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Abstract

This paper proposes a novel grouping decision approach for blind source estimation of FIR (finite impulse response)

channels with binary sources. First, solvability is discussed for single-input systems and multi-input systems. Necessary

and sufficient conditions for recoverability are derived. For single-input systems, a new deterministic algorithm based

on grouping and decision is proposed to recover the source up to a delay. The algorithm is easy to implement and has

several advantages. For instance, when the solvability conditions are satisfied, it can be applied to cases in which: (i) the

channel has zeros on the unit circle or outside of the unit circle; (ii) there are fewer sensors than sources; (iii) the source

is temporarily dependent. To improve noise tolerance and reduce computational cost, the algorithm is further

elaborated for highly noisy channels and high-order FIR channels, respectively. For the channels with high unimodal

noise, fewer peaks appear in the probability density function (pdf) of the outputs compared to the pdf of the outputs of

channels with a higher SNR. After the peaks representing cluster centers are estimated using a maximum likelihood

(ML) approach, the deterministic algorithm can be used. Similar to highly noisy channels, the algorithm is also effective

for high-order, exponentially decaying channels after fewer cluster centers are estimated. Furthermore, blind source

estimation for multi-input systems also can be carried out as with the case of single input systems. Two deflation

algorithms are presented for temporarily dependent sources and i.i.d. sources. Based on the source estimation and

deflation algorithms, the sources can be obtained one by one. Finally, the validity and performance of the algorithms

are illustrated by several simulation examples.
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1. Introduction

Binary signals play important roles in pattern
recognition, digital signal processing, and wire-
less communications, etc. When multiple binary
sources are transmitted in channels, the mix-
tures of them are often received by sensors. In
this paper we consider a dynamically mixing model
described as,

xðkÞ ¼
Xn

i¼1

XL

p¼0

ai;psiðk � pÞ þ vðkÞ; (1)

where sðkÞ ¼ ½s1ðkÞ; . . . ; snðkÞ�
T ðnX1Þ is a vector of

unknown sources with mutually independent
binary components. 8k; sjðkÞ takes one of the
two known discrete values fd1; d2g; typically f0; 1g
or f�1;þ1g ðj ¼ 1; . . . ; nÞ: xðkÞ ¼ ½x1ðkÞ; . . . ;
xmðkÞ�

T ðmX1Þ is an available sensor signal vector
(convolutive mixture), ai;p ¼ ½a1i;p; . . . ; ami;p�

T; i ¼

1; . . . ; n; p ¼ 0; . . . ;L are unknown coefficient
column vectors, v ¼ ½v1; . . . ; vm�

T is the additive
white Gaussian noise vector with mutually inde-
pendent components; each component vj has zero
mean and variance s2j :
The task of blind source estimation is to recover

sources s1; . . . ; sn up to an arbitrary delay, an
arbitrary permutation and a scale from the
observable convolutive mixture x:
Note that if n ¼ 1; then (1) is a single-input

system, otherwise, it is a multi-input system. For
convenience of analysis, we write the single-input
system as follows:

xðkÞ ¼
XL

p¼0

apsðk � pÞ þ vðkÞ; (2)

where ap ¼ ½a1;p; . . . ; am;p�
T; p ¼ 0; . . . ;L:

Model (1), including (2), is often encountered in
data communications. One typical example is
antenna array processing in which the source
signals are BPSK signals [2].
Generally, the problem of estimating the sources

in (1) is referred to blind deconvolution. Until
now, there have been many relevant references on
blind deconvolution (i.e., equalization) with finite
alphabet sources. In most of these papers, an
inverse filter system (equalizer) is used with its
output being the recovered sources. Through
optimization of different cost functions, generally
based on different order statistics (e.g., SOS and
HOS), many algorithms have been advanced for
designing the inverse filter systems e.g., [29,30,33].
For instance, the Decision Directed algorithm [17],
Sato algorithm [28], Bussgang algorithm, Godard
algorithm [9], constant modulus algorithm [32],
subspace algorithm [15], natural gradient algo-
rithm [35,36,38], eigenvector algorithm [13], and
almost all other existing algorithms are derived
under one or more of the following conditions:
1. There are no zeros on the unit circle for the

case of mixing dynamic systems; that is, the mixing
systems are assumed to be nonsingular systems. If
the algorithm is executed online, the mixing
systems should be minimum-phase systems.
2. For MIMO systems, the sensor number is

larger than the source number. The system’s
function matrix (frequency response) has a full
column rank for almost all z [31]. If the
convolutive mixing model is changed into an
instantaneous mixing model, the mixing matrix is
full column rank [6].
3. The sources are temporarily independent

(e.g., i.i.d. sequence), or are at least temporally
uncorrelated.
Recently, there have been several papers in

which the first and the third conditions are relaxed.
e.g., in [11], the authors discussed blind equaliza-
tion of FIR channels with colored signals, assum-
ing the sources are mutually uncorrelated and have
distinct power spectra. Under the condition of an
i.i.d. source, a generalized eigenvector algorithm is
presented for SISO systems that could deal with
the channel having several zeros on the unit circle
[13]. By introducing a kind of recursive filter
structure for blind deconvolution of SISO systems,
the channel having several zeros close to the unit
circle also can be dealt with in [14]. In [7], a
geometric method has been presented for blind
channel identification of SISO FIR system with
binary source. This method has a drawback that
cannot directly apply to MIMO systems. After the
channel is identified, if the inverse filtering
approach is used to estimate the source, the
Condition 1 above should be satisfied.
Instantaneous blind separation of digital

sources also has received attention recently.
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Related works include iterative algorithm [20], ML
approach [1,3,4,12] matrix factorization [2,34],
deterministic approach [8], algebraic approach
[16], the geometrical approach [19,24], etc. Com-
putation complexity is a main problem for many
existing deterministic methods, while global con-
vergence is a main problem for iterative methods.
Based on geometric algebra properties, many
algorithms have been developed for instantaneous
blind source separation [10,18,23,25–27]. These
algorithms can be used for quite wide classes of
sources and models, e.g., finite alphabet sources,
speech sources etc., linear instantaneous mixtures
and even nonlinear instantaneous mixtures, in
which noise is also considered. For most of these
algorithms, an important procedure is to recon-
struct the mixing matrix, and then estimate the
sources by use of the inverse matrix of the
reconstructed matrix. Thus it is often assumed
that the number of sources is equal to that of
sensors.
The present paper discusses blind source estima-

tion for single input systems and multi-input
systems with binary sources. We develop a new
grouping decision algorithm that addresses some
of the aforementioned limitations of previous
approaches. Using this approach, rather than an
approach based on inverse filtering, blind source
estimation can be carried out without imposing the
three conditions stated above. Two sets of
necessary and sufficient conditions with regard to
solvability are proposed for blind source estima-
tion for multi-input systems, and for single input
systems which can be seen as a special case of
multi-input systems. The solvability conditions can
also be easily extended for the case of finite
alphabet sources. A deterministic grouping deci-
sion algorithm is then presented for blind source
estimation of a single input system in which low or
no noise is present. This algorithm can also be
implemented online to estimate the sources, even
though the channel has zeros on the unit circle or
outside the circle. However, our new approach has
two drawbacks: (1) it cannot be used in cases in
which high noise is present; (2) the computational
burden increases exponentially as channel length
increases. To overcome these drawbacks, the
algorithm is extended to deal successfully with
these two scenarios. Finally, a sequential blind
extraction approach is proposed for multi-input
dynamical systems. The extraction step can be
carried out as in single input systems. Two
deflation algorithms are presented for temporarily
dependent sources and i.i.d. sources. Based on the
source estimation and deflation algorithms, the
sources can be obtained one by one.
Compared with the geometric method in [7], the

approach in the present paper has better noise
tolerance and less computation burden, and is
suitable for MIMO systems. Since it is not
necessary to identify the whole channel for
estimating the sources, the strict channel identifia-
bility conditions proposed in [7] are not necessary
for our approach.
The remainder of this paper is organized as

follows. The solvability analysis is presented in
Section 2. Blind source estimation for single input
systems follows in Section 3. Sequential blind
extraction for multi-input dynamical systems is
discussed in Section 4. Simulation results are
presented in Section 5. The concluding remarks
in Section 6 review the advantages of the proposed
approach and state the remaining tasks to be
studied.
2. Solvability analysis

This section analyzes solvability for blind
estimation of binary sources. Two sets of necessary
and sufficient conditions are derived first for
single-input systems, then for multi-inputs.
We consider the following noise-free models

corresponding to (1) and (2), respectively.

xðkÞ ¼
Xn

i¼1

XL

p¼0

ai;psiðk � pÞ; (3)

xðkÞ ¼
XL

p¼0

apsðk � pÞ: (4)

First, we introduce two definitions.

Definition 1. 1. Model (3) is said to be well-posed,
if and only if there exists a set of delays p1; . . . ; pn 2

f0; . . . ;Lg; such that,
Pn

i¼1

PL
p¼0 ai;psiðk � pÞ ¼
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Pn
i¼1

PL
p¼0 ai;ps0iðk � pÞ implies that ½s1ðk �

p1Þ; . . . ; snðk � pnÞ�
T ¼ ½s01ðk � p1Þ; . . . ; s

0
nðk � pnÞ�

T;
where s; s0 are two binary source vectors,
k ¼ 1; 2; . . . :
2. Model (3) is said to be partially well-posed

for sources si1 ; . . . ; siq
; i1; . . . ; iq 2 f1; . . . ; ng; if

and only if there exist a set of delays pi1
; . . . ; piq

2

f0; . . . ;Lg; such that
Pn

i¼1

PL
p¼0 ai;psiðk � pÞ ¼Pn

i¼1

PL
p¼0ai;ps0iðk � pÞ implies that ½si1ðk � pi1

Þ

; . . . ; siq
ðk � piq

Þ�T ¼ ½s0i1ðk � pi1
Þ; . . . ; s0iq

ðk � piq
Þ�T

where k ¼ 1; 2; . . . .

Definition 2. Model (4) is said to be well-posed, if
and only if there exists a delay p1 2 f0; . . . ;Lg; such
that

PL
p¼0 apsðk � pÞ ¼

PL
p¼0 aps0ðk � pÞ implies

thatsðk � p1Þ ¼ s0ðk � p1Þ; where s; s0 are two bin-
ary sources, k ¼ 1; 2; . . . .

Theorem 1. 1. Model (3) is well-posed, if and only if

there exist p1; . . . ; pn 2 f0; . . . ;Lg; such that

c1p1a1;p1 þ 
 
 
 þ cnpn
an;pn

þ
XL

j1ap1;j1¼0

c1j1a1;j1 þ 
 
 


þ
XL

jnapn;jn¼0

cnjn
an;jn

a0; ð5Þ

for all constants cij 2 f�1; 0; 1g; i ¼ 1; . . . ; n; j ¼

0; . . . ;L; specifically, fc1p1 ; . . . ; cnpn
g has at least a

nonzero entry.

2. Model (4) is well-posed, if and only if there

exists a q 2 f0; . . . ;Lg; such that

aq þ
XL

iaq;i¼0

ciaia0; (6)

where the constants ci 2 f�1; 0; 1g; i ¼ 0; . . . ; q �

1; q þ 1; . . . ;L:

Proof. 1. Sufficiency: Under the condition of (5),
suppose that model (3) is not well-posed; that is,
there are two sources sðkÞ; . . . ; sðk � LÞ;
s0ðkÞ; . . . ; s0ðk � LÞ with ½s1ðp1Þ; . . . ; snðpnÞ�

Ta
½s01ðp1Þ; . . . ; s

0
nðpnÞ�

T; such that

xðkÞ ¼ x0ðkÞ; (7)

where xðkÞ; x0ðkÞ are calculated from (3) based on
s; s0; respectively.
Then

xðkÞ � x0ðkÞ ¼ a1;0½s1ðkÞ � s01ðkÞ� þ 
 
 


þ a1;L½s1ðk � LÞ � s01ðk � LÞ� þ 
 
 


þ an;0½snðkÞ � s0nðkÞ� þ 
 
 


þ an;L½snðk � LÞ � s0nðk � LÞ�: ð8Þ

Set cij ¼
siðk�jÞ�s0iðk�jÞ

d2�d1
; then cij 2 f1; 0;�1g; i ¼

1; . . . ; n; j ¼ 0; . . . ;L; and fc1;p1 ; . . . ; cn;pn
g has at

least a nonzero entry.
By condition (5), we have

1

d2 � d1
ðxðkÞ � x0ðkÞÞ ¼ c1p1a1;p1 þ 
 
 
 þ cnpn

a1;pn

þ
XL

j1ap1;j1¼0

c1j1a1;j1 þ 
 
 


þ
XL

jnapn;jn¼0

cnjn
an;jn

a0: ð9Þ

This is in contradiction with (7).
Thus the system is well posed. Sufficiency is

proved.
Necessity: If model (3) is well-posed, then there

exists a set of delays p1; . . . ; pn 2 f0; . . . ;Lg; such
that xðkÞ ¼ x0ðkÞ implies ½s1ðk � p1Þ; . . . ; snðk �

pnÞ�
T ¼ ½s01ðk � p1Þ; . . . ; s

0
nðk � pnÞ�

T:
Suppose that condition (5) is not satisfied; that

is, there exists a set of coefficients cij 2 f1; 0;�1g;
i ¼ 1; . . . ; n; j ¼ 0; . . . ;L; and fc1;p1 ; . . . ; cn;pn

g has
at least one nonzero entry, such that

c1p1a1;p1 þ 
 
 
 þ cnpn
a1;pn

þ
XL

j1ap1;j1¼0

c1j1a1;j1 þ 
 
 


þ
XL

jnapn;jn¼0

cnjn
an;jn

¼ 0:

Select di;j ; d 0
i;j 2 fd2; d1g such that di;j � d 0

i;j ¼

ci;jðd2 � d1Þ; i ¼ 1; . . . ; n; j ¼ 0; . . . ;L:
Define two sources as siðk � jÞ ¼ di;j ; s0iðk � jÞ ¼

d 0
i;j ; i ¼ 1; . . . ; n; j ¼ 0; . . . ;L: Since fc1;p1 ; . . . ; cn;pn

g

has at least one nonzero entry, ½s1ðk �

p1Þ; . . . ; snðk � pnÞ�
Ta½s01ðk � p1Þ; . . . ; s

0
nðk � pnÞ�

T:



ARTICLE IN PRESS

Y. Li et al. / Signal Processing 84 (2004) 2245–2263 2249
However,

xðkÞ � x0ðkÞ ¼ a1;0½s1ðkÞ � s01ðkÞ� þ 
 
 


þ a1;L½s1ðk � LÞ � s01ðk � LÞ� þ 
 
 


þ an;0½snðkÞ � s0nðkÞ� þ 
 
 


þ an;L½snðk � LÞ � s0nðk � LÞ�

¼ ðd2 � d1Þ
Xn

i¼1

XL

j¼0

cijaiðjÞ

¼ 0: ð10Þ

Since (3) is well posed, we have ½s1ðk �

p1Þ; . . . ; snðk � pnÞ�
T ¼ ½s01ðk � p1Þ; . . . ; s

0
nðk � pnÞ�

T:
A contradiction has occurred. This implies that
condition (5) holds. Necessity is proved.
2. The proof of part 2 is similar to that of part 1

and is omitted. &

Theorem 1 can be extended to the cases in
which: (1) The model (3) is partially well-posed for
sources si1 ; . . . ; siq

; i1; . . . ; iq 2 f1; . . . ; ng; (2) The
source is a finite alphabet.
We have the following theorem.

Theorem 2. System (3) is partially well-posed for

fsi1 ; . . . ; siq
g; if and only if there exists ki1 ; . . . ; kiq

2

f0; . . . ;Lg; such that
Pn

i¼1

PL
j¼0 cijai;ja0; where

constants cij 2 f�1; 0; 1g; i ¼ 1; . . . ; n; j ¼ 0; . . . ;L;
specifically, fci1ki1

; . . . ; ciqkiq
g has at least one non-

zero entry.

The proof is similar to that of Theorem 1. &

Remarks. (1) By Theorem 1, it is possible to
separate all sources, even if the number of sensors
is less than the number of sources. (2) In the ill-
conditioned case, in which condition (5) in
Theorem 1 is not satisfied (i.e., there exist several
inseparable sources in the mixtures), it is still
possible to extract those separable sources accord-
ing to Theorem 2.
Suppose that the sources take only finite

alphabet values, say D ¼ fd1; . . . ; dJg; where
d1; . . . ; dJ are different real numbers. Denote the
set D1 ¼ fdi � djjdi; dj 2 Dg: It can be proved that
Theorem 1 is extendable for the case of finite
alphabet sources, except that the coefficients cij ;
ci 2 D1 in (5) and (6), respectively.
3. Blind deconvolution algorithm for single-input

dynamical systems

Suppose that the solvability condition (6) in
Theorem 1 is satisfied throughout this section.
First, we consider the low-noise case when the
length L of the mixing channel is not large, say
Lp10: A deterministic grouping decision ap-
proach is proposed for blind source estimation of
single input systems. The algorithm is then
extended for dealing effectively with the high-
noise case. Although the computational burden
of the deterministic algorithm increases exponen-
tially with respect to the channel length, its
variant still works for the case in which the
channel is long.
3.1. Low noise or noise free case

Since the source is binary, there are at most
2ðLþ1Þ different output vectors of the noise free
model (4), denoted as a set X0 ¼ fx1; . . . ;xNg;
where Np2ðLþ1Þ:
Set

d ¼ minfkxi � xjk2; i; j ¼ 1; . . . ;N; iajg: (11)

The parameter d is an important factor in
analyzing noise tolerance for binary source esti-
mation. A larger d parameter implies greater noise
tolerance.
First, we present an assumption regarding low

noise.
Assumption 1. The noise vector in (2) satisfies the
following condition:

kvðkÞk2o
d

4
: (12)

Obviously, under condition (12), there are N

different clusters with a radius less than d
4
formed

by the outputs of (2). Denote these clusters as N

vectors fx1; . . . ; xNg; these are the outputs of the
noise-free model (4), which are the center vectors
of the clusters. For convenience, rewrite these
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vectors as a matrix,

X ¼

x11 x12 
 
 
 x1N

x21 x22 
 
 
 x2N

..

. ..
. . .

. ..
.

xm1 xm2 
 
 
 xmN

2
66664

3
77775
: (13)

Remarks 2. (1) In this subsection, two mixture
vectors xðp1Þ and xðp2Þ are said to be in the same
cluster iff

kxðp1Þ � xðp2Þk2o
d

2
: (14)

(2) One cluster center of fxi; i ¼ 1; . . . ;Ng can
be obtained by averaging all observable mixture
vectors xðpÞ belonging to the corresponding
cluster.

The following assumption is necessary for the
grouping decision algorithm to be presented
shortly.

Assumption 2. For Model (2), there exists a
column vector aðqÞ; which satisfies (6) and the
following inequalities:

aqa
1

2

XL

paq;p¼0

cpap; (15)

for all c0; . . . ; cq�1; cqþ1; . . . ; cL 2 f1; 0;�1g:
Noting that the inequality conditions in Theo-

rems 1, 2 and Assumption 2 are similar and easy to
satisfy if the channel parameters are taken
randomly. Thus we think these conditions are
realistic.
Now we present the grouping decision algo-

rithm. The first step is to estimate a coefficient
column vector in (2). If the column vector satisfies
condition (6), then all clusters can be divided into
two groups by using the vector. When we obtain
an output, we can obtain the corresponding source
up to a delay by identifying to which group the
output belongs.

Step 1. (Estimation) Choose a row of the matrix
X in (13) with at least two nonzero components
assumed to be the first row, and then determine the
largest and the second largest components as-
sumed to be x11 and x12: Set

�a1 ¼
1

d2 � d1
½x1 � x2�:

It is not difficult to prove that �a1 is one of the
coefficient columns of (2), up to a sign (see
Appendix A).

Step 2. For the estimated �a1; we have the
following proposition (see Appendix B).

Proposition 1. If �a1 satisfies the solvability condi-

tion (6) and condition (15), then for any cluster

center xi; there exists exactly one cluster center xj

that satisfies one of the following two inequalities

kxi � xj � ðd2 � d1Þ�a1k2o�0; ð16Þ

kxj � xi � ðd2 � d1Þ�a1k2o�0; ð17Þ

where �0 is a sufficiently small positive constant

chosen in advance.
If for any cluster center xi; there exists exactly

one cluster center xj that satisfies one of (16) and

(17) then go to Step 3. Otherwise, it means that �a1
does not satisfy (6) or (15), go to Step 5;

Step 3. (Matching and Grouping) Match the
columns of X in a pairwise manner. That is, if
kxi � xj � ðd2 � d1Þ�a1ko�0; then ðxi; xjÞ is defined
as a pair. There exist N

2
pairs according to Criterion

1 denoted as ðxi1 ;xi2 Þ; . . . ; ðxiðN�1Þ
;xiN

Þ:
According to the pairs above, divide fxig into

two groups denoted as,

X11 ¼ fxi1 ;xi3 ; . . . ;xiðN�1Þ
g;

X12 ¼ fxi2 ;xi4 ; . . . ;xiN g:

Step 4. (Deconvolution) For an output xðkÞ of
(2), determine its closest cluster center. If the
cluster center belongs to X11; then set the estima-
tion value of the source as �sðkÞ ¼ d2; otherwise, set
�sðkÞ ¼ d1: Thus we obtain the source up to a delay
and an exchange of d1 and d2 (see Appendix C);

Step 5. When �a1 does not satisfy Criterion 1, we
match the columns of X in a pairwise manner, as in
Step 3. All obtained pairs are denoted as
ðxi1 ;xi2 Þ; . . . ; ðxið2J�1Þ

;xi2J
Þ; where 2JpN: Further-

more, we can obtain two groups denoted as �X
11

and �X
12
: Based on �X

11
and the method in Step 1,

we estimate another column vector denoted as �a2:
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If �a2 ¼ ��a1; continue to match the entries of �X
11

using �a2: Repeat the process above to estimate a
new column vector in (4), until a column vector
different from ��a1 is obtained.
If �a2a� �a1; go to Step 2. End.
Next, we present an illustrative example to illus-

trate explicitly the procedure of the above algorithm.

Example 1. Consider the following noise-free
SISO model,

xðkÞ ¼ ½0:1; 0:15; 0:1�½sðkÞ; sðk � 1Þ; sðk � 2Þ�T;

(18)

where the source s is valued in 2 f�1;þ1g:
When the number of samples is sufficiently large

such that fsðkÞg; fsðk � 1Þg and fsðk � 2Þg all cover
f�1;þ1g; we can obtain six cluster centers (in fact,
each cluster has only one point here):
½�0:35;�0:15;�0:05; 0:05; 0:15; 0:35�:
Using the largest and second largest centers, a

coefficient can be estimated: �a1 ¼ 1
2
½0:35� 0:15� ¼

0:1: And ðd2 � d1Þ �a1 ¼ 0:2:
For the center 0.15, there are two centers 0.35

and �0:05 satisfies (16), thus �a1 does not satisfies
condition (6).
Using �a1; we obtain two pairs ð0:35; 0:15Þ;

ð0:05;�0:15Þ: Thus we obtain two groups
f0:35; 0:05g; f0:15;�0:15g:
Using the first group, another coefficient can be

estimated as �a2 ¼ 0:15: And ðd2 � d1Þ �a2 ¼ 0:3: It is
not difficult to see that �a2 ¼ 0:15 satisfies Criterion
1. Thus the solvability condition is satisfied (6).
Using �a2; we can obtain three pairs

ð0:35; 0:05Þ; ð0:15;�0:15Þ; ð�0:05;�0:35Þ; and two
groups X 11 ¼ f0:35; 0:15;�0:05g; X 12 ¼ f0:05;
�0:15;�0:35g:
For the given mixture xðkÞ; if xðkÞ 2 X 11; then

set �sðkÞ ¼ 1; otherwise, set �sðkÞ ¼ �1:
In fact, it can be seen that �sðkÞ ¼ sðk � 1Þ:

Remarks 3. (1) Note that two zeros of system (18)
are on the unit circle. Standard blind deconvolu-
tion algorithms based on a general inverse filtering
approach do not work for this case. (2) From the
examples in this paper, we see that only one sensor
(observation) is often sufficient for blind source
estimation of binary sources. If there exist more
than one sensors, and one row of the mixing
matrix satisfies the solvability condition given in
Theorem 1, then we can choose that sensor for
blind source estimation to reduce the computa-
tional burden. However, it is useful to increase the
sensor number. One benefit is that the system more
easily satisfies the solvability condition given in
Theorem 1; another is to improve robustness with
respect to noise.
There exist two limitations of the deterministic

algorithm: the first is that the noise level should be
low such that all cluster centers representing
different outputs of noise-free model (4) are
discriminated easily; the second is that the compu-
tational burden increases exponentially with re-
spect to the tap number of channel. Thus, if the tap
number is not too large, e.g., Lp10; the algorithm
will execute quickly. In fact, as can be seen in
Example 2, the algorithm is also effective for long
sparse FIR channel (e.g., the number of nonzero
coefficients of the FIR channel is less than 10). The
tasks in the next two subsections are to extend the
algorithm to the high-noise and long-channel cases.

3.2. High noise case

It is not difficult to find that if the cluster centers
can be estimated correctly in advance, then the
proposed deterministic algorithm still works effec-
tively. Thus the source estimation strategy for the
high-noise case is divided into two steps. The first
step is to estimate the cluster centers; the second is
to carry out the source estimation, as in Section
3.1. The main task of this subsection is to propose
a method for estimating the cluster centers.
Under assumption of Gaussian noise, the pdf of

the output can be modelled as,

pðx1; . . . ;xm; �x1; . . . ; �xNÞ

¼
XN

i¼1

pi

Ym

j¼1

1ffiffiffiffiffiffi
2p

p
sj

e
�
ðxj� �xjiÞ

2

2s2
j ; ð19Þ

where f �xi ¼ ½ �x1i; . . . ; �xmi�
T; i ¼ 1; . . . ;Ng are N

different outputs of the high-noise model (4), pi

is the probability Pð �xiÞ:
From (19), we can see that the pdf of the output

of (2) has a local maximum in the cluster centers,
as illustrated in the first subplot of Fig. 3 for a one-
dimensional mixture.
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The cluster centers f �xi; i ¼ 1; . . . ;Ng can be
estimated by solving the optimization problem

max
�x1;...; �xN

pðx1; . . . ; xm; �x1; . . . ; �xN Þ: (20)

In this paper, a gradient ascent algorithm is used
for solving (20). To estimate all cluster centers
precisely and improve convergence performance,
preprocessing of the data set of outputs is
performed. That is, based on the estimated den-
sity function pðx1; . . . ;xm; �x1; . . . ; �xN Þ; N clusters
formed by the outputs of (2) are estimated
coarsely, then the geometric centers of all clusters
are calculated as the initial values of the gradient
ascent algorithm.
Now we present the algorithm steps for estimat-

ing the cluster centers.
Step 1. Estimate the pdf pðx1; . . . ;xm; �x1; . . . ; �xNÞ

of the output x:
Suppose that there are N0 sample points of x

denoted as a set X; where N0 is sufficiently large,
and that the minimum and maximum of xi are
assumed to be ui; zi respectively, i ¼ 1; . . . ;m:
Thus X � W ¼ ½u1; z1� � 
 
 
 � ½um; zm�: Each inter-
val ½uj ; zj� is then divided equally into M sub-
intervals: I ji ¼ ½uj þ ði � 1Þdj ; uj þ idjÞ; i ¼ 1; . . . ;
M � 1; and I jM ¼ ½uj þ ðM � 1Þdj ; zj�; where dj ¼
zj�uj

M
; and M is a sufficiently large positive integer.

Denote wði1; . . . ; imÞ ¼ I1i1 � 
 
 
 � I1im
; i1; . . . ; im ¼

1; . . . ;M:
By estimating the number of sample points in

each interval wði1; . . . ; imÞ denoted as nði1; . . . ; imÞ;
the probability for x belonging to the interval
can be obtained; that is, p0ði1; . . . ; imÞ ¼

nði1;...;imÞ

N0
;

i1; . . . ; im ¼ 1; . . . ;M :
The pdf is smoothed by the following filter

which is often used for smoothing a function in
mathematics,

pði1; . . . ; imÞ ¼
1
16
½p0ði1; . . . ; ik � 2; . . . ; imÞ

þ 4p0ði1; . . . ; ik � 1; . . . ; imÞ

þ p0ði1; . . . ; ik; . . . ; imÞ

þ 4p0ði1; . . . ; ik þ 1; . . . ; imÞ

þ p0ði1; . . . ; ik þ 2; . . . ; imÞ�;

k ¼ 1; . . . ;m: ð21Þ

Several iterations of smoothing may be neces-
sary sometimes. As our experience in the simula-
tions, if the function p0 is smoothed for three times,
it will become very smooth.
The first subplot in Fig. 3 (see Example 4) shows

the pdf of the real part of the convolutive mixture
of a 4� QAM source.
We also can use other algorithms, e.g. the

estimation algorithms based on the kernel and the
spline functions [21,22], for estimating the prob-
ability density function.

Step 2. Choose a positive constant a0 (according
to the level of noise), remove all intervals in which
pðx1; . . . ;xm; �x1; . . . ; �xNÞoa0 from W. Then N

disjointed sub-intervals denoted as C1; . . . ;CN

remain. All samples located in these sub-intervals
form N clusters. Noting that we should choose the
constant a0 such that the number ðNÞ of sub-
intervals is equal to the number of peaks of the pdf
pðx1; . . . ;xm; �x1; . . . ; �xNÞ:

Step 3. Calculate the geometric centers of
C1; . . . ;CN1

denoted as �x1ð0Þ; . . . ; �xNð0Þ; which
are used as the initial values for the gradient
ascent algorithm. Next, start the online iteration
ði ¼ 1; . . . ;NÞ:

�x1iðk þ 1Þ ¼ �x1iðkÞ þ ZiðkÞ

�
@pðx1ðkÞ; . . . ;xmðkÞ; �x1; . . . ; �xNÞ

@ �x1i

¼ �x1iðkÞ þ
ZiðkÞpiðx1ðkÞ � �x1iðkÞÞ

s2i

�
Ym

l¼1

1ffiffiffiffiffiffi
2p

p
sl

e
�
ðxl ðkÞ� �xliðkÞÞ

2

2s2
l ;

..

.

�xmiðk þ 1Þ ¼ �xmiðkÞ þ ZiðkÞ

�
@pðx1ðkÞ; . . . ;xmðkÞ; �x1; . . . ; �xNÞ

@ �xmi

¼ �xmiðkÞ þ
ZiðkÞpiðxmðkÞ � �xmiðkÞÞ

s2i

�
Ym

l¼1

1ffiffiffiffiffiffi
2p

p
sl

e
�
ðxl ðkÞ� �xliðkÞÞ

2

2s2
l ; ð22Þ

where ZiðkÞ is a step-size of the kth iteration,
xðkÞ ¼ ½x1ðkÞ; . . . ;xmðkÞ�

T 2 Ci; that is, we only use
the outputs of (2) in Ci for the iteration of �xi:
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The second subplot in Fig. 3 presents the
iteration results in which eight centers are obtained
corresponding to peaks of the first subplot.
After the cluster centers are estimated, we can

use the deterministic algorithm in Section 3.1 for
blind estimation of the binary source.

Remarks 4. (1) In (22), the unknown noise
variance s2j can be set arbitrarily before starting
the iteration. The bad estimate of s2j can be
counteracted by choosing the step size parameters.
We also can estimate that variance using the
covariance matrix of the outputs (2), and then
start the iteration. (2) If there exist N different
cluster clusters, then one cluster center represents
an output of the corresponding noise-free model
(4), and all different outputs of the noise-free
model can be estimated. (3) However, as the noise
level increases, several peaks of the pdf of (19) may
merge into one, and only partial cluster centers can
be estimated. In this case, the algorithm is still
effective, which is illustrated by Example 4.
3.3. Long-channel case

Since the number of different outputs of system
(4) will increase exponentially with respect to the
channel length, and since all different outputs need
to be classified into two groups in the algorithm,
the computational burden of the deterministic
grouping decision algorithm will increase expo-
nentially with the length of the channels.
In many practical applications, (e.g., commu-

nications), long channels are often encountered.
Now we extend the algorithm for dealing with a
class of long channels that have a decaying
characteristic. In this subsection, a SISO system
is considered. A SIMO system can be discussed
similarly.
First, we have an assumption for the channel.

Assumption 3. For the FIR channel ½a0; . . . ; aL�;
suppose there exists a k0; 0pk05L; such that: (1)PL

p¼k0þ1
japjominfja0j; . . . ; jak0 jg; (2)

PL
p¼k0þ1

japj

ominfjai � ajj; i; j ¼ 0; . . . ; k0; iajg:
For instance, the exponentially decaying chan-

nel faj ¼ abj
g; satisfies the assumption above if

jbjo1
2
; where a; b are constants.
In fact, as in the high-noise case, we need not
know exactly all the different outputs of (4). Under
the conditions of Assumption 3 and sufficiently
low noise, the outputs of (2) will form 2ðk0þ1Þ

clusters apparently. It suffices to classify these
clusters into two groups, and the computational
burden is only related to the 2ðk0þ1Þ clusters. Since
k05L; the computational burden does not in-
crease exponentially with the length of the
channels.
In the following, we present the corresponding

algorithm, of which the key point is also to
estimate the centers of the clusters.

Step 1. Estimate the pdf pðxÞ of the output x as
in Section 3.2, where the definition domain of pdf
is denoted as W ¼ ½u; z�:
The first subplot in Fig. 4 (see Example 5) shows

the pdf of the real part of the convolutive mixture
of a QAM � 4 source.

Step 2. Choose a positive constant a0 (accord-
ing to the level of noise), remove all intervals in
which pðxÞoa0 from W. Then N1 disjointed sub-
intervals denoted as C1; . . . ;CN1

remain. All
samples located in these sub-intervals form N1

clusters.
Step 3. Let the initial values be the geometric

centers of C1; . . . ;CN1
; calculate the cluster centers

using a similar gradient ascent algorithm as
described in (22).
The second subplot in Fig. 4 presents the

iteration results in which eight centers are obtained
corresponding to peaks of the first subplot.
After the cluster centers are estimated, we can

use the deterministic grouping decision algorithm
in Section 3.1 for blind estimation of the binary
sources. That is, these estimated centers are
classified into two groups according to (16) and
(17) first. Note that �0 in (16) and (17) is much
larger than that in the short-channel case. Decon-
volution is then carried out according to which
group a mixture belongs.

Remark 5. In fact, even though the noise level is
high and the channel taps number is large, the
grouping decision algorithm can be used if a better
clustering algorithm is used. Recently, many
efficient algorithms for clustering have been
developed (e.g., [37]).
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4. Sequential blind extraction for multi-input

dynamic systems

In this section, we assume that the solvability
conditions imposed on multi-input systems in
Theorem 1 are satisfied.
For the noise-free model (3), it is not difficult to

find that there are at most 2nðLþ1Þ different outputs.
For the noisy model (1) with low additive noise,
there exist at most 2nðLþ1Þ different clusters. Based
on these outputs of the noise-free model or the
clusters of the low-noise model, the deterministic
algorithm in Section 3.1 can be used directly to
extract one of the sources up to a delay and an
exchange of d2 and d1: The algorithms for the
high-noise case and long-channel case in Section 3
are also suitable for single-step extraction and
source estimation for the multi-input systems.
Thus we omitted the theoretical analysis of
single-step extraction and source estimation for
multi-input systems and only present the sequen-
tial blind extraction algorithm, especially the
deflation algorithm. We will propose two different
deflation algorithms for temporarily dependent
sources and i.i.d. sources.
4.1. Sequential extraction for temporarily

dependent sources

Suppose that a channel parameter vector �ai and
a source �si are obtained in the ith single-step
extraction using the grouping decision algorithm
in Section 3. For estimating the next channel
parameter, set

�xðiþ1Þ ¼ �xðiÞ � �ai �si; (23)

where �xð0Þ ¼ x:
Based on the new mixture �xðiþ1Þ; another

channel parameter �aiþ1 can be estimated, as in
Section 3.1. To avoid the error of the previous
extraction entering into the next extraction, we
always use the original mixture x for the ði þ 1Þth
extraction and obtain another source �siþ1:
Even though it is possible that �siþ1 is the same as

one of �s1; . . . ; �si up to a delay, we can obtain all
sources by repeating the process above at most
ðn � 1ÞL þ 1:
With the sequential blind extraction presented
above, all extractions are based on the original
mixture, and there is no deflation process. Thus, it
is unnecessary for all sources to be temporarily
independent (or temporally uncorrelated).

4.2. Sequential extraction for i.i.d. sources

For model (1), if the sources s1; . . . ; sn are an
independent i.i.d. stochastic sequence with zero
mean, the general deflation algorithm can be used
in sequential extraction.
Suppose that a source �s1 has been obtained

using the algorithm proposed in Section 3. We use
the following model to deflate the source from the
mixtures x1; . . . ;xm

x
ð1Þ
1 ðkÞ ¼ x1ðkÞ �

XM

p¼�M

�a1;p �s1ðk � pÞ;

..

.

xð1Þ
m ðkÞ ¼ xmðkÞ �

XM

p¼�M

�am;p �s1ðk � pÞ; ð24Þ

where M is a sufficiently large positive integer
which can be set by the practical problem to be
dealt with �ai;j ; i ¼ 1; . . . ;m; j ¼ �M ; . . . ;M are
parameters to be determined.
Set

Ji ¼
XM

p¼�M

jCum2;2ðx
ð1Þ
i ðkÞ; �s1ðk � pÞÞj;

i ¼ 1; . . . ;m; ð25Þ

where the cumulant Cum2;2ðx
ð1Þ
i ðkÞ; �s1ðk � pÞÞ ¼

Ef½x
ð1Þ
i ðkÞ�2½�s1ðk � pÞ�2g �E½x

ð1Þ
i ðkÞ�2E½�s1ðk � pÞ�2 in

view that s1; . . . ; sn have zero means. The defla-
tion problem will be converted into the follow-
ing m simultaneous (i.e., parallel) optimization
problems

min
�ai;�M ;...; �ai;M

Ji; ði ¼ 1; . . . ;mÞ: (26)

Solving the optimization problems above, we
can obtain the parameters �ai;p in Eq. (24) and carry
out the deflation.

Theorem 3. (1) If Ji ¼ 0; i ¼ 1; . . . ;m; then the new

mixtures x
ð1Þ
1 ; . . . ; xð1Þ

m do not contain the source �s1:
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(2) For every one of the optimization problems in

(26), there exists a unique stable local minimum

which is a global minimum.

Proof. 1. Without loss of generality, suppose that
�s1 is the source s1 up to a delay l0; that is, �s1ðkÞ ¼
s1ðk � l0Þ: Since M is sufficiently large, the new
mixtures can be represented as

x
ð1Þ
1 ðkÞ ¼

XMþl0

j¼�Mþl0

c1;js1ðk � jÞ

þ
Xn

j¼2

XL

p¼0

a1jðpÞsjðk � pÞ;

..

.

xð1Þ
m ðkÞ ¼

XMþl0

j¼�Mþl0

cm;js1ðk � jÞ

þ
Xn

j¼2

XL

p¼0

anjðpÞsjðk � pÞ; ð27Þ

where ci;j ¼ ai1ðjÞ � �a1ðj�l0Þ; i ¼ 1; . . . ;m; j ¼

�M þ l0; . . . ;M þ l0: Note that if jo0; or j4L;
then let ai1ðjÞ ¼ 0:
According to the property of cumulant and

independence of si1 ðp1Þ and si2ðp2Þ with i1ai2 or
p1ap2 [5], we have

Ji ¼
XMþl0

p¼�Mþl0

c2i;pjb1j; i ¼ 1; . . . ;m; (28)

where b1 ¼ cum4ðs1Þ:
Obviously, Ji ¼ 0; i ¼ 1; . . . ;m implies that

ci;p ¼ 0; i ¼ 1; . . . ;m; p ¼ �M þ l0; . . . ;M þ l0:
Thus the new mixtures x

ð1Þ
1 ; . . . ;xð1Þ

m do not contain
the source �s1:
2. In view of (28), we have

@Ji

@ci;j
¼ 2ci;jjb1j; i ¼ 1; . . . ;m;

j ¼ �M þ l0; . . . ;M þ l0:

Obviously, @Ji

@ci;j
¼ 0; j ¼ �M þ l0; . . . ;M þ l0 have

a unique solution ci;j ¼ 0; that is �a1ðj�l0Þ ¼ ai1ðjÞ;
j ¼ �M þ l0; . . . ;M þ l0:
The Hessian matrix @2Ji

@ci;j@ci;k
¼ diag½2jb1j; . . . ;

2jb1j�; which is positive definite.
Thus every optimization in (26) has a unique
stable local minimum which is a global minimum.
The global minimum is the true solution of
deflation problem.
Now we use the gradient descent algorithm to

solve the optimization problems in (26).
First calculate b1 according to �s1: If b140; then

Ji ¼
PM

p¼�M Cum2;2ðx
ð1Þ
i ðkÞ; �s1ðk � pÞÞ; otherwise,

Ji ¼ �
PM

p¼�M Cum2;2ðx
ð1Þ
i ðkÞ; �s1ðk � pÞÞ:

Without loss of generality, suppose that b140:
From (24), we have

Ji ¼
XM

p¼�M

Cum2;2ðx
ð1Þ
i ðkÞ; �s1ðk � pÞÞ

¼
XM

p¼�M

½Cum2;2ðxiðkÞ; �s1ðk � pÞÞ

� 2 �aipCum1;3ðxiðkÞ; �s1ðk � pÞÞ þ �a2ipb1�: ð29Þ

Hence

@Ji

@ �aip

¼ �2Cum1;3ðxiðkÞ; �s1ðk � pÞÞ þ 2 �aipb1; (30)

and we obtain the following gradient algorithm

D �aip ¼ Zð2Cum1;3ðxiðkÞ; �s1ðk � pÞÞ � 2 �aipb1Þ;

p ¼ �M ; . . . ;M ; ð31Þ

where i ¼ 1; . . . ;m; Z is a step size.
When a single step extraction and deflation are

carried out, the result of the next extraction will be
another source. This is the advantage of the
deflation algorithm. However, an obvious limita-
tion is that all sources must be temporarily
independent, at least temporally uncorrelated.
Many kinds of sources (e.g., image sources) do
not satisfy the condition.
5. Simulation results

Simulation results presented in this section are
divided into two categories. Example 2 is con-
cerned with blind estimation of a text source that
has only one convolutive mixture and additive low
Gaussian noise. Example 3 considers a single-
input, two-output system with a 4� QAM source.
In Examples 4 and 5, the high-noise and long-
channel cases are considered for SISO systems
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with a 4� QAM source, respectively. Example 6
concerns the sequential blind extraction for a two-
input, single-output system with image sources.

Example 2. Consider the following model,

xðkÞ

¼ ½3:5; 3; 4:2; 3:5; 4:2; 7:3�½sðkÞ; sðk � 4Þ; sðk � 8Þ;

sðk � 12Þ; sðk � 16Þ; sðk � 22Þ�T þ vðkÞ; ð32Þ

where s is a binary (black and white) text image
with 250� 250 pixels, v is Gaussian white noise,
which satisfies Assumption 1. Of course, only the
convolutive mixture x is available.
For the model (32), the length of the channel is

23. Among the 23 channel coefficients, only six
coefficients are nonzero. This kind of channel is
said to be sparse channel.
Fig. 1 shows the blind source estimation results

in which the first subplot represents the source, the
second subplot represents the convolutive output
of (32), and the third subplot represents the
recovered source.

Example 3. Consider the following SIMO system,

x1ðkÞ ¼ a½sðkÞ; sðk � 1Þ; . . . ; sðk � 8Þ�T þ v1;

x2ðkÞ ¼ b½sðkÞ; sðk � 1Þ; . . . ; sðk � 8Þ�T þ v2; ð33Þ

where a and b are set randomly as
½2:8904; 3:2093; 0:2677; 1:1882; 4:8813; 1:8067;
9:4199; 3:2020; 7:4138� and ½3:8766; 8:0179; 3:0048;
4:5501; 4:4740; 3:5663; 5:8346; 4:8278; 7:2899�; re-
spectively (according to uniform distribution in
[0,10]), sðkÞ is a 4� QAM source valued randomly
in f�1� i;�1þ i; 1� i; 1þ ig; v1; v2 are complex
valued noises, of which all real parts and
Fig. 1. Blind source estimation for SISO systems considered in Examp

convolutive mixture corrupted by low additive noise; Right, the reco
imaginary parts are 0:01nðkÞ; nðkÞ is Gaussian
white noise with mean of zero and variance of 1.
System (33) can be transformed into the

following two SIMO system with binary inputs,

realðx1ðkÞÞ ¼ a½realðsðkÞÞ; realðsðk � 1ÞÞ;

. . . ; realðsðk � 8ÞÞ�T þ realðv1Þ;

realðx2ðkÞÞ ¼ b½realðsðkÞÞ; realðsðk � 1ÞÞ;

. . . ; realðsðk � 8ÞÞ�T þ realðv2Þ;

8>>><
>>>:

(34)

imagðx1ðkÞÞ ¼ a½imagðsðkÞÞ; imagðsðk � 1ÞÞ;

. . . ; imagðsðk � 8ÞÞ�T þ imagðv1Þ;

imagðx2ðkÞÞ ¼ b½imagðsðkÞÞ; imagðsðk � 1ÞÞ;

. . . ; imagðsðk � 8ÞÞ�T þ imagðv2Þ;

8>>><
>>>:

(35)

where realð
Þ; imagð
Þ represent the real part and
imaginary part, respectively.
For (34), a coefficient column vector assumed to

be ½aj ; bj�
T is estimated first, and then the source

estimation is carried out using the deterministic
algorithm presented in Section 3. Thus the real
part of the source is obtained up to a delay,
assumed to be realðsðk � j þ 1ÞÞ:
For (35), the source estimation is carried out

using the ½aj ; bj�
T estimated above. The imaginary

part imagðsðk � jÞÞ of the source is then obtained
up to the same delay, as in the recovered real part.
The recovered 4� QAM source �sðkÞ ¼

realðsðk � j þ 1ÞÞ þ imagðsðk � j þ 1ÞÞ:
Fig. 2 shows the blind estimation results. The

4� QAM source is shown in the left subplot; two
outputs of (33) are shown in the second and the
third subplots, respectively; the recovered source is
shown in the fourth subplot. The bit error rate was
calculated to be 0.001.
le 2. Left, black and white text image source; Middle, available

vered source.
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The noise tolerance of the SIMO system is
higher than that of its counterpart SISO system.
We used the first system of (33) for blind source
estimation simulation. Under the same noise
situation, the bit error rate is 0.0326.
Example 4. Consider model (2) with a 4� QAM

source and additive Gaussian, complex-valued
noise. The channel parameter vector a ¼

½3:5; 2; 4; 3:5�: Using the source estimation algo-
rithm for the high-noise case considered in Section
3.2, six simulation experiments were carried out in
different noise situations. Fig. 3 shows the simula-
tion results. The left and middle subplots show the
estimated pdf and iterative result of cluster centers
with signal noise ratio (SNR) 18.328 dB, respec-
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Fig. 3. Blind source estimation results in different noise situations con

SNR=18.3258 dB; Middle, iterative result of cluster centers correspon

SNR.
tively. The right subplot shows the curve for the bit
error rate with respect to SNR, calculated from the
six simulations.
Note that there are 12 different outputs of the

corresponding noise-free model under the channel
parameter vector. With the low-noise case, there
will be 12 peaks in the pdf. Because of the high
noise, only eight peaks appear in the pdf,
corresponding to eight clusters.
Example 5. Consider the noise free model (2). The
channel parameter vector a ¼ ½16; 13; 7;
0; 0; 0:31250:9; 0; 0:0391; 0:8779; 0; 0:0049; 0:3902;
0; 0:0006; 0:1734; 0; . . . ; 0:0001� with length of 45,
the source is a 4� QAM signal valued randomly
in f�1� i;�1þ i; 1� i; 1þ ig; noise v is complex
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valued with its real and imaginary components
equal to 0:01nðkÞ; nðkÞ is Gaussian white noise with
mean of zero and variance of 1.
As in Example 3, the real part estimation of the

source is carried out first using the real component
of the mixture. In fact, the clusters of the
imaginary component of the mixture are the same
as those of the real component. Thus based on the
imaginary component of the mixture, the imagin-
ary part estimation of the source can be carried out
according to the groups obtained in the real part
estimation of the source.
Fig. 4 shows the source estimation result. In the

first row, the left subplot shows the estimated pdf
of the real component of the mixture, and the right
subplot shows the iterative result of the cluster
centers of the real component. In the second row,
the left subplot shows the mixture, and the right
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Fig. 4. Blind source estimation for one convolutive mixture of one 4�

of real component of the mixture; Top right, estimated cluster centers

Bottom right, the recovered 4� QAM source.
subplot shows the recovered 4� QAM source.
The bit error rate is 0.0001.
Example 6. Consider model (3) with two inputs of
250� 250 binary text images and a single output.
Channel parameters a1 and a2 are set randomly
as ½3:1536; 5:4027; 0:1571; 5:1255� and ½5:7722;
4:0325; 2:3827; 4:0842�; respectively. Using the de-
terministic algorithm presented in Section 3.1, a
channel parameter �a1 is estimated as 0.1571, and a
source �s1 is recovered first with a bit error rate of
0.0099.
For estimating the second channel parameter,

set

�xði; jÞ ¼ xði; jÞ � �a1 �s1ði; jÞ; (36)

where xði; jÞ is the mixture.
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Fig. 5. Sequential blind extraction for one convolutive mixture of two text image sources considered in Example 6. Left, the mixture;

Middle, source extracted after the first extraction; Right, another source obtained after the second extraction.
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Based on the new mixture �x; another channel
parameter �a2 is obtained as 2.3827. Based on �a2
and the original mixture x, another source �s2 is
obtained from the second extraction.
Fig. 5 shows the results for the sequential

extraction. The left subplot shows the con-
volutive mixture of two text image sources; the
middle and right subplots represent the sources
recovered in the first and second extractions,
respectively.
6. Concluding remarks

A novel approach for blind source estimation of
convolutive systems with binary sources was
proposed. Necessary and sufficient conditions for
recoverability were established and proved. For
the low-noise and noise-free cases, a deterministic
grouping decision algorithm was presented for
blind source estimation of single-input dynamical
systems having a binary source; this approach is
also suitable for multi-input systems. Compared
with existing blind deconvolution algorithms
generally based on inverse filtering, the group-
ing decision algorithm has three advantages.
First, using the proposed algorithm, there is no
condition imposed on the distribution of zeros
of convolutive systems. Even though the system
has zeros on the unit circle or outside the
unit circle, the source can be recovered online.
Second, the number of sensors can be less than
the number of sources. Third, the algorithm
can realize blind source estimation of temporarily
dependent sources (e.g., image sources), even
nonstationary sources.
With the algorithm, all outputs of the noise-free

model (or cluster centers of the low-free model
corresponding to the outputs of the noise-free
model) should be obtained precisely and
classified into two groups. Thus the noise tolerance
is low. Although the computational burden
increases exponentially with respect to the channel
length, the algorithm is still very fast when the
channel taps number is not too large (e.g., less
than 10).
To solve the high-noise problem, we propose

alternative or extended approach by estimating the
pdf of the outputs. Based on the pdf, cluster
segmentation is carried out, and cluster centers are
obtained using the ML approach. If the noise is
sufficiently low, the pdf will have the same number
of peaks as the number of different outputs of the
corresponding noise-free model. If the noise is
high, some of the peaks will merge or disappear.
Thus a cluster center in the high-noise case may
represent a set of outputs rather than a single
output. By classifying these cluster centers into
two groups, the deterministic algorithm is still
effective. Thus the tolerance to noise can be
improved significantly.
For the class of situations that have a long-

decaying channel, the pdf of the outputs has the
similar property as that in the high-noise case:
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blind source estimation can be carried out
similarly. Based on an improved clustering algo-
rithm, we think that the more complicated case of
a long-decaying channel combined with high
additive noise can also be dealt with effectively
using the proposed approach. However, this issue
is out of scope of this paper.
Although the discussion of the present paper

focused mainly on single-input systems, we envisage
no large obstacle for using the algorithm directly in
blind source estimation of multi-input systems. Two
sequential, blind extraction approaches were dis-
cussed for multi-input systems having temporarily
dependent sources and i.i.d sources.
Finally, the validity and performance of the

proposed algorithms were illustrated by five
simulation examples.
The remaining tasks will be to extend the

algorithms to the cases of finite alphabet sources
and more general system models.
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Appendix A

Without loss of generality, suppose that
a10pa12p 
 
 
pa1L; and that a1io0; a1ðiþ1ÞX0;
d1o0od2: For other cases, the proof is similar.
There are two cases, as follows.
(1) a1ðiþ1Þ40: If this were the case, then the

largest component of the first row of X in (13) is
d1a10 þ 
 
 
 þ d1a1i þ d2a1ðiþ1Þ þ 
 
 
 þ d2a1L:
Choose the corresponding column of X assumed
to be x1 with the first component being the largest.
It is not difficult to find that the second largest

component of the first row of X is one of the
following components:

d1a10 þ 
 
 
 þ d2a1i þ d2a1ðiþ1Þ þ 
 
 
 þ d2a1L;

d1a10 þ 
 
 
 þ d1a1i þ d1a1ðiþ1Þ þ d2a1ðiþ2Þ

þ 
 
 
 þ d2a1L:

If any one of the two corresponding columns of X
is chosen and assumed to be x2; then 1

d2�d1
½x1 � x2�

is a coefficient column vector in (4) up to a sign.
(2) a1ðiþ1Þ ¼ a1ðiþ2Þ ¼ 
 
 
 ¼ a1ðiþkÞ ¼ 0; where

1pkpL � i:
Without loss of generality, suppose that k ¼ 1;

that is, a1ðiþ1Þ ¼ 0; a1ðiþ2Þ40; then the largest
component of the first row of X is d1a10 þ 
 
 
 þ

d1a1i þ d2a1ðiþ2Þ þ 
 
 
 þ d2a1L: There are two cor-
responding columns of X with the largest first
component. Choose any one of them assumed to
be x1:
The second largest component of the first row is

one of the following components:

d1a10 þ 
 
 
 þ d2a1i þ d2a1ðiþ2Þ þ 
 
 
 þ d2a1L;

d1a10 þ 
 
 
 þ d1a1i þ d1a1ðiþ2Þ þ d2a1ðiþ2Þ

þ 
 
 
 þ d2a1L:

Also there are two corresponding columns of X for
each of the two components above. Choose one of
the two columns assumed to be x2 such that the
second component (or other components) is closer
to that of x1 than another. Then,

1
d2�d1

½x1 � x2� is a
coefficient column vector of (4) up to a sign.
Appendix B

Suppose that �a1 ¼ aq; we only consider the
noise-free model (4). Eqs. (16) and (17) should be
the following equalities

kxi � xj � ðd2 � d1Þaqk2 ¼ 0; (37)

kxj � xi � ðd2 � d1Þaqk2 ¼ 0: (38)

For an output xi; it is not difficult to prove that
there exists at least one output xj which satisfies
one of the equalities above. Suppose that there
exists another output vector assumed to be
xk; such that the pair ðxi; xkÞ satisfies one of (37)
and (38).
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Without loss of generality, assume that

xi � xj ¼ ðd2 � d1Þaq: (39)

The case xi � xj ¼ ðd1 � d2Þaq can be discussed
similarly.
Note that xi � xk ¼ ðd2 � d1Þaq will lead to

xk ¼ xj : Then we have

xi � xk ¼ ðd1 � d2Þaq: (40)

And

xk � xj ¼ 2ðd2 � d1Þaq: (41)

From model (4), xi;xj ;xk can be represented as
follows:

xi ¼ e10a0 þ 
 
 
 þ e1qaq þ 
 
 
 þ e1LaL;

xj ¼ e20a0 þ 
 
 
 þ e2qaq þ 
 
 
 þ e2LaL;

xk ¼ e30a0 þ 
 
 
 þ e3qaq þ 
 
 
 þ e3LaL;

where ep1p2 2 fd1; d2g; p1 ¼ 1; 2; 3; p2 ¼ 0; . . . ;L:
There are three cases:
Case 1. e2q ¼ e3q:
In view of (41), we have

xk � xj ¼ ðe30 � e20Þa0 þ 
 
 
 þ 0 
 aq þ 
 
 


þ ðe3L � e2LÞaL ¼ 2ðd2 � d1Þaq; ð42Þ

which is in contraction with (15) in Assumption 2.
Case 2. e2q ¼ d1; e3q ¼ d2:
From (41), we have

ðe30 � e20Þa0 þ 
 
 
 þ ðd2 � d1Þ 
 aq þ 
 
 


þ ðe3L � e2LÞaL ¼ 2ðd2 � d1Þaq: ð43Þ

From (43), we can see that aq does not satisfy
the solvability condition (6).

Case 3. e2q ¼ d2; e3q ¼ d1:
In view of (39), if aq satisfies (6) and (15), then

we have e1q ¼ d2; e2q ¼ d1 according to the
discussion in Appendix C. From (40), if aq satisfies
(6) and (15), then we have e1q ¼ d1; e3q ¼ d2: Thus,
under condition (15) in Assumption 2, if (6) is
satisfied, Case 3 cannot happen.
In view of the analysis above, under the

conditions of (6) and (15), for any output xi; there
exists only one output vector assumed to be xj ;
such that one of (37) and (38) is satisfied.
Otherwise, one of the two conditions failed to be
satisfied.
Hence Criterion 1 can be used to check whether
�a1 satisfies the two conditions (6) and (15).
Appendix C

We consider only the noise-free case here.
Suppose that �a1 ¼ aq; which satisfies the solva-
bility condition (6) and Assumption 2. If ðxl ;xjÞ is
a pair, then xl � xj ¼ ðd2 � d1Þaq:
From model (4), xl ; xj can be represented as

follows:

xl ¼ e10a0 þ 
 
 
 þ e1qaq þ 
 
 
 þ e1LaL;

xj ¼ e20a0 þ 
 
 
 þ e2qaq þ 
 
 
 þ e2LaL;

where ep1p2 2 fd1; d2g; p1 ¼ 1; 2; p2 ¼ 0; . . . ;L:
Thus,

xl � xj ¼ ðe10 � e20Þa0 þ 
 
 
 þ ðe1q � e2qÞaq þ 
 
 


þ ðe1L � e2LÞaL ¼ ðd2 � d1Þaq: ð44Þ

There exist three possible cases:
1.
 e1q ¼ d2; e2q ¼ d1:

2.
 e1q ¼ d1; e2q ¼ d2:
We have

xl � xj ¼ ðe10 � e20Þa0 þ 
 
 
 þ ðd1 � d2Þaq þ 
 
 


þ ðe1L � e2LÞaL ¼ ðd2 � d1Þaq: ð45Þ

This implies

c0a0 þ 
 
 
 þ cq�1aq�1 þ cqþ1aqþ1

þ 
 
 
 þ cLaL ¼ 2aq; ð46Þ

where c0; . . . ; cq�1; cqþ1; . . . ; cL 2 f1; 0;�1g; which
is in contradiction with (15) in Assumption 2. Thus
this case will not happen.
3.
 e1q ¼ e2q: From (44), we have

ðe10 � e20Þa0 þ 
 
 
 þ ðd1 � d2Þaq þ 
 
 


þ ðe1L � e2LÞaL ¼ 0: ð47Þ

From that d1 � d2a0 and the solvability
condition (6), it is impossible for this case to
happen.
Therefore, the equality xl � xj ¼ ðd2 � d1Þaq

implies that only case 1 will happen.
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Note that if �a1 ¼ �aq; then the possible case is
e1q ¼ d1; e2q ¼ d2; and the estimation result is
e1q ¼ d2; e2q ¼ d1: There exists an exchange of d2

and d1:
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