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Abstract

Visual perception of rotation is one of important func-
tions of processing information in the visual pathway. To
simulate the mechanism, we propose a model for perception
of rotation. First, we briefly introduce the rotation-invariant
basis functions learned from natural scenes using Indepen-
dent Component Analysis (ICA). We used these basis func-
tions to construct the perceptual model. By using the cor-
relation coefficients of two neural responses as the measure
of rotation-invariance, our model can perform the task of
perception of rotating angles. Computer simulation results
show that the present model is able to perceive rotation-
invariance and successfully perceive the relative angles of
rotating patches.

1. Introduction

We can recognize an object regardless of its distance, po-
sition or rotating angle. In the mathematical term, object
recognition is not influenced by its transformation, such as
translation, rotation or scale. Such capability of our recog-
nizing transformation-invariant objects can become an in-
herent ability whether it is native or of learning in our in-
fancy. Many recent researches in the fields of neuroscience,
neurophysiology and psychology show that such a transfor-
mation invariant preprocessing could be a necessary step to
achieve transformation-invariant classification or detection
in a hierarchical system. In this paper, we will focus on the
mechanism of rotation invariance. We will propose a hi-
erarchical model that simulates the mechanism in the visual
pathway. On the other hand, due to evolution from nature in
the long term, this mechanism has an important correlation
with statistical properties of natural scenes. Following the
way, Barlow[1, 2] found that the role of early sensory neu-
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rons in the visual pathway is to remove statistical redun-
dancy in the sensory inputs, suggesting that Redundancy
Reduction is an important processing principle in the neu-
ral system. Based on this concept, Gabor-like features re-
sembling the receptive fields of V1 cells have been derived
either by imposing sparse over-complete representations[3]
or statistical independence as in independent component
analysis[4].

However, these studies have not taken transformation in-
variance into account, and the question is how well this line
of research predicts the full spatiotemporal receptive fields
of simple cells. For example, when an image rotates within
receptive fields of simple cells, how do the simple cells and
complex cells response? Some researchers have investi-
gated the question. Hyvarinen and Hoyer[5, 6] modelled re-
ceptive fields of complex cells and Van Hateren [7]obtained
spatiotemporal receptive fields of complex cells. Grimes
and Rao[10] proposed a bilinear generative model to study
the translation-invariance. However, there are few mod-
els in the literatures of physiologically and neurophysio-
logically perceiving rotation of objects or images. To in-
vestigate the question, we apply Independent Component
Analysis(ICA) to learning from natural scenes the rotation-
invariant features, and use the features to construct a model
for rotation-invariant perception. The goal of the model is
to perceive the rotation of patches from natural images.

The rest of the paper is organized as follows. Section 2
introduces our model for perception of rotation invariance.
In section 3, we will demonstrate perception of rotation-
invariance and rotation of patches. In the final section we
provide some discussions and conclusions.

2. Model for perception of rotation invariance

In this section, we first show rotation-invariant basis
functions which can be learned from natural scenes. Then
using the basis functions, we propose a computational
model for perception of rotation invariance.



2.1. Rotation-invariant basis functions

To learn rotation-invariant basis functions from natural
scenes, we sample small patches from a set of big natu-
ral images. A sampling window with size of 11 × 11 is
randomly located on a big natural scene and a patch with
the same size of the sampling window is selected, denotes
u1. Then fix the same center, clockwise rotate the sampling
window by an interval of 15 degree, another patch is sam-
pled. Again, rotate the window and sample the next one, till
twenty-four times. In the same way, the total twenty-four
patches are sampled and then reshaped to one column vec-
tor as a sample, size of 2904-by-1. From the set of big nat-
ural images, we obtain total 20000 of samples as the train-
ing data for learning rotation-invariant basis functions. Ap-
plying ICA with the learning algorithm based on the Nat-
ural Gradient[8, 9] to the training data yields the rotation-
invariant basis functions, shown in Figure 1. Any of basis
functions resembles the receptive field of a simple cell in
V1, and a group of basis functions in a row is similar to the
receptive field of a complex cell which performs perception
of rotation invariance. The neighboring basis functions in a
row have an interval of fifteen degree of counter-clockwise
rotation. Basis functions in a column are in the same group
of which elements are used to reconstruct the input patterns
while given corresponding activities of simple cells. For the
convenience of viewing the regularity, these basis functions
are arranged in counter-clockwise along the circumference
with an interval of fifteen degree, shown in Figure 2. Every
circle has the properties of the receptive field of a complex
cell.

2.2. The perception model

In this section, we will present a model for rotation-
invariant perception, shown in Figure 3. The input patterns
are two patches with parameters of αi and αj , respectively.
Here, αi and αj are the rotating angles within the range of
zero and three hundred sixty degree by an interval of fifteen.

The middle layer of the model is a group of rotational
basis functions through which neurons respond to input pat-
terns. These basis functions are arranged in a matrix. There
are 100 basis functions in one row and 24 in one column.
Those in one row have different parameters of characteris-
tics: location, orientation and bandpass. These characteris-
tics inhere in the receptive fields of simple cells. And those
in one column have some variant parameters which are ob-
tained by rotating their neighboring basis functions.

In the next layer of the model, there are two groups of
neurons. One group of neurons receives the stimulus ut1

αi

at time t1 and the other group receives the stimulus ut1
αj

at
time t2. Where, one of neurons in a row fires while the

Figure 1. Subsets of rotation-invariant basis
functions. Basis functions in a row resem-
ble the receptive field of a complex cell which
performs perception of rotation invariance.
Rotational interval is fifteen degree.

stimulus contains the content of the same orientation as that
of receptive field of the neuron. If the content appears at
time t1 and its rotation transformation at time t2, there are
two neurons which fire at time t1 and t2, respectively. And
that, the two neurons must be at the same column because
that the corresponding basis functions of the two neurons
can be transformed to each other by rotation transformaton.

After neurons receiving the stimuli uαi
at time t1 and

uαj
at time t2 , the final layer of the model calculates the

correlation coefficients between any two responses Xt1
αi

(i =
1, ...,M) and Xt2

αj
(j = 1, ...,M). The max coefficient is

selected to determine the relative value of rotating angles.
The index (i, j) of the maximum in coefficient matrix will
tell us the relative difference such as counter-clockwise ro-
tation angle ∆θ. It is necessary to note that we only need the
relative transformation, not the absolute value of parameters
of the stimuli. If j ≥ i, ∆θ = (j − i)× 360/M ; otherwise,
∆θ = (M + j − i) × 360/M . An example of rotation
perception is demonstrated in section 3.2.

3. Simulations and Results

We will show two experimental results to verify the per-
formance of our proposed model. One is how the neurons
with different rotation angles respond when twenty-four
patches are feed to the model. These twenty-four patches
are transformed to each other by rotation transformation.
The another demonstrates how to perceive rotation of image
patches. And we will present perception of rotating faces as



Figure 2. Subsets of rotation-invariant ba-
sis functions. Every circle contains twenty-
four basis functions which are arranged in
counter-clockwise along the circumference
with an interval of fifteen degree. Every cir-
cle resembles the receptive field of a complex
cell which is able to perceive rotation invari-
ance. The first circle is the rearrangement of
the basis functions in the first row in Figure
1.

an application of the model.

3.1. Rotation invariance

In this section, we will investigate the rotation invari-
ance. The rotation invariance means that the response
of a neuron slightly fluctuates while the stimulus rotates
within the receptive field of the neuron. First we gener-
ate a testing sample U which is composed of twenty-four
patches {uαi

}(i = 1, · · · , 24) selected from natural im-
ages by the method mentioned in section 2.2. The Se-
quences {uα1 , uα2 , · · · , uα24} , as input patterns shown in
Figure 4, are feed to the perceptual model. The corre-
sponding responses of neurons through the basis functions
{Fα1 , Fα2 , · · · , Fα24} are plotted in Figure 5. From the Fig-
ure 5, the similarity of responses of rotation-invariant neu-
rons is very high while the stimulus rotates within their re-
ceptive fields.

Randomly select two responses, for example, Xt1
α6

and
Xt1

α11
, examine the dispersion between them, as shown in

Figure 6. The bottom line tells us that the dispersion be-
tween Xt1

α6
and Xt1

α11
is very small. In other words, the

rotation-invariant neurons activate while the stimulus ro-
tates within their receptive fields. These neurons are able
to perceive rotation invariance.

Figure 3. Model for transformation-
invariant perception. The input pat-
terns are the rotation-transformed data.
xt1

αi,k
(k = 1, 2, · · · , N) denotes the response

of the k-th neuron in the row αi responding
to stimulus uαi

at time t1 through the basis
function Fαi,k

. And so does the response
xt2

αj,l
(l = 1, 2, · · · , N) at time t2. Xt1

αi
denotes

the vector of responses that the neurons
in the row αi respond to stimulus uαi

at
time t1 through the subsets Fαi

of basis
functions(Fαi

= [F t1
αi,1

, F t1
αi,2

, · · · , F t1
αi,N

]T ). That
is, Xt1

αi
= [xt1

αi,1
, xt1

αi,2
, · · · , xt1

αi,N
]T .

Figure 4. An example U={uα1 , uα2 , · · · , uα24} of
testing patches. The corresponding rotation
angles are 0, 15, · · ·, 345 degree from the
topleft to bottomright.

3.2. Perception of rotation

After having investigated the rotation invariance, we will
apply the model to perception of rotation. From the sam-
ple U , randomly select two image patches uαi

and uαj
(i.e.

i = 6, j = 11). That is, the sixth and eleventh of stimuli
represent rotational angles of ninety and one hundred and
sixty-five in degree. The sixth patch is the first input to
the perception model at time t1and the eleventh at time t2.
The activities of the 24 × 100 neurons are plotted in Fig-
ure 7. Let Xt1

αi
(i = 1, 2, · · · , 24) denote the responses of a

hundred neurons in the i-th row receiving the stimulus uαi

at time t1. Investigating carefully, we will find that Xt1
α6

is
similar very much to Xt2

α11
. In fact, that is the truth. Because

the Fα6 has the same properties of transformation from the
Fα11 , and so do the stimuli uα6 and uα11 . For more exam-
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Figure 5. Responses Xt1
αi

(i, j = 1, 2, · · · , 24) of
neurons with the basis functions Fαi

. The
corresponding stimulus uαi

as shown in Fig-
ure 4. The top line is the first one, and the
bottom is the twenty-fourth.

ples, Xt1
α1

is similar to Xt2
α6

, Xt1
α2

to Xt2
α7

, Xt1
α4

to Xt2
α9

, and
so on.

For ease of viewing the similarity of any two lines, we
examine the correlation coefficients of Xt1

αi
and Xt2

αj
. Fol-

lowing the idea, we compute the matrix of the correla-
tion coefficients Coeff(Xt1

αi
,Xt2

αj
)(i, j = 1, 2, · · · , 24), as

shown in Figure 8. Find the max value from any row in the
matrix and obtain its corresponding index of row and col-
umn. For instance, at the first row, the index of the max
Coeff(Xt1

α1
,Xt2

α6
) is (1,6). So, we know the relative rotating

angle is (6-1)×15=75 degree according to the measure in
section 2. The experimental result is the expectation of the
relative angle of rotating from the stimulus uα6 at time t1
to uα11 at time t2. It is necessary to note that we only need
the relative transformation, not the absolute value of angles
of the stimuli.

3.3. Application for perception of face ro-
tation

As an example of applications of the model, perception
of rotating faces is given. First, use rotating faces to learn
rotation-invariants face features, and then replace the basis
functions in the model with the face features. When two ro-
tating faces are feed to the model, it returns relative rotating
angle. The perceptual accuracy is greater than 96%. This
result is very important for face detection and recognition.
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Figure 6. Rotation-invariant analysis. The top
line denotes the Responses Xt1

α6
, the middle

line denotes Xt1
α11

, and the bottom line de-
notes the dispersion between Xt1

α6
and Xt1

α11
.

4. Discussions and Conclusions

Visual perception of rotation is one of the important
functions of processing information in the visual pathway.
To simulate the mechanism, we have proposed a model for
perception of rotation and demonstrated some simulation
results. First, we briefly introduce how to learn the rotation-
invariant basis functions, and then we apply them to the per-
ceptual model which was introduced in detail in section 2.
Second, we investigated the rotation invariance of neurons
in the model. Finally, we demonstrated an example of per-
ception of rotation. Simulation results show that our pro-
posed model successfully performs the rotation perception
of rotating images. Following a rational line of application,
it is of facility to apply the model to perception of the ro-
tating velocity while given the rotating time. And it is also
applied to perception of the rotating direction so long as two
relative rotating angles are perceived.

However, Compared with the bilinear generative
model[10] proposed by Grimes and Rao, our model has
some advantages such as easy realization and less comput-
ing cost, and more transformation-invariant features. They
only explored the model for learning translation-invariant
basis functions, but they did not give good applications. On
the basis of the idea presented in this paper, translation-
or scaling-invariant basis function can be obtained and our
model is easily extended for perception of translation and
scaling by only simply replacing the rotation-invariant ba-
sis functions with translation- or scaling-invariant ones.

Our current efforts are focused on the perception of the
rotating velocity and direction of objects in the sequences
of natural videos. We are also extending the model to a
framework for learning other transformation-invariant basis
functions and perception of other transformations such as
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Figure 7. Responses of the neurons. The k-th
line denotes the responses Xt1

αk
of neurons

in the k-th row in Figure 3. The top line is the
first one. The left plot shows the responses
to the stimulus uα6 at time t1 and the right
the stimulus uα11 at time t2. For an explicit
of demonstration, the responses are shifted
along the Y-axis.

translation, scaling, and view changes.
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