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ABSTRACT
This paper proposes a neural mechanism motivated system to extract
noise resistant features for robust speech recognition. We use non-
negative matrix factorization to construct two layers of auditory neu-
rons which captures the essence of speech patterns. The responses
of these neurons to speech are further processed to form an auditory
neural cepstral coefficient (ANCC) representation for speech recog-
nition. We test the robustness of ANCC feature on a 51-word corpus,
with recognizers trained on clean speech in noisy conditions. Com-
pared with MFCC, ANCC shows less performance degradation and
achieves satisfactory recognition accuracies in both non-stationary
noise and high noise level conditions.

Index Terms— speech recognition, robustness, feature extrac-
tion, auditory system

1. INTRODUCTION

Speech recognizers trained in clean conditions normally perform
poorly in noisy environments, due to the mismatch between train-
ing and testing data. Numerous efforts have been made to improve
either the front-ends [1][2][3] or the back-ends [4][5] of the recog-
nizers for noisy environments. Certain progress have been made,
but the overall performance is still not satisfactory, due to several
issues. First, many methods impractically require noise information
beforehand. Second, methods adapted to certain noise conditions
may not generalize well to different noises or even different noise
levels. And third, non-stationary noises and low signal-to-noise ra-
tio (SNR) cases is still an open problem.

On the other hand, human auditory system tackles all these is-
sues quite well. Motivated by the mechanism of human hearing,
several researchers propose using computational models of human
auditory system as front-end to extract noise resistant features, such
as PLP model [2], and EIH model [3].These methods utilize com-
putational models of cochlear filtering or hair cell firing to simulate
peripheral auditory processing stages, and show certain noise-robust
properties.

However, human auditory functions are mainly carried out in
the auditory cortex, of which the working mechanism is not yet fully
understood. Neurophysiologists found that some neurons in primary
auditory cortex respond to specific kind of sound stimulus, such as
certain frequency, and tone onset/offset. From the firing history of
these neurons, the sound patterns they respond to can be recovered
in time-frequency representation called spectro-temporal receptive
field (STRF) [6], which is similar to the receptive fields of simple
cells in visual system. Working as basic feature detectors, these
neurons can also be connected to high level neurons in a hierar-
chical structure to detect more complex features such as timbres,

and frequency modulation. Sparse coding technique was used in
[7] to construct receptive fields for visual cells. A similar method
was applied in [8] to obtain efficient code of natural sound using 1-
dimensional bases, showing some auditory nerve tuning properties.
Another sparse coding method called non-negative matrix factoriza-
tion (NMF) [9] was used in [10] to construct a hierarchical represen-
tation of speech spectrogram. But little research has been conducted
on computational models of STRFs, and its applications in speech
recognition.

In this paper, we propose using NMF to calculate the receptive
fields for two layers of auditory neurons, which extract noise re-
sistant features. The layer-1 neurons detect basic spectro-temporal
structures in 2-dimensional form, and the layer-2 neurons combine
these structures into more complex patterns. This embodies the two
stages of computational auditory scene analysis (CASA): segregat-
ing and grouping. Using speech signals as stimulus, the training
process will produce neurons more sensitive to speech patterns than
other patterns. The responses of the layer-2 neurons to the input
sound can be further processed into a representation we called au-
ditory neural cepstral coefficients (ANCC), which can work as fea-
tures for speech recognition. We test the performance of ANCC fea-
tures by using clean-speech-trained recognizers to recognize speech
mixed with various noises in different SNRs without additional pro-
cessing. Result shows ANCC performs robustly in both stationary
and non-stationary noise cases, especially in strong noise conditions.

This paper is organized as follows. The proposed model is de-
scribed in section 2. The experimental results are presented in sec-
tion 3. In section 4, we discuss several issues about this model. Fi-
nally, conclusions are summarized in section 5.

2. PROPOSED METHOD

In this section, we first introduce the sparse coding technique. A
two-layer network framework is propose to extract speech features.
Finally an overall description of the system is given.

2.1. Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a technique for decom-
posing non-negative data. It has been successfully used to discover
part-based representation of visual objects, such as human faces [9].
NMF usually produces a sparse representation, which encodes data
with only a few components, leaving most others silent. This prop-
erty is closely related to the neural processing mechanism of brain.
In this paper, we use an extended version of NMF, which explicitly
controls the sparseness degree of the encoded data to provide more
flexibility [11].
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Fig. 1. Bottom: The STRFs of several layer-1 neurons from two
different bands. The images indicate the spectro-temporal patterns
they respond to. Top: The receptive field of a layer-2 neuron, who
responds to an assembly of layer-1 neurons firing together. The bars
indicate the connection weights. It is not sensitive to the input of
neurons in other bands, which are ignored in this figure.

The objective of NMF is to find an approximate factorization of
a non-negative data matrix V into non-negative factors W and H

V ≈ WH (1)

Consider columns of W to be basis vectors, then each column of V is
approximately a linear combination of these bases, with coefficients
defined by H columns. The sparseness of H columns suggests the
number of bases we need to encode each data column.

The sparseness measurement of a vector x is defined using its
L1 and L2 norms

sparseness(x) =

√
n − (

P |xi|)/
pP

x2
i√

n − 1
(2)

where n is the length of x. Greater value indicates higher sparseness.
For a given vector x, the desired sparseness is achieved by replac-
ing it with the closest non-negative vector s, which preserves the
L2 norm of x but has an appropriate L1 norm to fit the sparseness
constraint. This can be accomplished by the projection operations
described in [11].

In order to find the optimum factorization, W and H are cal-
culated by a gradient descent algorithm. When using the squared
error function as the optimization goal, W and H can be updated in
a multiplicative form

H ← H
W T V

W T WH
(3a)

W ← W
V HT

WHHT
(3b)

So, within each iteration of the training process, first the sparse-
ness of H is adjusted, then W and H are gradiently updated; this
continues until the optimization goal is met.

2.2. Receptive fields of layer-1 neurons

Receptive fields of layer-1 neurons are calculated from the spectro-
gram of input speech. The input signal x[n] is firstly pre-emphasized,
then transformed into a time-frequency representation by short-time
fourier transformation (STFT). In practice, we segment the signal
samples with a moving Hamming window of length Lw, shifted ev-
ery Ls, then apply 2Nf -point FFT. The spectral magnitude is nor-
malized to [0, 1]. So the resulting spectrogram X(f, t) is a non-
negative matrix of size Nf ×Nt, where Nt is the number of frames.

The spectrogram is equally divided into Nb sub-bands in fre-
quency axis to demonstrate the band-pass property of peripheral au-
ditory system. Although log-scale divisions or Mel-scale would phys-
iologically makes more sense, in this model linear-scale division
yields better results. And it will be further discussed in section 4.
We then chop the spectrogram of each band into temporal frames,
with frame length Mt and frame shift Mi. Therefore each frame is
a matrix of size Mf × Mt, where Mf = Nf/Nb. It represents the
spectro-temporal structure of a short-time speech segment in a par-
ticular band. For the ith band, the frames from it are reshaped into
column vectors and form a matrix V1(i). We apply NMF to each
V1(i), (1 ≤ i ≤ Nb)

V1(i) ≈ W1(i)H1(i) (4)

which decomposes columns of V1(i) into linear combinations of col-
umn vectors in W1(i). These W 1

i columns are the bases to represent
speech frames in the ith band. If reshaped back to Mf × Mt matri-
ces, they can be viewed as the STRFs of neurons, which specifically
sensitive to the information from this band. The column number of
W1(i), which we need to set before training, is the number of neu-
rons for this band. Fig. 1 shows the STRFs of some layer-1 neurons.,
which clearly describe the spectro-temporal structures they respond
to. Therefore the coefficient matrix H1(i) can be understood as
neuron response activities. Sparseness constraint on H1(i) columns
controls the number of neurons respond to each speech frame.

Now we can encode other speech signals using these auditory
neurons. For example, to encode a speech waveform y[n], we first
need to transform it into sub-band matrix representation V ′

1 (i), (1 ≤
i ≤ Nb). But calculating an H ′

1(i) matrix with minimized squared
error involves another NMF process, which is computationally com-
plex. We simply approximate the response of a neuron by the inner
product of its STRF and the stimulus frame

H ′
1(i) = W1(i)

T V ′
1 (i) (5)

This approximation is not only easy to implement, but also consis-
tent to theoretical neural encoding mechanism. The inner-product
response shares similar properties with the NMF response, such as
structure description of the frame, and sparseness degree. Combin-
ing H ′

1(i) of all bands from low frequency to high frequency into
a matrix H ′

1 provides a representation of the input waveform by
the responses of all layer-1 neurons. This representation preserves
spectrogram-related information such as spectral energy patterns,
and temporal patterns. It also encodes fine spectral structures in each
band, which are often ignored by conventional filter-bank methods.
The patterns of these fine structures are important features to dis-
tinguish speech and noises. So we use another layer of neurons to
discover these structures.

2.3. Receptive fields of layer-2 neurons

Layer-2 auditory neurons receive input from all neurons in the first
layer, and respond to certain groups of neurons firing together. Again,
these groups can be obtained by NMF training. We normalize the
complete layer-1 neural response matrix H ′

1 to [0, 1], and use it as
the training data matrix V2, without dividing sub-bands or temporal
frames. Then NMF is applied to obtain

V2 ≈ W2H2 (6)

Similarly, the column number of W2 is the neuron number, and the
columns are the receptive fields, describing the groups of neurons
they respond to. Fig. 1 also shows one neuron from this layer, and
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Fig. 2. The responses of layer-2 neurons to a speech sentence. The
neurons are sorted according to the frequency region they are most
sensitive to.

its connection with several layer-1 neurons. All neurons from the
second layer are sorted according their sensible frequency region.

The responses of layer-2 neurons are also approximated by the
inner product of receptive fields and the layer-1 input

H ′
2 = W2

T V ′
1 (7)

H ′
2 is a dimension-reduced version of H ′

1, with the fine structures
encoded, while it still preserves the spectrogram-related information.
Fig. 2 shows the neural responses to a speech sentence. Since we
use speech signals to train these neurons, they are more sensitive
to speech patterns; other input such as noise cannot stimulate these
neurons effectively. This property makes this model robust to noises.

2.4. System architecture

Using two layers of pre-trained auditory neurons, we can encode
speech signals by their corresponding neural responses. The system
structure is shown in Fig. 3. Speech waveforms are transformed into
time-frequency domain and further processed into sub-band repre-
sentation. After two layers of neural filtering, each short-time frame
is encoded by a vector describing the responses of layer-2 neurons. A
discrete cosine transformation (DCT) module calculates the cepstral
coefficients of the vector, which we called auditory neural cepstral
coefficients (ANCC). To improve speech recognition performances,
the delta and acceleration coefficients of ANCC can also be included.
Then speech recognition can be performed on ANCC feature.

3. EXPERIMENTAL RESULTS

3.1. Calculating receptive fields and encoding speech

We use a small subset of TIMIT corpus to train a speaker-independent
auditory neural model. 24 speakers, 2 males and 1 female from each
dialect region, are selected; each speaker provides one utterance, and
these 24 utterances are used to train the two layers of auditory neu-
rons. These sentences cover most sub-band phenomenons, so they
can produce neurons sensitive to most speech signals.

The utterances are sampled to 16kHz, and pre-emphasized with
coefficient 0.97. The waveforms are transformed into time-frequency
representations by 1024-point FFT, using 25ms Hamming window,
with 5

8
ms window shifts. The normalized spectrogram is divided

equally into 32 sub-bands; and within each band, frames of 20ms
are chopped with 10ms frame shifts. So each frame is a 16 × 16
matrix. For neurons of each band, frames from all 24 utterances are
collected to calculate the receptive fields. We use the NMF algorithm
with sparseness constraints 0.6 on H1(i) columns. The number of
neurons in each band is 25. So the first layer contains 800 neurons.
The second layer neural receptive fields are also trained using NMF

Fig. 3. The system structure.

with sparseness constraint 0.6 on H , and the total neuron number is
100. As noted in section 2, layer-2 neurons are sorted according to
their responding frequency ranges.

The 100-dimensional layer-2 neural responses to speech input
are transformed into 50-dimensional cepstral coefficients by DCT.
Together with corresponding delta and acceleration coefficients, each
frame of speech is characterized by a 150-dimensional ANCC vec-
tor.

3.2. Using ANCC for speech recognition

The performance of ANCC in speech recognition is tested on the
Grid corpus [12]. The vocabulary of this corpus includes 4 verbs
(bin, lay, place, set), 4 colors (blue, green, red, white), 4 preps (at,
by, in, with), 25 letters with ’w’ excluded, 10 numbers (0 to 9), and
4 codas (again, now, please, soon). Each sentence contains 6 words
from these classes respectively. Each speaker recorded 500 such
sentences. This corpus is more difficult than digit or letter based
corpora, since it contains a more complex phone set.

We select 6 speakers (4 males, 2 females) as the experimental
subjects. From the 500 sentences of each speaker, 400 are randomly
chosen to train a speaker-dependent recognizer using ANCC fea-
ture calculated by the auditory neural system we perviously con-
structed; a baseline recognizer for each speaker is also trained us-
ing 39-dimensional Mel-scale cepstral coefficients (MFCC) as the
features. These recognizers are monophone-based HMM systems,
where each phone is a 3-state HMM with the probability density
functions described by 3-gaussion mixtures. The other 100 sen-
tences are mixed with babble, factory, f16, and white noises from
NOISEX corpus in SNR intensities of 15dB, 10dB, 5dB, 0dB, and
-5dB. In all testing cases, the performances of 6 recognizers are av-
eraged. The word accuracies of clean speech recognition are ANCC:
83.11%, and MFCC: 93.50%. The performance comparisons of two
features in different noise conditions are shown in Fig. 4.

The result shows that although ANCC performs a little poorer
than MFCC in clean speech and some low noise conditions, its per-
formance degradation with noise intensity increase is much slower.
So it performs significantly better than MFCC in high noise condi-
tions. Such as in 0dB condition of babble and factory noises, ANCC
yields results close to clean speeech result, while MFCC has dropped
sharply. Even in some negative SNR conditions, ANCC achieves
preferable accuracies. The result also proves that this model is not
sensitive to noise type.
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(a) Babble noise conditions
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(b) Factory noise conditions
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(c) F16 noise conditions
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Fig. 4. Speech recognition result comparisons between ANCC and
MFCC in various noise conditions.

4. DISCUSSION

This model works in a parallel fashion, where neurons in the same
layer do not interfere with each other. So it can be implemented on
parallel hardware to improve its computational efficiency.

The auditory model in this paper is speaker-independent. It
is obvious that for speaker-dependent applications, utterances from
only one speaker are used to train the neurons. However, our exper-
iments do not show that speaker-dependent neurons provide a better
performance.

This model is motivated by auditory neural mechanism, but it
does not incorporate a cochlear-like peripheral auditory stage. In
fact, such pre-processing does not match well with our model. Cochlear-
like filtering brings log-scale bandwidth, which compress the infor-
mation in high frequency region. But consonants such as stops and
fricatives distribute most of their energy there. So these consonants
have to be represented by more information from low frequency re-
gion. MFCC is not affected, since it only encodes spectral energy;
but in our model, spectral structures are also encoded. It is difficult
for NMF to generate neurons preferably respond to consonant when
much more training data are vowels with strong energy. Eventually
the resulting neurons fit neither vowels nor consonants perfectly.

This model does not incorporate inhibitory coupling of neurons
either, since NMF only generates non-negative outputs. This can
cause ambiguity to the sensible patterns of neurons, which may re-
duce the sparseness of the corresponding neural activity. But the
training method we use explicitly controls the resulting sparseness
degree, and can alleviate this problem to a certain extent.

The performance of ANCC in clean speech is not satisfactory.
We think the main reason is the neural response feature does not
have the smooth changing property as MFCC. This may be solved
by modeling neurons with non-linear behavior, which smoothes the
neural response while still preserve the noise robustness.

5. CONCLUSION

This paper addresses the problem of robust speech recognition by in-
troducing a computational auditory neural model to extracts noise re-
sistant features. This model includes two layers of auditory neurons
as feature detectors. A sparse coding method, NMF, is used to con-
struct neurons that are sensitive to speech patterns. The responses of
these neurons to speech can be processed into features called ANCC,
which shows strong robustness to noise in speech recognition. We
test the performance of ANCC using clean-speech trained recogniz-
ers to recognize speech in different noise conditions without addi-
tional treatments. The result shows that ANCC yields better results
than MFCC in most cases, especially in high noise conditions. This
model is also insensitive to noise stationarity.
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