
Flexible Component Analysis for Sparse,

Smooth, Nonnegative Coding or Representation

Andrzej Cichocki�, Anh Huy Phan, Rafal Zdunek��, and Li-Qing Zhang���

RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
cia@brain.riken.jp

Abstract. In the paper, we present a new approach to multi-way Blind
Source Separation (BSS) and corresponding 3D tensor factorization that
has many potential applications in neuroscience and multi-sensory or
multidimensional data analysis, and neural sparse coding. We propose
to use a set of local cost functions with flexible penalty and regularization
terms whose simultaneous or sequential (one by one) minimization via
a projected gradient technique leads to simple Hebbian-like local algo-
rithms that work well not only for an over-determined case but also (un-
der some weak conditions) for an under-determined case (i.e., a system
which has less sensors than sources). The experimental results confirm
the validity and high performance of the developed algorithms, especially
with usage of the multi-layer hierarchical approach.

1 Introduction – Problem Formulation

Parallel Factor analysis (PARAFAC) or multi-way factorization models with
sparsity and/or non-negativity constraints have been proposed as promising and
quite efficient tools for processing of signals, images, or general data
[1,2,3,4,5,6,7,8,9]. In this paper, we propose new hierarchical alternating algo-
rithms referred to as the Flexible Component Analysis (FCA) for BSS, including
as special cases: Nonnegative Matrix/Tensor Factorization (NMF/NTF), SCA
(Sparse Components Analysis), SmoCA (Smooth Component Analysis). The
proposed approach can be also considered as an extension of Morphological
Component Analysis (MoCA) [10]. By incorporating nonlinear projection or fil-
tering and/or by adding regularization and penalty terms to the local squared
Euclidean distances, we are able to achieve nonnegative and/or sparse and/or
smooth representations of the desired solution, and to alleviate a problem of
getting stuck in local minima.

In this paper, we consider quite a general factorization related to the 3D
PARAFAC2 model [1,5] (see Fig.1)

Y q = ADq
˜Xq + Nq = AXq + Nq, (q = 1, 2, . . . , Q) (1)
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where Y q = [yitq] ∈ R
I×T is the q-th frontal slice (matrix) of the observed

(known) 3D tensor data or signals Y ∈ R
I×T×Q, Dq ∈ R

J×J
+ is a diagonal scal-

ing matrix that holds the q-th row of the matrix D ∈ R
Q×J , A = [aij ] =

[a1, a2, . . . , aJ ] ∈ R
I×J is a mixing or basis matrix, ˜Xq = [x̃jtq ] ∈ R

J×T

represents unknown normalized sources or hidden components in q-th slice,
Xq = Dq

˜Xq = [xjtq ] ∈ R
J×T represents re-normalized (differently scaled)

sources, and Nq = [nitq ] ∈ R
I×T represents the q-th frontal slice of the tensor

N ∈ R
I×T×Q representing noise or errors. Our objective is to estimate the set

of all matrices: A, Dq, ˜Xq, subject to some natural constraints such as non-
negativity, sparsity or smoothness. Usually, the common factors, i.e., matrices
A and ˜Xq are normalized to unit length column vectors and rows, respectively,
and are often enforced to be as independent and/or as sparse as possible.

The above system of linear equations can be represented in an equivalent
scalar form as follows yitq =

∑

j aijxjtq +nitq, or equivalently in the vector form
Y q =

∑

j aj xjq + Nq, where xjq = [xj1q , xj2q , . . . , xjTq ] are the rows of Xq,
and aj are the columns of A (j = 1, 2, . . . , J). Moreover, using the row-wise
unfolding, the model (1) can be represented by one single matrix equation:

Y = AX + N , (2)

where Y = [Y 1, Y 2, . . . , Y Q] ∈ R
I×QT , X = [X1, X2, . . . , XQ] ∈ R

J×QT , and
N = [N1, N2, . . . , NQ] ∈ R

I×QT are block row-wise unfolded matrices1. In the
special case, for Q = 1 the model simplifies to the standard BSS model used
in ICA, NMF, and SCA . The majority of the well-known algorithms for the
PARAFAC models work only if the following assumption T >> I ≥ J is held,
where J is known or can be estimated using PCA/SVD. In the paper, we pro-
pose a family of algorithms that can work also for an under-determined case,
i.e., for T >> J > I, if sources are enough sparse and/or smooth. Our pri-
mary objective is to estimate the mixing (basis) matrix A and the sources Xq,
subject to additional natural constraints such as nonnegativity, sparsity and/or
smoothness constraints. To deal with the factorization problem (1) efficiently, we
adopt several approaches from constrained optimization, regularization theory,
multi-criteria optimization, and projected gradient techniques. We minimize si-
multaneously or sequentially several cost functions with the desired constraints
using switching between two sets of parameters: {A} and {Xq}.

1 It should be noted that the 2D unfolded model, in a general case, is not exactly
equivalent to the PARAFAC2 model (in respect to sources Xq), since we usually
need to impose different additional constraints for each slice q. In other words,
the PARAFAC2 model should not be considered as a 2-D model with the single
2-D unfolded matrix X . Profiles of the augmented (row-wise unfolded) X can
only be treated as a single profile, while we need to impose individual constraints
independently to each slice Xq or even to each row of Xq . Moreover, the 3D tensor
factorization is considered as a dynamical process or a multi-stage process, where
the data analysis is performed several times under different conditions (initial
estimates, selected natural constraints, post-processing) to get full information
about the available data and/or discover some inner structures in the data, or to
extract physically meaningful components.



FCA for Sparse, Smooth, Nonnegative Coding or Representation 813

Q Q

NA

Q

J

I

T T

= +......
Y

1

i

q

1 Tt

1
1

1
1

J

D

( )I T Qx x ( )I Jx ( )J T Qx x ( )I T Qx x

JI IT

qX
~ Q
X~

1
X~

Fig. 1. Modified PARAFAC2 model illustrating factorization of 3D tensor into a set
of fundamental matrices: A, D, {�Xq}. In the special case, the model is reduced to

standard PARAFAC for �Xq =�X1, ∀q, or tri-NMF model for Q = 1.

2 Projected Gradient Local Least Squares Regularized
Algorithm

Many algorithms for the PARAFAC model are based on Alternating Least
Square (ALS) minimization of the squared Euclidean distance [1,4,5]. In par-
ticular, we can attempt to minimize a set of the following cost functions:

DFq(Y q||AXq) =
1
2
‖Y q −AXq‖2F + αAJA(A) + αXJXq (Xq), (3)

subject to some additional constraints, where JA(A), JXq (Xq) are penalty or
regularization functions, and αA and αX are nonnegative coefficients controlling
a tradeoff between data fidelity and a priori knowledge on the components to
be estimated. A choice of the regularization terms can be critical for attaining
a desired solution and noise suppression. Some of the candidates include the
entropy, lp-quasi norm and more complex, possibly non-convex or non-smooth
regularization terms [11]. In such a case a basic approach to the above formulated
optimization problem is alternating minimization or alternating projection: the
specified cost function is alternately minimized with respect to two sets of the
parameters {xjtq} and {aij}, each time optimizing one set of arguments while
keeping the other one fixed [6,7].

In this paper, we consider a different approach: instead of minimizing only one
global cost function, we perform sequential minimization of the set of local cost
functions composed of the squared Euclidean terms and regularization terms:

D
(j)
Fq(Y

(j)
q ||ajxjq) =

1
2
‖(Y (j)

q − ajxjq)‖2F + α(j)
a Ja(aj) + α

(j)
Xq

Jx(xjq), (4)

for j = 1, 2, . . . , J, q = 1, 2, . . . , Q, subject to additional constraints, where

Y (j)
q = Y q −

∑

r �=j

ar xrq = Y q −AXq + aj xjq, (5)
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aj ∈ R
I×1 are the columns of the basis mixing matrix A, xjq ∈ R

1×T are the
rows of Xq which represent unknown source signals, Ja(aj) and Jx(xjq) are local
penalty regularization terms which impose specific constraints for the estimated
parameters, and α

(j)
a ≥ 0 and α

(j)
Xq
≥ 0 are nonnegative regularization parameters

that control a tradeoff between data-fidelity and the imposed constraints.
The construction of such a set of local cost functions follows from the sim-

ple observation that the observed data can be decomposed as follows Y q =
∑J

j=1 ajxjq + Nq, ∀ q. We are motivated to use of such a representation and
decomposition, because xjq have physically meaningful interpretation as sources
with specific temporal and morphological properties.

The penalty terms may take different forms depending on properties of the
estimated sources. For example, if the sources are sparse, we can apply the lp-
quasi norm: Jx(xjq) = ||xjq ||pp = (

∑

t |xjtq |p)1/p with 0 < p ≤ 1, or alternatively

we can use the smooth approximation Jx(xjq) =
[

∑T
t |xjtq |2 + ε

]p/2

, where
ε ≥ 0 is a small constant. In order to impose local smoothing of signals, we can
apply the total variation (TV) Jx(xjq) =

∑T−1
t=1 |xj,t+1,q − xj,t,q|, or if we wish

to achieve a smoother solution: Jx(xjq) =
∑T−1

t=1

√|xj,t+1,q − xj,t,q|2 + ε, [12].
The gradients of the local cost function (4) with respect to the unknown

vectors aj and xjq are expressed by

∂D
(j)
Fq(Y

(j)
q ||aj xjq)

∂xjq

= aT
j aj xjq − aT

j Y (j)
q + α

(j)
Xq

Ψx(xjq), (6)

∂D
(j)
Fq(Y

(j)
q ||aj xjq)

∂aj
= aj xjq xT

jq − Y (j)
q xT

jq + α(j)
a Ψa(aj), (7)

where the matrix functions Ψa(aj) and Ψx(xjq) are defined as2

Ψa(aj) =
∂J

(j)
a (aj)
∂aj

, Ψx(xjq) =
∂J

(j)
x (xjq)
∂xjq

. (8)

By equating the gradient components to zero, we obtain a new set of local
learning rules:

xjq ←
1

aT
j aj

(

aT
j Y (j)

q − α
(j)
Xq

Ψx(xjq)
)

, (9)

aj ← 1
xjq xT

jq

(

Y (j)
q xT

jq − α(j)
a Ψa(aj)

)

, (10)

for j = 1, 2, . . . , J and q = 1, 2, . . . , Q.
However, it should be noted that the above algorithm provides only a reg-

ularized least squares solution, and this is not sufficient to extract the desired
2 If the penalty functions are non-smooth, we can use sub-gradient instead of the

gradient.
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sources, especially for an under-determined case since the problem may have
many solutions. To solve this problem, we need additionally to impose nonlinear
projections PΩj (xjq) or filtering after each iteration or each epoch in order to
enforce that individual estimated sources xjq satisfy the desired constraints. All
such projections or filtering can be imposed individually for the each source xjq

depending on morphological properties of the source signals. The similar nonlin-
ear projection ˜PΩj (aj) can be applied, if necessary, individually for each vector
aj of the mixing matrix A. Hence, using the projected gradient approach, our
algorithm can take the following more general and flexible form:

xjq ←
1

aT
j aj

(aT
j Y (j)

q − α
(j)
Xq

Ψx(xjq)), xjq ← PΩj{xjq}, (11)

aj ← 1
xjq xT

jq

(Y (j)
q xT

jq − α(j)
a Ψa(aj)), aj ← ˜PΩj{aj}; (12)

where PΩj{xjq} means generally a nonlinear projection, filtering, transforma-
tion, local interpolation/extrapolation, inpainting, smoothing of the row vector
xjq. Such projections or transformations can take many different forms depend-
ing on required properties of the estimated sources (see the next section for more
details).

Remark 1. In practice, it is necessary to normalize the column vectors aj or
the row vectors xjq to unit length vectors (in the sense of the lp norm (p =
1, 2, ...,∞)) in each iterative step. In the special case of the l2 norm, the above
algorithm can be further simplified by neglecting the denominator in (11) or in
(12), respectively. After estimating the normalized matrices A and ˜Xq (i.e., the
normalized Xq to unit-length rows), we can estimate the diagonal matrices, if
necessary, as follows:

Dq = diag{A+ Y q
˜X

+

q }, (q = 1, 2, . . . , Q). (13)

3 Flexible Component Analysis (FCA) – Possible
Extensions and Practical Implementations

The above simple algorithm can be further extended or improved (in respect to
a convergence rate and performance). First of all, different cost functions can be
used for estimating the rows of the matrices Xq (q = 1, 2, . . . , Q) and the columns
of the matrix A. Furthermore, the columns of A can be estimated simultaneously,
instead one by one. For example, by minimizing the set of cost functions in (4)
with respect to xjq , and simultaneously the cost function (3) with normalization
of the columns aj to an unit l2-norm, we obtain a new FCA learning algorithm
in which the individual rows of Xq are updated locally (row by row) and the
matrix A is updated globally (all the columns aj simultaneously):

xjq ← aT
j Y (j)

q − α
(j)
Xq

Ψx(xjq), xjq ← PΩj{xjq}, (j = 1, . . . , J), (14)

A← (Y qX
T
q − αAΨA(A))(XqX

T
q )−1, A← ˜PΩ(A), (q = 1, . . . , Q),(15)
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with the normalization (scaling) of the columns of A to an unit length in the
sense of the l2 norm, where ΨA(A) = ∂JA(A)/∂A.

In order to estimate the basis matrix A, we can use alternatively the following
global cost function (see Eq. (2)): DF (Y ||AX) = (1/2)‖Y −AX‖2F +αAJA(A).
The minimization of the cost function for a fixed X leads to the updating rule

A←
[

Y XT − αAΨA(A)
]

(XXT )−1. (16)

3.1 Nonnegative Matrix/Tensor Factorization

In order to enforce sparsity and nonnegativity constraints for all the parameters:
aij ≥ 0, xjtq ≥ 0, ∀ i, t, q, we can apply the ”half-way rectifying” element-wise
projection: [x]+ = max{ε, x}, where ε is a small constant to avoid numerical
instabilities and remove background noise (typically, ε = [10−2 − 10−9]). Si-
multaneously, we can impose weak sparsity constriants by using the l1-norm
penalty functions: JA(A) = ||A||1 =

∑

ij aij and J
(j)
x (xjq) = ||xjq ||1 =

∑

t xjtq .
In such a case, the FCA algorithm for the 3D NTF2 (i.e., the PARAFAC2 with
nonnegativity constraints) will take the following form:

xjq ←
[

aT
j Y (j)

q − α
(j)
Xq

1
]

+
, (j = 1, . . . , J), (q = 1, . . . , Q), (17)

A←
[

(Y XT − αA1)(XXT )−1
]

+
, (18)

with normalization of the columns of A in each iterative step to a unit length
with the l2 norm, where 1 means a matrix of all ones of appropriate size.

It should be noted the above algorithm can be easily extended to semi-NMF
or semi-NTF in which only some sources xjq are nonnegative and/or the mixing
matrix A is bipolar, by simple removing the corresponding ”half-wave rectifying”
projections. Moreover, the similar algorithm can be used for arbitrary bounded
sources with known lower and/or upper bounds (or supports), i.e ljq ≤ xjtq ≤
uiq, ∀t, rather than xjtq ≥ 0, by using suitably chosen nonlinear projections
which bound the solutions.

3.2 Smooth Component Analysis (SmoCA)

In order to enforce smooth estimation of the sources xjq for all or some pre-
selected indexes j and q, we may apply after each iteration (epoch) the local
smoothing or filtering of the estimated sources, such as the MA (Moving Aver-
age), EMA, SAR or ARMA models.

A quite efficient way of smoothing and denoising can be achieved by minimiz-
ing the following cost function (which satisfies multi-resolution criterion):

J(xjq) =
T

∑

t=1

(xjtq − x̂jtq)
2 +

T−1
∑

t=1

λjtq gt (x̂j,t+1,q − x̂jtq) , (19)

where x̂jtq is a smoothed version of the actually estimated (noisy) xjtq , gt(u) is
a convex continuously differentiable function with a global minimum at u = 0,
and λjtq are parameters that are data driven and chosen automatically.
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3.3 Multi-way Sparse Component Analysis (MSCA)

In the sparse component analysis an objective is to estimate the sources xjq

which are sparse and usually with a prescribed or specified sparsification profile,
possibly with additional constraints like local smoothness. In order to enforce
that the estimated sources are sufficiently sparse, we need to apply a suitable
nonlinear projection or filtering which allows us adaptively to sparsify the data.
The simplest nonlinear projection which enforces some sparsity to the normalized
data is to apply the following weakly nonlinear element-wise projection:

PΩj (xjtq) = sign(xjtq)|xjtq |1+αjq (20)

where αjq is a small parameter which controls sparsity. Such nonlinear projection
can be considered as a simple (trivial) shrinking. Alternatively, we may use
more sophisticated adaptive local soft or hard shrinking in order to sparsify
individual sources. Usually, we have the three-steps procedure: First, we perform
the linear transformation: xw = xW , then, the nonlinear shrinking (adaptive
thresholding), e.g., the soft element-wise shrinking: PΩ(xw) = sign(xw) [|xw| −
δ]1+δ

+ , and finally the inverse transform: x̂ = PΩ(xw)W−1. The threshold δ > 0
is usually not fixed but it is adaptively (data-driven) selected or it gradually
decreases to zero with iterations. The optimal choice for a shrinkage function
depends on a distribution of data. We have tested various shrinkage functions
with gradually decreasing δ: the hard thresholding rule, soft thresholding rule,
non-negative Garrotte rule, n-degree Garotte, and Posterior median shrinkage
rule [13]. For all of them, we have obtained the promising results, and usually
the best performance appears for the simple hard rule.

Our method is somewhat related to the MoCA and SCA algorithms, pro-
posed recently by Bobin et al., Daubechies et al., Elad et al., and many others
[10,14,11]. However, in contrast to these approaches our algorithms are local
and more flexible. Moreover, the proposed FCA is more general than the SCA,
since it is not limited only to a sparse representation via shrinking and linear
transformation but allows us to impose general and flexible (soft and hard) con-
straints, nonlinear projections, transformations, and filtering3. Furthermore, in
the contrast to many alternative algorithms which process the columns of Xq,
we process their rows which represent directly the source signals.

We can outline the FCA algorithm as follows:

1. Set the initial values of the matrix A and the matrices Xq, and normalize
the vectors aj to an unit l2-norm length.

2. Calculate the new estimate xjq of the matrices Xq using the iterative formula
in (14).

3. If necessary, enforce the nonlinear projection or filtering by imposing natural
constraints on individual sources (the rows of Xq, (q = 1, 2, . . . , Q)), such
as nonnegativity, boundness, smoothness, and/or sparsity.

3 In this paper, in fact, we use two kinds of constraints: the soft (or weak) con-
straints via penalty and regularization terms in the local cost functions, and the
hard (strong) constraints via iteratively adaptive postprocessing using nonlinear
projections or filtering.
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4. Calculate the new estimate of A from (16), normalize each column of A to
an unit length, and impose the additional constraints on A, if necessary.

5. Repeat the steps (2) and (4) until the convergence criterion is satisfied.

3.4 Multi-layer Blind Identification

In order to improve the performance of the FCA algorithms proposed in this pa-
per, especially for ill-conditioned and badly-scaled data and also to reduce the
risk of getting stuck in local minima in non-convex alternating minimization,
we have developed the simple hierarchical multi-stage procedure [15] combined
together with multi-start initializations, in which we perform a sequential de-
composition of matrices as follows. In the first step, we perform the basic de-
composition (factorization) Y q ≈ A(1)X(1)

q using any suitable FCA algorithm
presented in this paper. In the second stage, the results obtained from the first
stage are used to build up a new tensor ̂X1 from the estimated frontal slices de-

fined as ̂Y
(1)

q = X(1)
q , (q = 1, 2, . . . , Q). In the next step, we perform the similar

decomposition for the new available frontal slices: ̂Y
(1)

q = X(1)
q ≈ A(2) X(2)

q ,
using the same or different update rules. We continue our decomposition taking
into account only the last achieved components. The process can be repeated
arbitrarily many times until some stopping criteria are satisfied. In each step, we
usually obtain gradual improvements of the performance. Thus, our FCA model
has the following form: Y q ≈ A(1)A(2) · · ·A(L)X(L)

q , (q = 1, 2, . . . , Q) with the
final components A = A(1)A(2) · · ·A(L) and Xq = X(L)

q .
Physically, this means that we build up a system that has many layers or

cascade connections of L mixing subsystems. The key point in our approach is
that the learning (update) process to find the matrices X(l)

q and A(l) is performed
sequentially, i.e. layer by layer, where each layer is initialized randomly. In fact,
we found that the hierarchical multi-layer approach plays a key role, and it is
necessary to apply in order to achieve satisfactory performance for the proposed
algorithms.

4 Simulation Results

The algorithms presented in this paper have been tested for many difficult bench-
marks for signals and images with various temporal and morphological properties
of signals and additive noise. Due to space limitation we present here only one
illustrative example. The sparse nonnegative signals with different sparsity and
smoothness profiles are collected in with 10 slices Xq (Q = 10) under the form
of the tensor X ∈ R

5×1000×10. The observed (mixed) 3D data Y ∈ R
4×1000×10

are obtained by multiplying the randomly generated mixing matrix A ∈ R
4×5

by X. The simulation results are illustrated in Fig. 2 (only for one frontal slice
q = 1).
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Fig. 2. (left) Original 5 spectra (representing X1); (middle) observed 4 mixed spec-
tra Y 1 generated by random matrix A ∈ R

4×5 (under-determined case); (right) es-

timated 5 spectra �X1 with our algorithm given by (17)–(18), using 10 layers, and

αA = α
(j)
X1

= 0.05. Signal-to-Interference Ratios (SIR) for A and X1 are as fol-
lows: SIRA = 31.6, 34, 31.5, 29.9, 23.1[dB] and SIRX1 = 28.5, 19.1, 29.3, 20.3, 23.2[dB],
respectively

5 Conclusions and Discussion

The main objective and motivations of this paper is to derive simple algo-
rithms which are suitable both for under-determined (over-complete) and over-
determined cases. We have applied the simple local cost functions with flexible
penalty or regularization terms, which allows us to derive a family of robust FCA
algorithms, where the sources may have different temporal and morphological
properties or different sparsity profiles. Exploiting these properties and a pri-
ori knowledge about the character of the sources we have proposed a family of
efficient algorithms for estimating sparse, smooth, and/or nonnegative sources,
even if the number of sensors is smaller than the number of hidden components,
under the assumption that the some information about morphological or desired
properties of the sources is accessible.

This is an original extension of the standard MoCA and NMF/NTF algo-
rithms, and to the authors’ best knowledge, the first time such algorithms have
been applied to the multi-way PARAFAC models. In comparison to the ordinary
BSS algorithms, the proposed algorithms are shown to be superior in terms of
the performance, speed, and convergence properties. We implemented the dis-
cussed algorithms in MATLAB [16]. The approach can be extended for other
applications, such as dynamic MRI imaging, and it can be used as an alterna-
tive or improved reconstruction method to: the k-t BLAST, k-t SENSE or k-t
SPARSE, because our approach relaxes the problem of getting stuck to in local
minima, and provides usually better performance than the standard FOCUSS
algorithms.

This research is motivated by potential applications of the proposed models
and algorithms in three areas of the data analysis (especially, EEG and fMRI)
and signal/image processing: (i) multi-way blind source separation, (ii) model
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reduction and selection, and (iii) sparse image coding. Our preliminary experi-
mental results are promising. The models can be further extended by imposing
additional, natural constraints such as orthogonality, continuity, closure, uni-
modality, local rank - selectivity, and/or by taking into account a prior knowledge
about the specific components.
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