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Self-Adaptive Blind Source Separation Based
on Activation Functions Adaptation

Liqing Zhang, Member, IEEE, Andrzej Cichocki, Member, IEEE, and Shun-ichi Amari, Fellow, IEEE

Abstract—Independent component analysis is to extract inde-
pendent signals from their linear mixtures without assuming prior
knowledge of their mixing coefficients. As we know, a number of
factors are likely to affect separation results in practical appli-
cations, such as the number of active sources, the distribution of
source signals, and noise.The purpose of this paper to develop a
general framework of blind separation from a practical point of
view with special emphasis on the activation function adaptation.
First, we propose the exponential generative model for probability
density functions. A method of constructing an exponential gen-
erative model from the activation functions is discussed. Then, a
learning algorithm is derived to update the parameters in the ex-
ponential generative model. The learning algorithm for the activa-
tion function adaptation is consistent with the one for training the
demixing model. Stability analysis of the learning algorithm for the
activation function is also discussed. Both theoretical analysis and
simulations show that the proposed approach is universally conver-
gent regardless of the distributions of sources. Finally, computer
simulations are given to demonstrate the effectiveness and validity
of the approach.

Index Terms—Activation function, blind source separation, ex-
ponential family, independent component analysis.

I. INTRODUCTION

LIND source separation or independent component

analysis has attracted considerable attention in the signal-
processing and neural-network society, since it not only in-
troduces a novel paradigm for signal processing, but also has
rapidly growing applications in various fields, such as telecom-
munication systems, speech processing, image enhancement,
and biomedical signal processing.

Several neural-networks and statistical signal-processing
methods [2], [7], [11], [13], [16], [17], [21], [23], [26], [27] have
been developed for blind signal separation. There are a number
of factors that are likely to affect the separation performance in
applications, such as the number of active sources, the distribu-
tion of source signals, time-variable mixtures, and noise.

The stability of learning algorithms [4], [13] is critical to
successful separation of source signals from measurements. The
stability conditions depend on the statistics of source signals.
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There are a number of ways to deal with the stability problem.
Assuming that no prior information is available about the source
distribution, one can estimate the statistics such as kurtosis on-
line, so as to determine the characteristics of source signals and
the activation functions. Amari et al. [4] presented a universal
convergence approach that has equal convergence rate for dif-
ferent source signals. Another idea proposed by Pham [24] is to
expand the activation functions in a linear combination of known
functions and their coefficients are determined by the training
data. The main problem of these known approaches is that it is
inevitable to estimate some statistics of the source signals and
online estimators may not be accurate enough to approximate the
true statistics by using the output signals of the demixing model.
In particular, when the source signals consist of both super-
and sub-Gaussian signals, it is not easy to estimate the signs of
kurtosis of the source signals using the sensor signals.

Some other statistical models, such as the generalized
Gaussian model [12], [14], [20], the Gaussian mixture model
[10], [22], and the Pearson system [19], are employed to
estimate the distributions of source signals. The maximum
likelihood method is applied to estimate the posterior distribu-
tion. Generally speaking, the estimation of distributions based
on the maximum likelihood is computationally demanding
and convergence is slow. Also, the above works did not cover
convergence and stability analysis of the learning algorithm for
the parameters in statistical generative models.

It is the purpose of this paper to develop a learning strategy to
adapt the activation functions online so as to ensure the stability
of the learning algorithm for the demixing model. Different from
the previous works on the distribution estimation for the source
signals, this paper attempts to avoid directly estimating the dis-
tributions of the sources, but to adapt the activation functions for
the source signals online. The adaptation of activation functions
has two purposes: to modify the activation functions such that the
true solution becomes the stable equilibrium of learning system
and to classify the source signals or to estimate the sparseness
of source signals. The difference between the distribution esti-
mation and activation function adaptation is that the activation
function adaptation attempts to find an adequate activation
function, which might not be the score function defined by the
true distribution. Thus, it needs only a very few parameters in the
activation function model. This simplification makes it easy to
estimate the parameters in generative models and to reduce the
computing cost. In order to accelerate the convergence rate of
the learning algorithm for estimating activation functions, the
natural gradient algorithm is also applied to update the param-
eters in the generative model. We will show that the natural
gradient algorithm does help to increase the convergence rate
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of the algorithm for estimating the activation functions. We
further elaborate the generalized Gaussian distribution and
study the convergence and stability of the learning process for
updating the activation functions. Computer simulations are
given to demonstrate the validity and efficiency of the adaptive
algorithm.

There are some advantages to using the exponential genera-
tive model to estimate activation functions. It is easy to reveal
the relation between the distribution and activation functions.
Also, we can easily construct a linear connection with the acti-
vation functions for the exponential generative model if we want
to separate signals with specific distributions. Another impor-
tant property is that the method is consistent, i.e., both the up-
dating rules for the demixing model and for the free parameters
in the generative model make the cost function decrease to its
minimum, if the learning rate is sufficiently small.

II. FORMULATION OF THE PROBLEM

Assume that source signals are stationary zero-mean
processes and are mutually statistically independent. Let
s(k) =
pendent sources and x(k) = (z1(k),- .., 2. (k))T be a sensor
vector, which is a linear instantaneous mixture of sources by

x(k) = As(k)+o(k), k=1,2,... (1
where A € R™*"™ is an unknown mixing matrix of full rank
and v(k) is the vector of Gaussian noises. The blind separation
problem is to recover original source signals from observations
x(k) without prior knowledge on the source signals and mixing
matrix, unless the assumption of mutual independence of source
signals. The demixing model used here is a linear transformation
of the form

y(k) = Wx(k) )

where y(k) = (y1(k)...,ym(k))T, W € R™X™ is a
demixing matrix to be determined during training. We assume
that m > n, i.e., the number of sensor signals is larger than
the number of source signals. The general solution to the blind
separation problem is to find a matrix W such that

WA = AP 3)

Ao

0
tion. In the case m > n, we train the demixing model W such
that n components are designed to recover n source signals and
the rest correspond to the zeros or noise.

The purpose of blind source separation is to adapt the
demixing model such that its output signals are mutually
independent. There exist a number of unknowns, such as
the number of active sources and the probability density
functions (pdfs) in the framework of blind source separation.
The traditional approach is to estimate the number of active
sources before training the demixing model, which may fail if
the sensor signals are very noisy or the source signals are very
weak. Different from the previous works on blind separation,

where A = [ } , Ag is a diagonal matrix and P is a permuta-
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we do not suggest to estimate the number of the active sources
before training the demixing matrix.

We emphasize here that, in this framework, the sources of in-
terest are distinguished from noise after training the demixing
model. The discrimination between the sources and noise de-
pends on the distribution and temporal structure of the separated
signals, as well as some other knowledge of source signals. If a
separated signal is sparsely distributed and has temporal struc-
tures, we consider it to be a source of interest.

Generally speaking, estimating the pdfs is computationally
demanding and its convergence is usually very slow by using
the ordinary gradient-descent method. We surmount the diffi-
culty in two ways. First, we suggest the adaptation of the ac-
tivation functions, instead of directly estimating the pdfs. As a
result, we need only a very few parameters for the model of ac-
tivation functions. Second, we use the natural gradient to train
the parameters in the family of the activation functions to accel-
erate the convergence rate. Both theoretical analysis and com-
puter simulations show that the proposed approach has a signif-
icant improvement in learning performance.

III. LEARNING ALGORITHM

Assume that ¢;(y;, ;) is a model for the marginal pdf of y;,
(¢ = 1,...,m) parameterized by ;. Various approaches, such

as entropy maximization and minimization of mutual informa-
tion, lead to the cost function

i=1

where 0, is determined adaptively during training.

The estimation of the demixing model W can be formulated
into the framework of the semiparametric statistical model [3].
In blind separation, the demixing matrix is considered as the pa-
rameter of interest and the pdfs of source signals are considered
as the nuisance parameter, respectively. The semiparametric ap-
proach suggests the use of the estimating function to estimate
the parameter W. The estimating function for blind source sep-
aration [3] can be expressed by F(y, W), with entries

fii = —6i i + iy + a0 (vi)y; — asyipi(y;)  (5)

where 6;; is the Kronecker delta; A;;, a1, a2, and a3 are param-
eters; and ¢; is a nonlinear activation function, depending on
the distribution of the source signal s; (k). The best activation
function is the score function defined by

dlog pi(yi
vi(yi) = _ dlogpi(y)

dy; ©

where p;(.) is the true pdf of source s;, which is considered to
be the nuisance parameter in the ICA model. It is not neces-
sary to precisely estimate the pdf in this semiparametric model.
However, adequate activation functions will help to improve
the learning performance for the demixing model. The online
learning algorithm based on the estimating function can be de-
scribed as

AW(k) = —n(k)F(y(k), W (k))W (k). ©)
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Different parameters, o, a2, and as, lead to different ex-
isting algorithms, such as the natural gradient algorithm [7] and
the equivariant algorithm [13]. It should be noted that different
algorithms have different stability regions. Therefore, the choice
of the nonlinear activation function is vital to successful separa-
tion of source signals. There are a number of criteria to choose
adequate activation functions [4]. If a source signal is super-
Gaussian, the hyperbolic function ¢(y) = tanh(y) is adequate
for the activation function. On the other hand, if a source signal
is sub-Gaussian, the cubic function is a good candidate for the
activation function. However, in most real-world applications,
such as biomedical data, we usually do not know the statistics
of source signals and the number of active source signals in the
measurements. In order to make learning algorithm (7) stable at
the vicinity of the true solution, we suggest the online adaption
of activation functions using the exponential generative model.

IV. EXPONENTIAL GENERATIVE MODEL

The exponential generative model for the approximation of
pdfs is described by

€ ={p(y,0)p(y,0) = exp{—¢(y,0) + N(8)}  (8)

where @ is the vector of free parameters and N (6) is the nor-
malization term such that the integral of p(y, #) over the whole
interval (—oo, 00) is equal to one. The exponential generative
model covers a variety of pdfs, such as the generalized Gaussian
distribution and the exponential family.
Example 1. Generalized Gaussian Distribution [6], [15],
[24] : The generalized Gaussian model is described as
)

po(y,0,0) = [m(a,@r <1 + %)] e <— ‘ﬁ
C))

where A(f,0)=+/02T(1/60)/T(3/0), I'(z) = fooo Tt le=Tdr
is the standard Gamma function, o is the variance of random
variable y, and 6 is a free parameter that describes the sharpness
of the distribution function. If 7 = 2, then p4(y,2,1) is the
Gaussian distribution. If » = 1, then p,(y, 1, 1) is the Laplacian
distribution.

Example 2. Exponential Family [8], [12] : The expo-
nential family can be expressed in term of certain functions
{C(y), Fi(y),..., Fn(y)} and a function N (@) as

pe(y,0) = exp —C(y)—ZM(yHN(o) (10)

Here, ¢ (y,0) = C(y) + Zil 8; F;(y). There are some good
properties, such as flatness, as a statistical model. Refer to [8]
for a detailed discussion.

A. Construction of Exponential Generative Model

Here, we provide a feasible way to construct the exponential
generative model for blind source separation. First, we define a
activation function family with parameter

{e(y,0)} (11

where 8 is the parameter to be determined. From the definition
of the activation functions for blind separation

__dlogp(y,0)
o(y,0) = i (12)
or, equivalently, the pdf is given by
Yy
w8 =exo{~ [“emoir v} 0y
Jo

where N (0) is the normalization term.

Example 3. Homotopy Family: In blind separation, it is well
known that the hyperbolic tangent function p(y) = tanh(y) is
a good activation function for super-Gaussian sources and the
cubic function ¢(y) = y* is a favorite choice for sub-Gaussian
sources [5], [14], [18]. We can construct a homotopy family for
the activation function space in the form

©(y.0) = ftanh(y) + (1 — 0)y°. (14)

Therefore, we can construct the exponential generative model
as

pe(y,0) = exp (—0% — (1 — 6) log sech(y) —I—N(H)) )
(15)

In this exponential generative model, 1 (y,6) = 0(|y|*/4) +
(1 — 0)logsech(y) and N () is the normalization term. When
we vary parameter 6 from O to 1, the pdf p.(y, §) changes from
p(y) = (2/m)sech(y) to p,(y, 4, 1), defined in (9). Fig. 1 shows
the waveform of the homotopy family varying 6 from —1 to 1.

V. ADAPTATION OF ACTIVATION FUNCTIONS

In this section, we present a natural gradient approach to adapt
the activation functions for blind source separation. The basic
idea is to use an exponential generative family as a model for
pdfs. The objective of blind source separation is to minimize
the cost function

LB, W) = E[l(y,8,W)] (16)

where [(y,0, W) is defined by (4), ¢;(y;,80;) is an approxi-
mate distribution of y; in the exponential generative model (8),
and 8 = (8T,...,6%)7T is the vector of parameters to be de-
termined adaptively. The existing algorithms for ICA usually
adapt only demixing matrix W, where ¢;(y;,8;) or 8; are ade-
quately chosen. The algorithm fails if the choice is inadequate.
In this paper, we suggest not only to train the demixing matrix
W, but also to adapt the parameters in the exponential gener-
ative family simultaneously. Therefore, we attempt to find an
adequate pdf in the exponential generative model, which min-
imizes the above cost function. The cost function L(8, W) is
minimized when ¢;(y;,8;) is chosen to be the true pdf in the
sense of Kullback—Leibler (KL) divergence. This justifies our
approach.

For each component y; of the output of the demixing model,
we use the exponential generative model to approximate the dis-
tribution of y;

qi(yi- 0;) = exp (— (i, 0;) + Ni(65)). a7
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By minimizing the cost function (16) with respect to 8, using
the gradient-descent approach, we derive learning algorithms
for training parameters 6.

A. Gradient-Descent Learning

First, we apply the gradient-descent approach to train the pa-
rameters §; in the exponential generative model. Substituting
(17) in the cost function (16), we obtain the derivative

ol(y, 0, W)  9¢(yi,0;) Ty
. T N'(6;).

Therefore, the learning rule for updating @; is described as

28, = (290 - 6.

(18)

19
08, 19)
In particular, applying the learning rule (19) to the parameter-
ized generative model (13), we obtain the adapting rule

! </0J %;;0)6” - N ’(m) |

From the cost function (4), we see that the minimization of mu-
tual information is equivalent to the maximum likelihood for
parameters 6;, because the first term in (4) does not depend on
;. Thus, it should be noted that the above learning rule is ac-
tually equivalent to the maximum log-likelihood algorithm for
each component.

A, = (20)

B. Natural Gradient Learning

When a parameter space has a certain underlying structure,
the ordinary gradient of a function does not represent its steepest
direction. Thus, the learning rule based on the ordinary gradient

The waveform of the homotopy family varying 6 from —1 to 1. The horizontal axes represent variables § and y, whiile the vertical axis represents p.(y, 8).

descent is sometimes very slow and suffers from the plateau
phenomenon. The steepest descent direction in a Riemannian
space is given by the natural gradient [2], which takes the form
of

Vo,L =G 'V, L (21)
where the matrix G; is the Riemannian metric of the parameter-
ized space. The Riemannian structure of the parameter space of
statistical model {p(y,0)} is defined by the Fisher information
[1], [25]
logp(y,8) dlogp(y,8)"

00; 00;

in the component form. Since Fisher information G;(9))
is evaluated by the expectation of (dlogp(y,8)/(96;))

(0logp(y,0)T/(08;)), we make use of an adaptive method to
estimate the Fisher information, which is given by

dlogp(y,8) dlogp(y,6)”
08, 08,

Gi(0) = E (22)

@(k + 1) = (1 — ek)@(k) + €k

(23)
where ¢}, is a time-dependent learning rate. When the dimension
of parameter 6; is large, the computing cost will be expensive
for the inversion of Fisher information G; to realize the natural
gradient learning. In order to overcome the problem, Amari, et
al. [9] proposed an adaptive approach to directly estimate the
inverse of Fisher information G,, which is given by

Hi(k+ 1) = (1 + ex)Hi(k)

o Ologp(y,8) dlogp(y, 6)"
GkHz(k) (901' aoi

Hi(k). (24)



ZHANG et al.: SELF-ADAPTIVE BLIND SOURCE SEPARATION BASED ON ACTIVATION FUNCTIONS ADAPTATION 237

The estimated matrix H;(k) is used to approximate the inverse
of Fisher information G; and the natural gradient learning algo-
rithm is modified to the form

Abi(k) = —mHi(k)Ve, L. (25)

Refer to [9] for a detailed discussion on online estimation for
the Fisher information.

The dynamical behavior of natural gradient online learning
has been analyzed and proved to be Fisher efficient, implying
that it has asymptotically the same performance as the optimal
batch estimation of parameters [2]. In Section VI, we will
show that the natural gradient learning can overcame long
plateaus that appear in ordinary gradient-descent learning. We
will further discuss the convergence and stability of the natural
gradient-learning algorithm based on the generalized Gaussian
model.

Remark: Actually, from the semiparametric statistical theory
for blind separation [3], minimization of cost function (16) may
not lead to the true distribution of source signals. However, it
suffices for us to choose adequate activation functions such that
the true solution is a stable equilibrium of the learning algo-
rithm.

C. Consistency

One important question is if it is consistent to update the
demixing model W using the natural gradient algorithm and to
estimate the # using the maximum likelihood at the same time.
In fact, the learning rule for # by maximizing the log likelihood
is equivalent to the one by minimizing the mutual information.
This means that both learning rules for updating parameters 6
and demixing model W make the cost function L(6, W) in (16)
decrease, provided that the learning rate is sufficiently small.

VI. GENERALIZED GAUSSIAN MODEL

In this section, we elaborate the generalized Gaussian family
for blind source separation. Here, we emphasis that both the
sharpness and the normalization term of the distribution play
important roles in the adaptation of activation functions. We will
see that the equilibrium of the estimator depends on the normal-
ization term. The reason for studying the generalized Gaussian
model is two-fold. From an analytic perspective, the generalized
Gaussian family is quite flexible, covering a wide range of den-
sity functions. From the practical point of view, the generalized
Gaussian distribution has been known to successfully model the
characteristics of a variety of physical phenomena. The activa-
tion function family, commonly used for ICA algorithm

o(y,0) = sign(y)|y|*~" (26)

is also derived from this generalized Gaussian family [14], [15].
We know that p(y,6), 1 < 6 < 2 is an adequate activation
function for super-Gaussian signals and that ¢(y,6), § > 2
is good for sub-Gaussian signals. However, we usually do not
know how many source signals are sub-Gaussian and how many
super-Gaussian from the mixed sensor signals. In this paper, we
suggest a way to use (25) to adapt the parameter 6.

In the generalized Gaussian distribution family (9), there are
two free parameters: the variance o and the sharpness 6. It is

known that the solution to blind separation has certain ambigui-
ties: scaling and permutation. The variance o corresponds to the
scaling of the recovered signal.

In order to reduce the complexity of estimation of the parame-
ters in the exponential generative family, we employ the learning
algorithm such that the outcome of the demixing model has unit
variance. Therefore, it is not necessary to estimate the variance
o in the exponential generative family: we just set 0 = 1 and
use the notation A(6) for A(6,1) for simplicity. Now, the gen-
eralized Gaussian distribution is simplified as

py(y,0) = exp <— ’AL

o
. /\/(9))
where NV () = —log(2A(6)T'(1 + 1/9)).

27)

A. Adaptation Rule
The ordinary gradient of the cost function (4) is give by

where
Op(yi(k).0) | wi |” Yi 0:A’(0;)
o6 |4 [l"g A6)| A } @

The ordinary gradient-descent learning algorithm for estimating
the activation function of the ith component of the demixing
model is described by

ol(y,0, W)
Al = —n——F—. 30
vy (30)
Correspondingly, the natural gradient algorithm is given by
_10l(y,0, W)
Ay = —pg =22 2 31
nG; 06, (€29)
where G; is the Fisher information defined by
T
G, — p | 2.6, W) 0y, 6, W) (32)

00; 00;

The ordinary gradient algorithm (30) and the natural gradient
algorithm (31) have the same set of equilibria, but have different
learning dynamics.

B. Egquilibria of Learning Dynamics

In this section, we analyze the equilibria of the learning dy-
namics of Laplacian, Gaussian, and Sub-Gaussian signals. For
simplicity, we neglect the subscript ¢ in the following discussion
if it does not raise any ambiguity. From the statistical learning
theory, we know that the equilibria of the updating rule satisfy

Y (yi(k), 0:)
E|—/——=21 = N'(6,).
s (%)
Assuming that signal y; is a random variable with the pdf p; (y;),
by the law of large numbers in statistics, we have
I [3111(%(7?)790} /37/)(5,91‘)

90, T&pi(f)df'

In order to estimate the equilibria of learning dynamics, we de-
fine

(33)

(34)

169 = [ WEI) | yde — N(0,).

06, (35)
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Fig. 2. The equilibria of ordinary gradient adaptation rule for the Laplacian,
Gaussian and Sub-Gaussian distributions using the generalized Gaussian family
Py(v.9).
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Fig. 3. The equilibria of natural gradient adaptation rule for Laplacian,
Gaussian and Sub-Gaussian distributions using the generalized Gaussian
family py(y, ).

With the help of numerical calculation, we plot the curves of
the above function for the following three different distribu-
tions: py(y, 1), py(y,2), and py(y, 4). The zeros of the function
f(6) depend on the distribution of the random variable. If the
random variable has Laplacian distribution p,4(y, 1), the func-
tion f(#) has a unique zero § = 1 in the interval [0.5,4.5]. If the
random variable has Gaussian distribution p,(y,2), the func-
tion f(#) has a unique zero § = 2 in the interval [0.5,4.5]. If
the random variable has sub-Gaussian distribution p,(y, 4), the
function f(#) has a unique zero § = 4 in the interval [0.5,4.5].

Fig. 2 illustrates the equilibria of function f(#) for the three
different distributions. It should be noted that the properties
of these zeros are different. They have different slopes, which
affect the convergence rate of the learning algorithm. If the
natural gradient method is used for training parameters 6;,
the performance of learning will improve dramatically. Fig. 3
shows the curves of the following function for the three
different distributions:

Fn(6:) = Gi(6:) ! [ [P ¢y - a0

09, (36)
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The slopes in Fig. 3 in the vicinity of the equilibria are much
steeper than the slopes in Fig. 2. This indicates that the natural
gradient algorithm will give a better learning performance than
the ordinary gradient algorithm.

VII. STABILITY ANALYSIS

In this section, we study the stability of the learning algo-
rithms both for the activation function and the demixing model
with the help of numerical calculation.

A. Stability of Algorithm for Activation Functions

For each component of the output of the demixing model, we
employ learning algorithm (19) to estimate the parameters in the
activation functions. It is easily seen that the equilibrium of the
learning algorithm satisfies

g |22 _ i)~ (37)
a0
The statistical learning dynamics can be described as
g _ - [08(y,0) /
7 f(6) = E[ 90 N'(9). (38)

The stability of the above dynamical system depends on Hessian
matrix E[92L(0, W)/087] at the equilibrium. For the Lapla-
cian signal, the Hessian E[02L(8, W)/98%] = 0.82, which
means that the equilibrium point is stable. Similarly, we can cal-
culate the Hessian for the Gaussian and sub-Gaussian signals.
They are also positive. Therefore, the other equilibria are also
stable for Gaussian and sub-Gaussian distribution, respectively.

B. Stability of Algorithm for Demixing Model

In order to make the outputs of the demixing model have unit
variance, we choose Cardoso’s equivariant algorithm [13]

AW = (I-yy" —oy)y" +y¢'(y)) W (39
where @(y) = (9151, -, @m(ym))T and
0; T
vi(yi) = A6, |40 sign(y;), 0;>1. (40
The stability condition for the algorithm is
ki+ k>0, for1<i<j<m 41

where k; = E[pl(v:) — viwi(y:)] fori = 1,...,m. We will
prove, that for the Laplacian and sub-Gaussian signals with dis-
tribution py(y, 4), statistics x; > 0. For the Gaussian signal,
KR; = 0.

For the Laplacian distribution, the equilibrium of learning al-
gorithm (31) is §; = 1 and the corresponding activation func-
tion is ¢r,(y;) = sign(y;). Furthermore, we will prove that, for
a random variable y; with distribution p,(y;,6), 0.5 < 6 < 2,
the condition ~; > 0 is satisfied. To this end, we define a func-
tion with variable 6

gn(6) = / (G(6) — E1(E))py (€. O)E.

Substituting ¢, (y;) = sign(y;) and (9) into (42) and integrating
(42) over (—o0,00) with respect to &, we obtain the explicit
expression of gr,(f)

(42)

0 A4°1(3)

g1(6) = 20(0)—

(43)
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0.5 1 1.5 2 25 3 35 4 4.5

Fig. 4. Statistics of «; with different activation functions ¢ (%) (dotted line)
and v s(y) (solid line), respectively.

where C(f) = (2A(6)T'(1/6 + 1))~L. Fig. 4 plots the function
gr.(6) over interval [0.5, 4.5]. It is seen that in interval (0.5, 2),
function gr,(6) is positive. This indicates that x; > 0 in the
interval with the activation function ¢y, (y;) = sign(y;).

Similarly, we can also analyze the statistics «; for
sub-Gaussian signals. In this case, we choose the activa-
tion function ¢s(y;) = 4/A(4)[y:/A(4)]3. Correspondingly,
we define the following function:

g5(6) = / (¢s(€) = E0(E))pa &, B)E.

Substituting the expressions ¢s(y;) and (9) into (44) and inte-
grating (44) over (—oo, 00) with respect to £, we obtain easily
the explicit expression of gg(6)

gs(0) = %SZ(” (3r (%) — 20T (5>) @)

Fig. 4 plots the function ggs(#) over interval [0.5,4.5]. It is
seen that, in interval (2,4], function gg(f) is positive, which
means that x; > 0 in the interval with the activation function
©s(y;). In the same way, it is easy to verify that x; = 0 for
Gaussian signals with activation function pg(y) = y>.

Therefore, from the above analysis, we infer that learning al-
gorithm (19) always makes the true solution a stable equilibrium
of learning dynamics if the number of Gaussian source signals
is less than one. Furthermore, the adaptation rule is able to iden-
tify the statistical properties of source signals. For example, we
can consider the separated signal as super-Gaussian if its corre-
sponding parameter 6; is less than 2.

In this framework, the true solution is always the locally
stable equilibrium of the learning process regardless of source
distributions, if we adapt both the demixing model and the acti-
vation functions. This property is called universal convergence.

(44)

VIII. SIMULATIONS

In this section, we give a number of computer simulations to
demonstrate the effectiveness and performance of the proposed
adaptation rule for the activation function.

Example 1: In this example, we intend to show the per-
formance of (25) for four different types of signals, including
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Fig. 5. Adaptation dynamics of parameters for speech signal, i.i.d. Gaussian
signal, and binary signal.
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Fig. 6. Averaged convergence performance of cross-talk intersymbol inter-
ference (ISI) with well-conditioned mixtures.

speech signal, independent and identically distributed (i.i.d.)
signals uniformly distributed in [—1,1], Gaussian signals,
and binary signals. The first three signals are considered to
be the super-Gaussian, sub-Gaussian, and Gaussian signals,
respectively. The generalized Gaussian model is used to model
the distribution of sources and (25) is employed to train the
parameters. The initial guess is set to # = 2 for all four
signals. We restrict parameter 6 to the interval [1], [4] to avoid
singularity during training. The first column of Fig. 5 plots
these four signals and second column shows their histograms
of leaning dynamics for the parameter 6, correspondingly.

We see from this simulation that parameter ¢ for the binary
signal converges to 4 although the distribution of binary signals
is bimodal, which does not belong in the generalized Gaussian
model. As we know, ¢(y) = 2 is a good activation function for
binary signals, which can ensure the stability of (7). This indi-
cates that it is not necessary to precisely estimate the distribution



240

o

1000 2000 3000 4000 5000

o

1000 2000 3000 4000 5000
SM

2000

o

1000 3000 4000 5000

1000

2000 3000 4000 5000

Fig. 7.

of source signals; instead, we need only to estimate the class of
source signals, such as super-Gaussian and sub-Gaussian. This
simplification will dramatically reduce the computing cost.

Another observation is that the natural gradient learning for
f can improve learning performance as compared with the or-
dinary gradient learning. For super-Gaussian signals, it usually
takes less than 20 iterations to reach its equilibrium, while for
sub-Gaussian signals, it takes less than 100 iterations to reach
the satisfactory solution.

Example 2: 1In this simulation, we would like to illustrate the
learning performance of the proposed algorithm when the mixed
sensor signals are used as training data. We choose four signals
as the source signals. The first two, s1(k) and s2(k), are speech
signals, which are considered to be super-Gaussian, and the last
two, s3(k) and s4(k), are i.i.d. signals uniformly distributed in
[—1, 1], which are regarded as sub-Gaussian signals. If the same
activation function is used for all components, (7) will fail to
converge to the true solution, because the stability conditions are
not satisfied. Here, we employ the generalized Gaussian family
to approximate the distribution functions of the output signals.
Learning algorithm (25) is used to adapt the activation function
of each component of the outputs and (7) is employed to train
the demixing matrix W.

A large number of simulations are performed to demonstrate
the performance of the learning strategy. Mixing matrix A is
randomly generated by computer. Sensor signals x = As are
used as training data. In order to evaluate the general perfor-
mance of the algorithm, we use the average of the cross-talk
index.
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Adaptation dynamics of parameters in the generalized Gaussian family for a well-conditioned mixture.

If mixing matrix A is well conditioned (say, the condition
number cond(A) < 20), parameter § will converge to the true
value within 100 iterations for super-Gaussian and within 200 it-
erations for sub-Gaussian signals, respectively. Fig. 6 illustrates
the averaged histogram of the cross-talk index of 100 trials.

Fig. 7 illustrates the histogram of §( %), where the first column
is the output signals of the demixing model. From this example,
we observed that the convergence of # for super-Gaussian sig-
nals is much faster than that for sub-Gaussian ones. The learning
processes of § and W are closely correlated. Only when 6 ap-
proaches to an adequate value, i.e., § < 2 for super-Gaussian
and # > 2 for sub-Gaussian, the demixing matrix will converge
to the true solution.

If mixing matrix A is ill conditioned (say, the condition
number cond(A) > 1000), the algorithm is still convergent,
but has different learning dynamics. Here, we give an example.
The mixing matrix is the Hilbert matrix

1
Az[‘ } .
t+Jlaxa

The Hilbert matrix is ill conditioned with condition number
cond(A) = 1.5514 x 10*. Fig. 8 illustrates the histogram of
parameters @ during learning process by using algorithm (25).
The demixing matrix W (k) converges to

(40)

0.0122 —-0.0374 0.0387 —0.0127

—0.3838 2.1627 —3.4845 1.7041
W=10e+03 0.3830 —2.4500 4.2385 —2.1699

—0.1702 1.1761 —2.1348 1.1294

(47
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Example 3. Noisy Case: This simulation is performed to
demonstrate the noise tolerance of the parameter estimator. The
signal-to-noise ratio (SNR) is defined as

2
SNR = 10log,g <”—2> (48)
g

€

where o2 and o2 are the variances of signals and noises, respec-
tively. The four sources are the same as in example 2. Mixing
matrix A is chosen as a 6 X 4 matrix, which is randomly gen-
erated by computer. This means that we have six sensor signals
and four source signals. White Gaussian noises are added with
different energy levels, varying from SNR = 30 to SNR =
—5 dB. The observed sensor signals

x(k) = As(k) + v(k) (49)

are used to train both the demixing matrix W € R®*¢ by algo-
rithm (7) and the parameters @ by algorithm (31). Fig. 9 illus-
trates the histogram of the cross-talk index for different noise
levels. From this simulation, we see that the algorithm can tol-
erate 5-dB noise. When the SNR reduces further, the separation
performance suddenly decays.

Another observation is that, in this noisy data case when
we use a 6 X 6 matrix as a demixing model, the output of the
demixing model are the four source signals and two Gaussian
signals. Fig. 10 illustrates the output signals of the demixing
model, the first column being the histogram of parameters

1000 2000 3000 4000 5000

Adaptation dynamics of parameters in the generalized Gaussian family for an ill-conditioned mixture.
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Fig. 9. Adaptation dynamics of cross-talk index for different SNR, varying
from 30 dB to —5 dB.

0 during learning and the second column being the output
signals y.

Example 4. Electroencephalographic (EEG) Data Anal-
ysis: In this experiment, we apply the proposed method to
analyze the event-related potentials of EEG data. The EEG
experiment is designed to study the binocular coordination
in the visual system. The purpose of this experiment is to
investigate how the visual system integrates the visual neural
signals from two eyes. It is well known that binocular rivalry
occurs when two different images are presented simultaneously
to both the left and right eyes of the subject. Here, we attempt
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Fig. 10. Learning dynamics of parameters and outputs of the demixing model.
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Fig. 11. 62-channel EEG measurements.

to reveal how the visual system integrates the binocular visual
neural information when the images are spatially correlated.
To this end, we generate the two images from a picture of
human face. We split the picture into two images, which are
complementary. Thus, the two images are completely different
if we do not concern their context. However, because these
two images are complementary, we can recover the original
face by merging two images. During the experiment, these two
complementary images are presented to the left and right eyes,
respectively, of the subject. The EEG data is recorded with a
64-channel NeuroScan with sampling frequency 1000 Hz. In
order to increase the SNR, we take 20 trial averaging data as
the sensor signals.

Fig. 11 plots 62 channels of EEG measurements. The pro-
posed adaptive blind separation (ABS) method is applied to sep-
arate the visual evoked potentials from the EEG measurements.
Learning algorithms (7) and (31) are used to train the demixing
matrix and parameters in activation functions. The homotopy
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Fig. 12.  First component scalp map, separated by our ABS algorithm, which
corresponds to the evoked potential in the visual cortex.
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Fig. 13. Second component scalp map, separated by our ABS algorithm,
which corresponds to the evoked potential in the prefrontal cortex.

family is used as the model for the activation functions. We dis-
criminate the sources of interest from noise by using two cri-
teria, the sparseness and temporal structures. Fig. 12 plots the
first component of interest, which corresponds to the evoked po-
tential at the visual cortex. Fig. 13 plots the second component
of interest, which corresponds to the evoked potential at the pre-
frontal cortex.

In order to compare separation performance of the ABS
method with the others, the extended infomax algorithm [26]
is also applied to the EEG data to separate the visual evoked
potentials. The extended infomax method adapts the activation
function by switching between fixed sub- and super-Gaussian
nonlinear functions. We also use the same criteria (the sparse-
ness and temporal structures) to select the components of
interest from the separated signals. Figs. 14 and 15 plot the
scalp maps of two components of interest. It is not difficult
to see that both methods can separate the first component of
interest, which corresponds to the visual evoked potential in the
visual cortex. However, the experiment shows that the proposed
ABS method has much better separating performance than the
extended infomax method to separate the second component
of interest, which corresponds to the neural activity in face
recognition.
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Fig. 14. First component scalp map, separated by the extended infomax
algorithm, which corresponds to the evoked potential in the visual cortex.
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Fig. 15. Second component scalp map, separated by the extended infomax
algorithm, which corresponds to the evoked potential in the prefrontal cortex.

IX. CONCLUSION

In this paper, we present an exponential generative model
for approximation of the distributions of source signals. A
natural gradient algorithm for activation function adaptation
is developed based on minimization of mutual information.
Convergence and stability analysis of the algorithm are also
provided. Both theoretical analysis and computer simulation
show that the proposed method has a faster convergence rate
than the ordinary gradient method for the activation function
adaptation. In this framework, the true solution is always the
locally stable equilibrium of the learning process, regardless of
source distributions, if we adapt both the demixing model and
the activation functions. This property is called universal con-
vergence. This method can also be used to estimate the class
of source signals, such as super-Gaussian and sub-Gaussian
signals.

Adaptation of activation functions is different from the es-
timation of the distribution. The main objective of activation
function adaptation is to make the true solution a stable equi-
librium of learning system. Thus, the number of parameters for
each component usually is very small. As a result, such strategy
can reduce the computing cost dramatically, as compared with
estimation of the distribution functions.
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