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Abstract. In this paper, we propose a Bayesian estimation approach to extend
independent subspace analysis (ISA) for an overcomplete representation without
imposing the orthogonal constraint. Our method is based on a synthesis of ISA [1]
and overcomplete independent component analysis [2] developed by Hyvärinen
et al. By introducing the variables of dot products (between basis vectors and
whitened observed data vectors), we investigate the energy correlations of dot
products in each subspace. Based on the prior probability of quasi-orthogonal ba-
sis vectors, the MAP (maximum a posteriori) estimation method is used for learn-
ing overcomplete independent feature subspaces. A gradient ascent algorithm is
derived to maximize the posterior probability of the mixing matrix. Simulation
results on natural images demonstrate that the proposed model can yield over-
complete independent feature subspaces and the emergence of phase- and limited
shift-invariant features—the principal properties of visual complex cells.

1 Introduction

Recent linear implementations of efficient coding hypothesis [3,4], such as indepen-
dent component analysis (ICA) [5] and sparse coding [6], have provided functional
explanations for the early visual system, especially neurons in the primary visual cor-
tex (V1). Nevertheless, there are many complex nonlinear statistical structures in the
natural signals, which are not able to be extracted by a linear model. For instance,
Schwartz et al. have observed that, for natural images, there are significant statistical
dependencies among the variances of filter outputs [7]. Several algorithms have been
proposed to extend the linear ICA model to capture such residual nonlinear depen-
dencies [1,8,7,9]. Hyvärinen et al. developed the independent subspace analysis (ISA)
method, which generalizes the assumption of component independence to subspace
independence [1]. However, this method is limited to the complete case. The orthogo-
nality requirement of the mixing matrix restricts the generalization to the overcomplete
representation. In the overcomplete representation, the dimension of the feature vector
is larger than the dimension of the input. Overcomplete representations present several
potential advantages. High-dimensional representations are more flexible in capturing
inherent structures in signals. Overcomplete representations generally provide more ef-
ficient representations than the complete case [10]. Furthermore, studies of human vi-
sual cortex have shown interesting implications of overcomplete representations in the
visual system [11].
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In this paper, we combine ISA [1] and overcomplete independent component analy-
sis [2] to extend ISA for overcomplete representations. We apply a Bayesian inference
to estimating overcomplete independent feature subspaces of natural images. In order
to derive the prior probability of the mixing matrix, the quasi-orthogonality of the dot
product between two basis vectors is investigated. Moreover, we assume that the prob-
ability density of the dot products (between basis vectors and whitened observed data
vectors) in one subspace depends only on the norms of the projections of the data onto
the subspace. Then, a learning rule based on gradient ascent algorithm is derived to
maximize the posterior probability. Simulation results on natural image data are pro-
vided to demonstrate the performance of overcomplete representations for independent
subspace analysis. Furthermore, our model can lead to the emergence of phase- and
limited shift-invariant features—principal properties of visual complex cells as well.

This paper is organized as follows: In section 2, we propose a Bayesian approach to
estimate the overcomplete independent feature subspaces. The learning rule is given as
well. In section 3, some experimental results on natural images are presented. Finally,
some discussions on representation performance of the proposed method are given in
section 4.

2 Model

2.1 Bayesian Inference

In this section, we apply Bayesian MAP (maximum a posteriori) approach to estimating
overcomplete independent feature subspaces. The basic ICA model can be expressed as:

x = As =
N∑

i=1

aisi, (1)

where x = (x1, x2, ..., xM )T is a vector of observed data, s = (s1, s2, ..., sN )T is a
vector of components, and A is the mixing matrix. ai is ith the column of A, and it
is often called basis function or basis vector. In our model, the observed data vector
x is whitened to vector data z, just as the preprocessing step in most ICA methods.
Furthermore, instead of considering the independent components, as in most ICA, we
consider the dot product between the ith basis vector and the whitened data vector. For
simplicity, it is assumed that the norms of the basis vectors are set to be unity and that
the variances of the sources can differ from unity. Then, the dot product is

yi = aT
i z = aT

i As = si +
∑

j �=i

aT
i ajsj , (2)

where si is the ith independent component. Given the overcomplete representations of
our model (there is a large number of components in a high-dimensional space), the
second term approximately follows Gaussian distribution. Moreover there is no com-
ponent whose variance is considerably larger than others. Therefore the marginal distri-
butions of dot products should be maximally sparse (super-Gaussian). And maximizing
the non-Gaussianities of these dot products is sufficient to provide an approximation
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of basis vectors. Thus, we we can replace the component si by the dot product yi

to estimate independent feature subspaces. Considering the dot product vector y =
(y1, ..., yN )T = AT z, the probability for z given A can be approximated by

p(z(t)|A) = p(y) ≈ C

N∏

i=1

pyi(yi) = C

N∏

i=1

pyi(a
T
i z(t)), (3)

where C is a constant. Obviously, the accuracy of the prior probability pyi is impor-
tant, especially for overcomplete representations [10]. Several choices of prior on the
basis coefficients P (s) have been applied in classical linear models respectively. Bell
and Sejnowski utilize the prior P (si) ∝ sech(si), which is corresponding to the hyper-
bolic tangent nonlinearity [5]. Olshausen and Field use a generalized Cauchy prior [6].
Whereas van Hateren and van der Schaaf simply explore non-Gaussianity [12]. Nev-
ertheless, all these choices of prior is derived under a single-layer network of linear
model. Surely, it is desirable to capture nonlinear dependencies by a second or third
stage in a hierarchical fashion.

In our model, we apply the prior probability pyi proposed in the ISA algorithm, in
which the basis function coefficients in each subspace have the energy correlations [1].
A diagram of feature subspaces is given in Figure 1.

Fig. 1. Illustration of feature subspaces. The dot products between basis vectors and whitened
observed data vectors are taken. Then, they are squared respectively and summed inside the same
feature subspace. Square roots are taken for normalization.

The dot product (neuronal response) yi is assumed to be divided into n-tuples, so
that yi inside a given n-tuple may be dependent on each other, but different n-tuples are
mutually independent. The subspaces model introduces a certain dependency structure
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for different components. Let Ωj , j = 1, ..., J denote the set of independent feature
subspaces, where J is the number of subspaces. The probability distributions for n-
tuples of yi are spherically symmetric. In other words, the probability density pyj (.) of
n-tuple can be expressed as a function of the sum of the squares of yi, i ∈ Ωj only.
And, for simplicity, we assume pyj (.) are identical for all subspaces. Therefore, the
probability density inside the jth n-tuple of yi can be calculated:

pyj(yj) = exp
(
G

( ∑

i∈Ωj

y2
i

))
, (4)

where the function G(y) should be convex for non-negative y. For example, one could
use the form of G(.) as: G(y) = −α1

√
y + β1, where α1 is the scaling constant

and β1 is the normalization constant. These constants are unimportant for the learning
process.

Overcomplete representations mean that there is a large number of basis vectors. In
other words, the basis vectors are randomly distributed in a high-dimensional space. In
order to approximate the prior probability of basis vectors, we employ a result presented
by Hecht-Nielsen [13]: the number of almost orthogonal directions is much larger than
that of orthorgonal directions. This property is called quasi-orthogonality [2]. There-
fore, in a high-dimensional space even vectors having random directions might be suf-
ficiently close to orthogonality. Thus, the prior probability of the mixing matrix A can
be obtained in terms of the quasi-orthogonality as follows:

p(A) = cm

∏

i<j

(
1 − (aT

i aj)2
)m−3

2 , (5)

where cm is a constant. The detailed derivation of Equation (5) can be obtained
in [2].

Bayes’ Theorem allows one to describe the probability of the model in terms of the
likelihood of the data and the prior probability of the model. Thus, given observation z,
the posterior probability p(A|z) can be derived as follows:

p(A|z) =
p(z|A)p(A)

p(z)
, (6)

where p(z) is constant with respect to A.
It is easier to estimate the mixing matrix that maximize the logarithm of posterior

probability p(A|z). Thus, taking the logarithm of Equation (6) and combining Equation
(5) with Equation (3) and (4), we obtain the approximation of log-probability of the
posterior:

log p(A|z(t), t = 1, .., T ) ∝
T∑

t=1

J∑

j=1

G
( ∑

i∈Ωj

y2
i

)
+ αT

∑

i<j

log(1 − (aT
i aj)2) + C.(7)

where α is a constant related to cm.
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2.2 Learning Rule

Gradient ascent maximization of posterior probability over basis vector ak yields the
following learning rule:

Δak ∝ η

( T∑

t=1

z(t)
(
aT

k z(t)
)
g
( ∑

i∈Ωj(k)

(aT
i z(t))2

)
+ αT

∑

i<j

−2aT
i aj

1 − (aT
i aj)2

bk

)
, (8)

where η is the learning rate, and Ωj(k) is the subspace to which ak belongs. bk is the
kth column vector of matrix B = [0, ..., aj , ..., ai, ...0], aj is the ith column vector, and
ai is the jth column vector. The function g is the derivative of G. After each iteration
in equation (8), the norm of the basis vector ak needs to be set to unity. This is different
from ordinary ISA, where the mixing matrix is orthonormalized.

3 Simulations

We tested the algorithm for overcomplete independent subspace analysis on natural im-
age data. The training set of images consists of 50,000 patches of size 16 × 16 that
were randomly extracted from thirteen 256 × 512 pixel gray images. We use the natu-
ral images in [1], which is available on http://www.cis.hut.fi/projects/ica/data/images/.
The mean gray-scale value of data (i.e., the DC component) was removed. The dimen-
sion of data was reduced by principle component analysis, projecting onto the leading
160 eigenvectors of the data covariance matrix. Then, the data vectors were whitened
as in most ICA methods. The log posterior probability was maximized by an ordinary
gradient method to estimate A, using the averaged version of the learning rule in equa-
tion (8). Note that there was no constraint of orthogonality of basis vectors during each

(a) (b)

Fig. 2. Learned bases from natural images. (a) complete case (40 subspaces and 4 basis vectors
in each subspace) (b) 2× overcomplete case (40 subspaces and 8 basis vectors in each subspace).
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iteration. Only the norms of basis vectors were set to unity. The random initial value
was set for mixing matrix.

The effects of varying the level of overcompleteness and the dimension of subspaces
were investigated in depth. The basis was set to be complete and 2× overcomplete.
The dimension of components is 160 and 320, respectively. Figure 2 shows the esti-
mated basis vectors, which is the complete case of four-dimensional subspaces and 2×
overcomplete case of eight-dimensional subspaces.

To analyze the tiling properties of the estimated basis vectors, we fitted each basis
vector with a Gabor function by minimizing the squared error between the estimated ba-
sis vectors and the model Gabor. Figure 3 shows the distribution of parameters obtained
by fitting Gabor functions to complete and 2× overcomplete basis vectors. We can see
that, with the increasing of the level of overcompleteness, the scattering points in the
plot of location, spatial frequency and orientation become denser and more uniform.
And the distribution of phase is much closer to uniform.
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Fig. 3. The distributions of parameters derived by fitting Gabor functions with completeness and
2× overcompleteness. (a) Center location of Gabor fitted within a patch. (b) Joint distribution
of orientation and spatial frequency (plotted in the upper-half plane) (c) Histogram of phase of
Gabor fitted (mapped to range 0 ◦˜ 90 ◦).

Furthermore, we compare the responses of all the feature subspace and the corre-
sponding linear filters for different stimulus cases. First, an optimal stimulus for the
feature subspace was computed in the set of Gabor filters. The tested stimuli for the
subspace was calculated in the set of Gabor functions. In each time, only one stim-
uli parameter was changed to see how the response changes. The tested parameters
were location (shift), orientation, and phase. Figure 4 shows the median responses of
the whole population of 40 subspace and 320 linear filters corresponding to 2× over-
complete case. The top row shows the absolute responses of the linear filters, and the
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Fig. 4. Statistical curves for whole population and linear filers while shifting different Gabor
parameters: orientation, frequency, and phase with 2× overcompleteness. The solid line gives the
median response in the population of all filters or subspaces. The dashed lines give the 90% and
10% percentiles of the responses.

bottom row shows the results of the feature subspaces. We can see that the responses of
subspaces are considerably invariant to phase, and somewhat invariant to position. The
sharpness of tuning to orientation and spatial frequency remains roughly unchanged.
Thus it can be observed that invariance with respect to phases is a strong property of
the feature subspaces. It is closely related to the response properties of complex cells in
V1, which are based on location, frequency, and orientation and independent of phase.
In contrast, the responses of the linear filters show no invariance with respect to any of
these parameters.

4 Discussions and Conclusions

We have demonstrated in this paper how the Bayesian approach can be employed for
learning overcomplete representations by utilizing the quasi-orthogonal property of
basis vectors in a high-dimensional space, whereas ordinary ISA can only provide com-
plete representations of basis functions. In addition, we examine the dot products (be-
tween basis vectors and whitened observed data vectors) instead of the basis function
coefficients. Furthermore, our model need not impose the constraint of orthogonality
on basis vectors. Only the norms of basis vectors were set to unity during the learning
process. In contrast, basis vectors have to be orthogonal in ordinary ISA. Compared
with the methods for estimating overcomplete bases by using maximum likelihood es-
timation, our method is as computationally effective as basic ICA estimation.

Another issue addressed in this paper is the relevance of the learned codes to neu-
robiological plausibilities. Both complete and overcomplete basis functions adapted to
natural images suggest functional similarities to neurons of V1 receptive fields. Simula-
tion results on natural image data demonstrate that our model can lead to the emergence
of phase- and shift-invariant features—principal properties of visual complex cells as
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well. This method shows promising prospects in extended applications of our method
to higher levels of cortical representations.

An important concern in our model is the accuracy of the coefficient prior proba-
bility. Our overcomplete ISA algorithm can capture the underlying statistical structure
of images, i.e., the energy correlations of coefficients in each subspace. However, a
Laplacian prior probability as in overcomplete ICA algorithms can not capture well
higher-order statistics, such as dependencies among the variances of filter outputs. This
method finds compact descriptions of overcomplete representation and has the potential
in a wide varieties of applications, such as image processing and pattern recognition.
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