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Abstract. A number of cortex-like hierarchical models of object recog-
nition have been proposed these years. In this paper, we improve them
by introducing supervision during forming combined local features. The
traditional cortex-like hierarchical models always contain three layers
which imitate the functions of neurons in ventral visual stream of pri-
mates. The bottom layer detects orientation information in a local area.
Then the middle layer combines these information to form combined fea-
tures. Finally, the top layer integrates combined features to form global
features which are input into a classifier. In these models, three stages
to form global features are all unsupervised. The supervision procedure
only occurs after global features are generated, which is implemented by
the classifier. But we think the supervision should occurs earlier. For a
particular object recognition task, the second stage of generating global
features is also supervised because only task relevant combinations are
useful. In our paper, we analyze why introducing supervision in this stage
is necessary. And we explain task relevant combined local features can
be extracted by some feature selection algorithms. We also apply this
improved system to a series of object classification problems and com-
pare it with traditional models. The simulation results show that our
improvement really boosts object recognition performance.
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1 Introduction

Human brain can recognize what it concerns in clutter within a very short time.
This ability surpasses all artificial systems. So understanding how visual cortex
recognizes objects and building brain-like recognition system attract many re-
searchers in the fields of physiology, neuroscience and computer science.

Over the last decade, a number of basic properties about object recognition
in cortex have been found through many physiological experiments [1]. Visual
signals received by retina are processed stage by stage in the ventral visual path-
way, which runs from primary visual cortex (V1), over extrastriate visual areas
V2 and V4 to inferotemporal cortex (IT). The following properties have been
widely accepted in this stearm. Firstly, simple cells in V1 respond perferably to
oriented bars [2]. Secondly, neurons along the ventral stream show an increase
in receptive field size as well as in the complexity of their preferred stimuli. V4
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provides information about the individual contour elements and these elements
are integrated into shapes at the level of area IT [2,3,4,5]. Finally , at the top of
the ventral stream, in anterior inferotemporal cortex (AIT), cells are tuned to
very complex stimuli such as faces, animals, scenes, etc [6].

Based on these widely accepted properties, several transformation invariant
object recognition models have been proposed [7,8,9]. HMAX [10,11] proposed
by MIT-CBCL is one of the most significant models among them. This hier-
archical model based on feedforward connections ignores any dynamics of the
back-projection, although feedback connections really exist in our visual cortex.
In the simplest form of the model, it contains fours layers, which are S1,C1,S2
and C2 from bottom to top. S1 detects orientation in a particular position. C1
takes the max over a local area to form local invariant features. S2 combines fea-
tures output by C1. This procedure is implemented by extracting some patches
or templates from positive training images and calculating similarity between the
samples and the templates. C2 deals with global invariance by getting the maxi-
mal value over the outputs of S2. Finally, the global invariant features formed in
C2 are input into a classifier (SVM, neuron network, etc.). The whole recognition
procedure is composed of two stages. The stage forming C2 features is unsuper-
vised and the stage using classifier to recognize objects is supervised. However,
we find for a particular object recognition task not all C2 features extracted by
this unsupervised method are useful. Some of them are task irrelevant. These
irrelevant features may reduce the system’s performance. So we introduce super-
vision to form C2 features in our improved model. Task relevant combinations
are extracted in the layer S2, because we think only partial combined local fea-
tures are useful for a particular recognition task. For example, a feature which
can discriminate two different people in face recognition task doesn’t work in the
task to detect whether the object is a face, and vice versa. This improvement
boosts the recognition performance, which we will show in Section 3. Another
dedication of this improvement is that it avoids the problem in combining fea-
tures, which is the number of possible combinations is too large. The authors of
HMAX resolve this problem by randomly selecting a few ones from all combina-
tions. In our model, we select task relevant combinations. Obviously it is better
than random selection.

This paper is organized as follows. In Section 2, we briefly introduce HMAX at
first. Then present our improvement and describe detailed implementation of the
whole system. In Section 3, we apply our system to both binary and multi-class
classification problem on public database and compare the results with HMAX.
Finally, we summarize our work and propose some open questions about the
limitations and possible improvements of the model in Section 4.

2 Hierarchical Model and Feature Selection

HMAX is one of the most significant hierarchical models. It was first proposed
by Riesenhuber and Poggio in [10]. After that, Serre and his co-workers evolved
the model and applied it to a number of challenging recognition tasks [11].
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Fig. 1. An example of task relevant and irrelevant combination

HMAX model consists of simple S units and complex C units alternately. In
the simplest form, there are four layers (S1, C1, S2, C2). The readers can refer
[10,11] for the detailed implementation of these layers.

The difference between our model and HMAX is we employ supervision in
the stage of forming combined features. In fact, learning occurs at all stages in
ventral visual stream. It is unsupervised in the lower layers and supervised in the
higher layers. The properties of simple and complex cells in V1 is learned from
natural images by unsupervised proedure [12,13]. In the next stage forming local
combined features, the authors of HMAX think it is also unsupervised. However
we don’t agree this opinion. Maybe this stage seems unsupervised for all kinds of
recognition tasks. But for a special recognition task, we believe only a few task
relevant combinations are useful and the learning is supervised. In other words,
we think there are many cells in cortex corresponding all possible combinations,
but only task relevant cells are activated for a particular recognition task and the
others can be ignored. We illustrate a example in Fig. 1. The combination in blue
rectangle is useless for the object recognition task, and the one in green rectangle
is task relevant. In our model, we only keep these task relevant combinations and
the others are discarded.

How to extract task relevant features is a feature selection problem. Now,
there are many methods to resolve feature selection problem [14,15,16,17,18]. In
this version of our model, we use a greedy algorithm to resolve it. The algorithm
can be described as:

1. Set X ← “ initial set of n features”, S ← “ empty set”.
2. ∀x ∈ X , compute J({x} ∪ S)1.
3. Find the feature that maximizes J({x}∪S), set X ← F\{x} and S ← {x}∪S.
4. Repeat until desired number of features are selected.

1 J(•) is a criterion to evaluate the selected subset of features.
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In our experiments, the inter-intra criterion is used, i.e. J = trace(S−1
w Sb), where

Sb is between-scatter and Sw is within-scatter.
At the end of this subsection, we summarize our method completely2:

1. For every image, we apply a battery of Gabor filters to it. The filters are in
4 orientations θ and 16 scales s. Then we obtain 16 × 4 = 64 maps (S1)s

θ

arranged in 8 bands (e.g., band 1 contains filter outputs of size 7 and 9, in
all four orientations, band 2 contains filters outputs of size 11 and 13, etc).

2. Take the max over scales and positions within each band: each band member
is sub-sampled by taking the max over a grid with cells of size NΣ first and
the max between the two scale members second, e.g., for band 1, a spatial
max is taken over an 8 × 8 grid first and then across the two scales (size 7
and 9). Note that we don’t take a max over different orientations. Hence,
each band (C1)Σ contains 4 maps.

3. Extract all possible patches of size ni × ni × 4 from all (C1)Σ of all positive
training images. They are Pi=1,2,···,K .

4. For each C1 image (C1)Σ and each Pi, compute: Y = exp(−γ ‖ X − Pi ‖)2.
X is a patch of (C1)Σ , whose size is same as Pi. And we let X run over all
positions. Obtain S2 map (S2)Σ

i
3.

5. Take the max over all positions and bands, we obtain (C2)i. Now, every
input image are converted into K C2 features. Every C2 feature correspond
a patch Pi in step 3.

6. In the training set, we use our greedy feature selection algorithm to extract
k task relevant C2 features (k << K). The patches corresponding these
features are task relevant combinations.

7. Input these selected C2 features into a classifier (linear SVM in our imple-
mentaion).

3 Experimental Results

We evaluate our system by several object detection tasks and a multi-class object
classification task in this section. The classifier used in our system is a linear
SVM.

The database used in our experiments is Caltech64. This is a public multi-
class object database. The Caltech6 database contains six object categories and a
background category (used as the negative set). In fact, there are only 5 different
kinds of objects in Caltech6 database, because the first two categories are both
cars (rear). For cars (rear), we only use the images under the directory cars brad
in our experiments.

2 In this version, the implementation of S1 and C1 are same as HMAX. So you can
refer [11] for more information.

3 For a train image, we should calculate all S2 features. However we need not compute
all S2 features for a test image, because only task relevant patches are useful for
them.

4 http://www.vision.caltech.edu/Image Datasets/Caltech6/
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Fig. 2 illustrates some examples in Caltech6. These images contain the target
object embedded in a large amount of clutter. The challenge is to learn from
unsegmented images and discover the target object class automatically. As a
preprocessing procedure, we normalize all images to 140 pixels in height (width is
rescaled accordingly so that the image aspect ratio was preserved) and converted
to gray values.

3.1 Object Detection

In our object detection experiments, we selected 40 images in a category as the
positive train samples and 50 background images as the negative ones. We also
extracted 100 positive and 100 negative test samples from the remaining images.
The performance of HMAX was averaged over 10 runs. The code of HMAX in our
experiments was downloaded from MIT-CBCL (http://cbcl.mit.edu/software-
datasets/). Only 6 × 6 and 10 × 10 patches of band 2 were extracted in our
experiments for saving computation time (Using patches of more sizes and bands
will improve the performance.). In HMAX, we randomly extract 100 patches in
each size and totally 200 C2 features. In our system, we calculated correlation
coefficient between every C2 features and train label. Then run our greedy feature
selection algorithm on the most correlated C2 features (1000 features) to extract
task relevant patches (50 patches). Some features extracted by HMAX are task

(a) task irrelevant patches (b) task relevant patches

Fig. 2. (a) and (b) are some examples of task irrelevant and relevant patches. These
patches are extracted from C1 outputs. We use white rectangles to denote the areas
corresponding these patches in the original images. Task irrelevant patches in (a) come
from background or other objects and task relevant patches in (b) come from the target
objects.
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Table 1. Performance of HMAX and our model on five object detection tasks

Categories HMAX (200) Our Model (50)
Leaves 94.9 97.5

Airplanes 91.6 94
Motorbikes 95.8 98

Faces 98.2 99
Cars 97.9 99.5

irrelevant and useless for classification. But in our system almost all features
are task relevant. So our system need fewer features than HMAX for the same
classification problem. You can see the performance of our system with only 50
features even better than HMAX with 200 features in Table 1.

Fig. 2(a) illustrates some examples of task irrelevant patches extracted by
HMAX. We can see these patches come from background or other objects rather
than the target object. So the features formed from these patches are useless
for recognize the target object. Fig. 2(b) illustrates some patches extracted by
our system. We can see these areas are the most important parts of the target
objects and features formed from these areas are very discriminative between
the objects and distractors. Although size and position of target objects vary
in different images, our system can detect where they are and extract features
from these places.

Table 1 summarize the experimental results. We use 200 features in HMAX
and 50 features in our model. The classification rates of our model are better
than HMAX in these challenging applications even with lesser features. And the
results show that our system is very efficient in object detection.

3.2 Multi-class Object Classification

In the multi-class object classification, we still used 5 object categories in Cal-
tech6. We used all images of these five categories in our experiment. In each
category, we randomly selected 30 samples for training and the rest for testing.
As in object detection, we selected the most correlated C2 features (500 features)
for each category and extracted task relevant ones (50 features) among them by
our feather selection algorithm. We extracted totally 250 patches, 50 patches for
each category. During selecting object relevant patches, we regarded the images
of this category as positive samples and the others as negative samples.

Table 2. Performance of multi-class object recognition (see text)

Categories Train Test One VS Rest All
Leaves 30 156 99.6

Airplanes 30 1044 91.7
Motorbikes 30 796 96.8 95.0

Faces 30 420 98.8
Cars 30 496 98.4
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Table 2 is the results of our multi-class object classification experiment. The
second and third columns are number of train and test samples respectively.
The fourth column is the classification rates between one category and the rest
(only 50 features relevant to this category are used). The last column is the per-
formance of our multi-class object recognition task by total 250 features. The
results show that our system performs well even with a small number of training
samples.

4 Summary and Discussion

In this paper, we have proposed a new object recognition model by introducing
supervision to the local feature combination phase of traditional HMAX. HMAX
model proposed by MIT-CBCL is a famous hierarchical object recognition model
in cortex. But randomly selecting patches in S2 layer is one limitation of it. We
find introducing supervision and extracting task relevant patches can resolve the
problem effectively. By this improvement, higher recognition performance with
less features are achieved (see Section 3).

One limitation of our system is long computation time in training, because
computing C2 features for a patch is time consuming and we compute C2 fea-
tures for all patches on training data. Fortunately, the testing procedure is mush
faster than training, for only a few task relevant C2 features need to be calcu-
lated (50 features in our experiments).

In HMAX and our model, only shift and scale transformations are considered.
In real world, we will face all kinds of other transformations, such as rotation,
illumination, occlusion, etc. How to extract invariant features under these com-
plex transformations is a challenging work. In the next step, we will modify our
model and try to resolve these more challenging problems.
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