests include Learning Theory, Adaptive Systems,
Biologically-Inspired Neural Networks and Computational Neuro-
science. He is author or coauthor of more than 70 scientific papers
in journals and conference proceedings.

Andrzej Cichocki received the M.Sc. (with honors), Ph.D., and
Habilitate Doctorate (Dr.Sc.) degrees, all in electrical engineering,
from Warsaw University of Technology (Poland) in 1972, 1975, and
1982, respectively. Since 1972, he has been with the Institute of The-
ory of Electrical Engineering and Electrical Measurements at the

Warsaw University of Technology, where he became a full Professor
in 1991. He is the co-author of two books: MOS Switched-Capacitor
and Continuous-Time Integrated Circuits and Systems (Springer-
Verlag, 1989) and Neural Networks for Optimization and Signal
Processing (Teubner-Wiley,1993/94) and more than 150 research
papers. He spent at University Erlangen-Nuernberg (Germany) a
few years as Alexander Humboldt Research Fellow and Guest
Professor.

Since 1995 he has been working in the Brain Science Institute
RIKEN (Japan), as a team leader for laboratory for Open Informa-
tion Systems and currently as a head of laboratory for Advanced
Brain Signal Processing. His current research interests include neu-
ral networks, biomedical signal and image processing, especially
analysis and processing of multi-sensory EEG/MEG, PET, and array
of microphones data.

Shun-ichi Amari graduated from the University of Tokyo in 1958,
majoring in mathematical engineering. He is Professor-Emeritus at
the University of Tokyo and Vice Director of RIKEN Brain Science
Institute, Saitama, Japan. He has been engaged in research in wide
areas of mathematical engineering and applied mathematics, such
as topological network theory, differential geometry of continuum
mechanics, pattern recognition, mathematical foundations of neural
networks, and information geometry.

Dr. Amari served as President of the International Neural Net-
work Society, Council member of Bernoulli Society for Mathemat-
ical Statistics and Probability Theory, and Vice President of the In-
stitute of Electrical, Information and Communication Engineers. He
was founding Coeditor-in Chief of Neural Networks. He has received
the Japan Academy Award, IEEE Neural Networks Pioneer Award,
IEEE Emanuel R. Piore Award, Caianiello Memorial Award, Neu-
rocomputing best paper award, and IEEE Signal Processing Society
best award, among many others.


