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Brain computer interface (BCI) aims at creating new communication channels without depending on 
brain’s normal output channels of peripheral nerves and muscles. However, natural and sophisticated 
interactions manner between brain and computer still remain challenging. In this paper, we investigate 
how the duration of event-related desynchronization/synchronization (ERD/ERS) caused by motor im-
agery (MI) can be modulated and used as an additional control parameter beyond simple binary deci-
sions. Furthermore, using the non-time-locked properties of sustained (de)synchronization, we have 
developed an asynchronous BCI system for driving a car in 3D virtual reality environment (VRE) based 
on cumulative incremental control strategy. The extensive real time experiments confirmed that our 
new approach is able to drive smoothly a virtual car within challenging VRE only by the MI tasks with-
out involving any muscular activities. 

BCI, EEG, ERD/ERS, CSFP, TRSD/TRSS 

Real-time interfaces between the brain and electro-me- 
chanical devices could be used to restore sensory and 
motor functions lost from injury or disease[1,2]. Recent 
studies on invasive BCI have demonstrated that mon-
keys and humans are able to control external devices 
such as computer cursor by using brain signals[3–9]. 
Noninvasive BCI has in the recent years become a 
highly active research topic in neuroscience, engineering, 
and signal processing[10–14]. The BCI which decodes the 
user's intent from scalp-recorded encephalogram (EEG) 
activity, can be used for basic communication and con-
trol[15–18]. The subjects has to learn the self-control of a 
specific EEG feature and the system automatically 
adapts to the specific brain signals of each user by em-
ploying advanced techniques of machine learning and 
signal processing[19–23]. While BCI research hopes to 
create new communication channels for severely handi-
capped people by utilizing their brain signals, recently 
efforts have been focused also on developing potential 
applications in rehabilitation, multimedia communica-
tion, virtual reality and entertainment/relaxation[24,25]. 

Unfortunately, there is a widespread belief that 
complex control functions, such as robotic arms or 
neuroprosthesis, could probably not be achieved by 
noninvasive methods such as EEG which sum inputs 
from millions of neurons, owing to their poor resolution 
of brain activity[26,27]. In other words, relatively low 
performance of noninvasive BCI remains a major 
obstacle. In fact, the speed and accuracy of the most 
existing BCIs are still far lower than the systems relying 
on eye movements, no matter whether they are invasive 
or non-invasive. Most of the current EEG-based BCI 
systems have an information transfer rate (ITR) below 
0.5 bps. 

Our main objective was to develop a new prototype 
of noninvasive MI-based BCI, using EEG recorded from 
scalp, which can provide more complex control tasks 
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(i.e., driving a car) in real time than previously reported. 
We exploit not only the types of MI (e.g., imaginary 
hands and feet movements) for determining the rotation 
directions of steering wheel, but also the duration of 
specific MI, which can be viewed as the amplitude of 
corresponding command, is used for controlling the 
sophisticated steering angle in a continuously changing 
manner. Therefore, the user can freely navigate a car by 
adjusting the steering wheel angle. Moreover, he/she can 
speed up or automatically slow down the car. For this 
purpose, we have designed a cumulative incremental 
control (CIC) strategy, which can continuously update 
the current MI duration in an incremental manner and 
online reflects the current strength of corresponding MI 
tasks. In contrast to two or three discrete commands of 
most existing noninvasive BCIs, our system demonstra- 
tes that elaborated and smooth control functions, such as 
car speed and steering wheel angle, can be achieved in 
real time by modulating duration time of ERD/ERS 
corresponding to the specific MI tasks. In fact, our BCI 
system uses more flexible asynchronous protocols in 
which the subject can make self-paced decisions any 
time by switching among various MI tasks. 

Real-time experiments show that noninvasive BCI is 
able to accomplish quite complicated control tasks, such 
as driving a car in rapidly changing 3D VRE. 
Furthermore, our BCI system provides a good tradeoff 
between response speed and reliability by selecting an 
optimal length of the sliding window that produces the 
maximum ITR. The performance results indicate that we 
are able to increase the performance and robustness of 
noninvasive MI-based BCIs working in real time. 

1  Task-related sustained desynchroniza- 
tion 

This section provides some neurophysiological evidence 
suggesting a new mechanism for BCIs. It is well known 
that sensorimotor rhythms (SMR) decrease with 
movement or imagery of movement and increase in the 
postmovement period or during relaxation, which is 
referred to as event related desynchronization (ERD) or 
synchronization (ERS)[28,29]. It has been shown that the 
human motor cortex generally exhibits transient 
ERD/ERS responses, which are time locked to cue 
stimulus. However, most previous studies were mainly 
focused only on the detection and latency of ERD/ERS. 
Moreover, it was assumed that each of such events can 

only produce ERD/ERS over a short period of time, 
which can be detected during a fixed time interval time- 
locked to the cue stimulus. Therefore, most existing 
ERD/ERS based BCI systems detect specific mental 
activity in a so-called synchronous control manner. 

An important question is whether subjects can pro- 
duce continuous or sustained ERD/ERS, which can be 
viewed as steady state of MI task analogous to steady- 
state visual evoked potential (SSVEP) or auditory 
steady-state responses (ASSR). Using this conception, 
we designed an alternative experimental paradigm by 
performing the continuous and repetitive MI tasks such 
as grasping hands with an approximate fixed frequency. 
We have confirmed our hypothesis that the ERD sustains 
as long as the MI tasks are performed continuously and 
repetitively. The rationale for this alternative is that the 
repetitive MI tasks drive the cortical response into an 
oscillatory “steady state” and elicit the sustained mental 
state in corresponding motor area. 

To provide neurophysiological evidence of the 
sustained ERD/ERS, we conducted experiments for four 

subjects (young health men aged 24―30). Our results 

demonstrate that three out of four subjects are capable of 
producing the sustained desynchronization phenomena 
by performing continuous and repetitive MI tasks even 
without any training. The results shown in Figure 1 
demonstrate our hypothesis about sustained ERD/ERS 
phenomena which is observed throughout the whole 
duration of 4 s trials. This can be interpreted as follows: 
During repetitive hand MI, contralateral area is directly 
involved in the task for the whole duration of mental 
task, resulting in the continuous and sustained activated/ 
deactivated state of contralateral/ipsilateral cortical area 
at the same time, which in turn leads to the continuous 
and sustained ERD/ERS in contralateral/ipsilateral 
motor area. We call this phenomena task related 
sustained desynchronization/synchronization (TRSD/ 
TRSS) or steady state event related (de)synchronization. 
The TRSD/TRSS is sustained ERD/ERS associated with 
the MI tasks that repeat at a constant frequency and can 
be viewed as the superposition of successive single-trial 
ERD/ERS for the specific MI events. 

We can conclude that ERD/ERS are responses 
produced by discrete short events, whereas TRSD/TRSS 
are produced by continuous and repetitive MI tasks. The 
key feature of TRSD/TRSS is that it might provide also 
information about MI duration. Therefore, the duration 
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Figure 1  TRSD/TRSS phenomena. (a) Averaged time-frequency distribution of 5 channels EEG during 3 MI tasks (left hand, right hand and foot). The 
TRSS in C3, Cp3 and TRSD in C4, Cp4 for subject-specific frequency band are obviously seen during left hand MI (first row) whereas similar phenomena 
with opposite hemisphere area during right hand MI are displayed in the second row. During left foot MI (third row), TRSD in Cz is clearly seen. 
Meanwhile, C4 and Cp4 also have TRSD to some degree. (b) Averaged power spectrums in 5 channels which indicate the difference of power distribution 
in each channel during three MI tasks. 
 

of TRSD/TRSS provides a new dimension for controlling 
external devices by generating an additional control 
parameter that is a continuous variable. In contrast to two 
or three discrete commands that are typically used in most 
existing BCI, the duration of TRSD/TRSS, which has 
been recognized as the magnitude of specific control 
command, can be modulated to provide more sophistica- 
ted control functions. Furthermore, ERD/ERS are non- 
phase-locked but time-locked to cue stimulus whereas 
TRSD/TRSS are non-phase-locked and non-time-locked. 
Thus, the transition between various types MI can be 
detected continuously by detecting the transition of 
TRSD/TRSS patterns. Therefore, TRSD/TRSS are more 
suitable for asynchronous BCI system. 

2  Mind-driven car in 3D virtual reality 
environment 

The task of our asynchronous BCI system, called 

“Mind-Driven Car’’, is to drive a virtual car in 3D 
dynamically changing VRE without any external cue 
stimulus. In order to test whether the subjects are able to 
freely control the orientation and speed of virtual car 
running along the narrow road in VRE, two virtual 
scenarios with different road curves are designed for 
evaluation of subjects’ driving performance: 

(i) A straight road with several traffic cones arranged 

in central line was presented and the distance between 

every two adjacent traffic cones was equal. The task in 

this scenario was to drive the car bypassing each traffic 

cone along a special S-shaped pathway (Figure 2(a)). 

(ii) The looped curve road with several rapid left and 

right turns was presented (Figure 2(b)). The task in this 

scenario was to drive the car along the curve road and 

try to keep the car running on the road with possibly 

maximal speed. 

The evaluation criteria for both the scenarios were  
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Figure 2  Experimental design. (a) Scenarios I with the straight road. 
The subjects are instructed to drive the car along the S shape pathway just 
like the yellow line in the figure. (b) The pathway of the curve road in 
scenarios II. (c) Screen shot of virtual reality environment and virtual car. 
The two marked indicator represent the feedback for subjects. The steering 
wheel indicates the steering angle and the taillight indicates the state 
(on/off) of the accelerator. (d) Picture of a subject during the experiment. 

 
similar. A subject was considered to fail whenever the 
running car touched the road border. Moreover, the best 
subject should hold the car in a possibly high speed so 
that he can finish one run in a shortest time. 

In order to transform thought modulated EEG signals 
into an output signal that controls virtual car within VRE 
and to make the car run smoothly, the output commands 
of the classifier were used to control the angle of 
steering wheel and accelerator (i.e., gas pedal) rather 
than directly control orientation and position of the car 
in VRE. Furthermore, to make a best turn within each 
scenario, the steering wheel must be rotated to a suitable 
angle and returned in time, otherwise we may suffer a 
risk of running out of the road. Due to the non- 
stationarity of EEG signals, incorrect classifications are 
unavoidable, which makes it more difficult to drive the 
car (e.g., oscillatory incorrect classification may result in 
fluctuation between left turn and right turn). Therefore, 
in contrast to the crude control with two or three discrete 
commands for most current BCI, the big challenges for 
our system are how to provide accurate and robust 
control of steering angle and to maximally avoid the 
influence of incorrect classification. 

To realize successful drive strategy, it is necessary to 
detect three MI states (i.e., left hand, right hand and 
foot). It is worth noting that we use statistical rejection 
criteria that help to address an important aspect of a BCI, 

namely “relaxation” state where the user is not involved 
in any particular mental task. Whenever the classifier 
cannot recognize MI states with confidence above 
specific threshold (typically 90%), our BCI system 
consider them as relaxation state. Therefore, the four MI 
states of left, right, foot and relaxation are decoded and 
projected to four control commands of turning left (L) or 
right (R), speedup (S) and no command (NC) 
respectively. 

During the online process, the car position and 
orientation were updated continuously every 0.05 s 
according to current steering angle (i.e., turning angular 
speed) and accelerator state. Meanwhile, the steering 
wheel and taillight state (indicating speed up or speed 
down) of a virtual car were used as feedback presented 
continuously (Figure 2(c)), which represented the 
current running state impacted by output command of 
classifier. In order to provide fast detection of MI state 
transition, the predefined sliding time window was used 
for feature extraction and classification, and output 
commands were updated every 0.125 s. By this strategy, 
the subjects can freely determine which MI task to 
perform at arbitrary time. Figure 2(d) shows a screen 
shot of experiment process. 

3  Methods 

3.1  Common spatial frequency patterns (CSFP) 

The common spatial patterns (CSP) algorithm is a 
highly successful method for efficiently calculating 
spatial patterns for classification of brain signals[30–32]. 
However, the performance will suffer from a non- 
discriminative brain rhythm which has an overlapping 
frequency range with most discriminative brain rhythm. 
On the other hand, the frequency band on which the CSP 
algorithm operates is either selected manually or 
unspecifically set to a broad band filter, which is likely 
to deteriorate the performance by using inappropriate 
frequency band. In this paper, we propose a new 
algorithm of common spatial frequency patterns (CSFP) 
which allows for the simultaneous optimization of 
spatial and frequency patterns enhancing discrimin- 
ability of EEG signals with a small number of channels. 
Hence the performance outperforms CSP on average, 
and in cases where the frequency ranges of most 
discriminative rhythm for each class are different, a 
considerable improvement of classification accuracy can 
be achieved. 
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To accommodate non-stationarity frequency analysis, 
continuous wavelet transform can enable us to obtain an 
improved tradeoff between temporal resolution and 
frequency resolution through varying the window length 
over frequencies. The continuous wavelet transform 
(CWT) of the EEG signal xc,k(τ) is defined as  

 , ,1
( , ) = ( ) d ,c k c k t

W a t x
aa

  




 
 
   (1) 

where t denotes the time shift, a denotes the scale and ѱ 
is the wavelet function, and Wc,k(a,t) represents the CWT 
of the data segment xc,k(τ), c represents channel index 
and k represents EEG trial number. Although many types 
of wavelets are available,  Morlet wavelets seem to be 
appropriate for time-frequency analysis of EEG signals. 
Since the scale parameter a is related to frequency f by 
the relation a = ω0/(2πf), we finally obtain a simple 
formula  

 , ,ˆ ( , ) = , ,c k c k cF
W f t W t

fT

 
 
 

 (2) 

where ,ˆ ( , )c kW f t  denotes the time-frequency 

coefficient at channel c, frequency f and time t of k-th 
trial EEG signals given by xc,k(τ); Fc is the central 
frequency of the wavelet function in Hz; T is the 
sampling period of the signal. Thus time-frequency 
distributions (TFD) are constructed by setting f from the 
lowest to the highest frequency, which is of interest. We 
define  

 , ,ˆ= ( , )c f c k
kP W f t . (3) 

Then we can form a time-frequency distribution 
matrix for each channel and a spatio-temporal 
distribution matrix for each frequency bin, i.e.,  

  ,, ,1 2 , ,
Tc fc f c fc m

k k k kU P P P   (4) 

and  

  ,, ,1 2 , ,
Tc fc f c ff n

n k k kV P P P  . (5) 

c
kU  denotes time-frequency matrix for k-th EEG trial at 

channel c, in which the frequency varies in the range 

from f1 to fm and f
kV  denotes spatio-temporal matrix 

for k-th EEG trial at frequency f, in which the channel 
varies in the range from c1 to cn. In order to reconstruct 
the entire time-frequency distribution of the EEG signal, 

we append the c
kU  of all channels or c

kV  of all 

frequency bins, i.e., 
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Using this notation, the class-covariance matrices are 
given as 

 
class

=
tr( )

T
k k

i T
k k ki

Y Y
Γ

Y Y
 , (7) 

where Yk∈RN×M denotes an time-frequency matrix of 

the k-th trial EEG, N is the number of channels number 
×frequency number (i.e., n×m) , M is the number of 
samples in each trial, and classi refers to the i-th class of 
the training data. 

Then the optimization objective of CSFP is to find 
maximal discriminative spatial and frequency combin- 

ation patterns described by W. The vector Wk∈Rd (d = 

n×m), which refers to the p-th column of W, maximizes 
the variance in one class while simultaneously 
minimizes the total variance in the whole class. Each 
vector W is therefore found by solving the following 
optimisation problem:  

 
W W

argmax=
W W

T
I

T
T

S

Sw
. (8) 

In order to find the maximum discriminative patterns 
for each class, we can set the two matrices SI and ST as 
follows:  

 =1
=1

1
= | , = ( )

M
M

I i i T i
i

S Γ S Γ
M
 , (9) 

where SI is class-specific covariance matrix of TFD in 
eq. (7) and ST is total covariance matrix of M class data. 
By optimizing the criteria in eq.(8), we can get 
projection matrix W(i) i.e., spatial frequency patterns, for 
each class i. The number of projection vector in each W(i) 
can be selected by cross validation on training data. 

Finally, the (i)
=1W |Mi  are combined into one matrix 

Wcsfp = [W(1), W(2), …, W(M)] which can be seen as 

maximal discriminative spatial frequency patters for 
multi-class EEG signals. 

With the projection matrix, the TFD Yk of EEG 
signals can be projected onto Wcsfp as 

 k = T
csfp kZ W Y .   (10) 

Therefore, Zk denotes the maximal discriminative 
components for multi-classes data, which are obtained 
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by optimizing the spatial and frequency patterns 
simultaneously. 

Finally, the features used for the classification are 
obtained by projecting the TFD of EEG data according 
to Eq.(10). Typically one would retain only a small 
number of l  projections vectors, which contain most of 

the discriminative information for each class. These 
projections are given by the columns of Wcsfp 
corresponding to the l largest eigenvalues for each of M 

classes. Based on the projected signal trials ,p
kZ  p = 

1, …, M×1, a classifier is trained on the the feature 

vectors obtained by normalizing and log-transforming 
the variances of projected EEG series as 

 
diag( )

= log
tr( )

T
k k

k T
k k

Z Z
f

Z Z

 
  
 

, (11) 

where fk∈RM×l are projected CSFP features vector of 

k-th EEG trial. The log transformation serves to 
approximate normal distribution of the data. 

However, the feature vector fk only considered the 
relative power distribution between each CSFP 
component. The experiment results demonstrated that 
the total power of all CSFP components are also 
important for discrimination of different MI tasks, 
especially between the hand and foot MI. To further 
improve the classification performance, we constructed 
another part of feature vector defined as 

 
=1 =1

1
= ( ) ( )

M l M l
j i i

k kk
i k class ij j

var Z var Z
N

 



 
  

 
  d , (12) 

where j denotes the classes index from 1 to M. The Nj is 
the number of trials belonging to j -th class, whereas, the 

j
kd  denotes the distance between total power of all 

CSFP components and averaged power of j-th class. Via 

normalization by 2/j j
k kd d  , we obtained the feature 

vector of k-th trial that reflected the relative distance 
distribution to each class. Finally, we combined these 
two parts into one feature vector, i.e., [ f 

T, f 
T]T, which 

was then used to train the classifier. Specifically we 
applied a linear support vector machine (SVM) as 
classifier, and used a 10×10-fold cross-validation to 
select the optimal parameters for training the classifier. 

3.2  Cumulative incremental control strategy 

It should be noted that, only 4 discrete commands are 
not enough to provide elaborated control of steering 

angle and speed. Therefore, we use the duration of 
specific MI tasks as an additional control parameter, 
which can not only add more sophisticated control 
functions but also can prevent rapid fluctuation of car 
orientation caused by incorrect classifications from time 
to time. 

For steering angle control, the classification of 
left/right hand MI determines specific rotating directions 
and the duration of specific TRSD, i.e., duration of 
corresponding MI task, determines the detailed steering 
angle. Longer duration caused larger steering angle, 
which alters the output commands of BCI from discrete 
variable to continuous variable. The steering angle is 
controlled by a linear equation of duration sustained 
time for current control command defined as  

 = ( )L R
t t tD D   , (13) 

where L
tD  and R

tD  represents the duration for left 

and right commands at time t, i.e., how many previous 
control commands are all equal to current command. 
The Δθ is the constant angular speed which can be 
adjusted in subject adaptation stage to optimize the 
translation of subject-specific EEG into control 
commands, and θt is the steering angle at time t in which 
the positive and negative values denotes the rotation 
towards left and right respectively. 

For speed control, whenever TRSD state of foot are 
detected, the accelerator will be turned on and increase 
the car speed gradually; on the contrary, when this state 
disappears or it is not detected, the accelerator will be 
turned off immediately and decrease the car speed 

gradually. The previous car speed vt1 and specific 
increase or decrease are added to give the current speed 
of vt. The iterative equation are expressed as  

 1= ( ) ,S
t t tv v v v v          (14) 

S
t  is the delta function, which is equal to zero, but it 

will be equal to one whenever the control command is 
speedup (S). The Δv+ represents the constant acceler- 

ation and Δv represents the negative acceleration, and 

meanwhile Δv+>Δv are typically satisfied. This control 
mechanism can be interpreted as follows: once the 
control command of S is outputted, the car speed will be 
increased by Δv+ once, otherwise, the car speed will be 

decreased by Δv once, as with the case of the gas pedal 
of a real car. 

This can be interpreted as follows: the duration of 
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specific MI task has been used additionally to provide 
more sophisticated control, which can be called “time 
exchange complexity”. Furthermore, the NC state was 
used to reset the steering angle at zero and turn off the 
accelerator, which results in running forward with a 
deceleration of speed. According to this strategy, the 
incorrect classification results that usually does not have 
long duration will not largely impact the steering angle. 
This can be defined as the error tolerance ability. Hence 
our BCI system is more robust then most existing BCI 
systems. 

In order to detect the duration online, we developed a 
new control strategy of cumulative incremental control 
(CIC) based on overlapped sliding window technique. 
At each time, the duration of specific MI is updated 
online according to both the current and previously 
generated commands. Thus, the amplitude of an actual 
output command is cumulated in an incremental manner 
and steering is rotated incrementally by a fixed angle at 
each step depending on whether consecutive and same 
MI state are detected or not. The amplitude of output 
command is reseted at zero and steering is returned 
whenever the the current command is different from 
previous commands. In other words, to drastically rotate 
the steering wheel, subjects need to sustain the left or 
right MI task for a longer duration. To drastically 
increase the speed, subjects need to perform the foot MI 
task for a longer duration. Hence, the steering angle θt is 
varied continuously within the range of [-π/2, π/2] and 
the speed is varied continuously within the range of [vmin, 
vmax]. We have developed such a strategy because it 
works in a natural manner and is quite similar to real 
control of a car by a driver’s limbs. 

3.3  Virtual reality environment 

Finally, the orientation and position of the car in 3D 
VRE are updated every 0.05 s according to   

 1=t c tt o R o  and 1=t t t tv P P o , (15) 

where ot denotes the 3D orientation vector at time t 

whose norm is always equal to one and 
tcR  denotes 

the rotation matrix corresponding to the angle of cθt in 
which c is the fixed scale parameters between the 
steering wheel and car. This demonstrates that the 
orientation is determined by previous orientation and 
current rotation angle of θt in eq. (13). The vector Pt 
denotes the 3D position vector in VRE at time t, which 
are updated according to the previous position Pt1, 

current orientation ot and current speed vt in eq. (14). 

4  Real time experimental results 

Four healthy male subjects (ages 24―30) participated in 

this study. They served as volunteers and were given a 
complete and accurate description of the purpose, 
procedures, risks and benefits of participation. EEG 
signals with only 5 electrodes (i.e., C3, Cp3, Cz, Cp4 
and C4) over the motor cortex were recorded from the 
scalp at a sampling rate of 250 Hz. 

In the training stage, the system training and subjects’ 
self-adaptation were two important parts for improving 
the system performance. Each training run consists of 30 
trials and lasts only for 3 min. To provide continuous 
classification of MI and detection of switching between 
various MI tasks, the training samples were extracted 
from each trial using overlapped sliding window with 
0.125 s interval. One important question was how to 
determine the optimal length of sliding window, which 
is the tradeoff between accuracy and response speed. 
The experimental EEG data was analyzed using sliding 
window techniques with a window length ranging from 
0.5 to 4 s. As the analyzing window length increased, the 
classification accuracy was greatly improved but a lower 
response speed of the BCI resulted. In this study, 
training sessions were used to select optimal subject- 
specific window length by which the online performance 
is better than 75% (lowest requirement for driving a car 
safely) with possibly highest ITR. 

The performance of each subject was gradually 
improved over the training runs due to the mutually 
adaptive updating of the system model and self- 
adaptation of a human brain. Our BCI experiments show 
that for 3 out of 4 subjects, a classification performance 
above 75% can be achieved only after several training 
runs, while only one subject had a performance lower 
than 70% and he was incapable of improving 
performance after a few runs. Furthermore, the 
performance of two subjects (S1, S2) was excellent, 
although variability in the classification results among 
individuals runs occurred. The online classification 
accuracy of two subjects reached 91% for 4 s MI time, 
and even 76% for 1 s MI time. The average ITR of 0.55 
bps was achieved with 1 s time window by subject S2. 
Surprisingly, the best performance of 70% with a very 
short time of 0.5 s was obtained during some runs and 
ITR reached 0.8 bps. We observed a significant 
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deterioration of performance for the MI time shorter 
than 0.5 s. In subject adaptation stage, we found that 
subjects S1 and S2 could change output commands 
quickly even within 0.5 s, and the maximum sustained 
time for specific MI states was 4 and 6 s respectively. 

During experiments of driving a car in VRE, two 
subjects (S1, S2) were able to drive the car successfully 

along predefined pathway in both scenarios. For further 
illustration of results, Figure 3(a) shows output 
commands sequence of one run with scenarios I. The 
real-time changes of speed and steering angle are 
presented in Figure 3(b) and (c), which demonstrate that 
speed and steering angle are controlled by both the type 
and duration of MI. The longer the duration to perform a  

 

 
Figure 3  Real time experiment result. (a) Commands sequence (i.e., real-time classification output of MI tasks) for driving a car during 2 min. To operate 
the BCI, left hand (L), right hand (R) and foot (F) MI tasks are projected to left, right and speedup commands respectively. Also the NC (none) was 
detected. (b) Real-time changes of the car speed. Each point corresponds to the speed changed by each output command in (A). (c) Real-time steering 

angles corresponding to each output command. The range of steering angle is [-π/2, π/2] in which the positive value represents the rotation to left whereas 
negative value represents the rotation to right. The large steering angle is elicited by the long duration of MI. (d) The pathway of the car running in 3D 
VRE. (e) The frequency of occurrence for steering angles and speed. (f) The distribution of probability (confidence) corresponding to each task. Each point 
represents one real-time classification result which contains three probabilities corresponding to each MI task. The output command is the one whose 
probability reach the threshold (red, green and blue areas), otherwise the none command is elicited (black area). 
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fixed MI task, the larger the steering angle will be 
generated. In addition, some incorrect classification as 
can be clearly seen in Figure 3(c), resulted in small 
angles deviations due to the short duration in contrast to 
the correction classification, hence the pathway of the 
car is scarcely changed by error classifications. The 
frequencies of occurrence for left and right commands 
are basically balanced (Figure 3(e)) due to the 
predefined pathway. The real pathway of running a car is 
presented in Figure 3(d), which further demonstrates the 
robustness of our BCI system. 

The running distance of a car within a specific period 
of time can be used as advanced performance evaluation 
criteria for comparison of various subjects. Longer 
distance is due to the fact that the subject not only can 
control the steering angle correctly and bypass all traffic 
cones but also can drive the car with a high speed. In 
this study, subjects S1 and S2 bypassed 7 and 10 traffic 
cones respectively in 2 min. To further demonstrate the 
real time experiment processes, we also provide two 
short videos1). 

One interesting aspect was that when subject S2 
performed simultaneously left hand and left foot (LHF) 
or right hand and right foot (RHF) imagery rhythmic 

movements, the TRSD on contralateral and TRSS on 
ipsilateral cortex are considerably enhanced. Hence, 
performance was better than using three basic MI tasks 
(i.e., left hand, right hand and both feet). This 
phenomenon is due to the fact that left/right foot elicited 
ERD on both central and contralateral cortical area 
because a larger number of neurons are involved in the 
activated state, and therefore the combination MI of 
LHF or RHF could produce stronger TRSD on 
contralateral area. 

5  Conclusions 

To sum up, we have developed a new MI-based BCI 
system for controlling such devices as virtual car. It can 
also serve as a new kind of game. Undoubtedly, many 
fundamental technological bottlenecks are to be broken 
through before this is realized to control a real car. 
Nevertheless, it seems reasonable to predict that a 
definitive demonstration of TRSD/TRSS phenomena 
and MD-Car application could act as a new type of BCI 
and trigger a progress of asynchronous BCI. We believe 
that, some day in the future, the paralyzed patients are 
able to drive a real car directly by thought. 
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