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Overcomplete representations have greater robustness in noise environ-
ment and also have greater flexibility in matching structure in the data.
Lewicki and Sejnowski (2000) proposed an efficient extended natural gra-
dient for learning the overcomplete basis and developed an overcomplete
representation approach. However, they derived their gradient by many
approximations, and their proof is very complicated. To give a stronger
theoretical basis, we provide a brief and more rigorous mathematical
proof for this gradient in this note. In addition, we propose a more robust
constrained Lewicki-Sejnowski gradient.

1 Introduction

Overcomplete coding, viewed as a generalization of independent com-
ponent analysis (ICA), is a powerful tool in, for example, signal pro-
cessing, data processing, and neural information processing (Lewicki &
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Sejnowski, 2000; Girolami, 2001). Overcomplete coding not only provides
more robust representations in the presence of noise, but also can be more
flexible in matching the structure in the data. Lewicki and Sejnowski pro-
posed a very efficient natural gradient (extension) for learning the overcom-
plete basis (or dictionary) and developed an overcomplete representation
approach in 2000 (Lewicki & Sejnowski, 2000). Then Lee, Lewicki, Girolami,
and Sejnowski (1999) successfully performed blind separation (BSS) of more
sources than mixtures based on such overcomplete representations. How-
ever, they obtained their gradient by a series of approximations. Further-
more, their proof is very complicated and mathematically not very rigorous
in some degree. In this note, we present a brief and rigorous mathemati-
cal proof for the Lewicki-Sejnowski gradient. Moreover, we propose the
constrained Lewicki-Sejnowski gradient, which is more robust than the
conventional Lewicki-Sejnowski gradient.

The basis learning model can be described as follows (Lewicki &
Sejnowski, 2000; Girolami, 2001):

x = As, (1.1)

where the data vector x = (x1, . . . , xm)T is known, s = (s1, . . . , sn)T is un-
known, and the m × n basis matrix A is also unknown. We assume that
s1, . . . , sn are statistically independent. When m < n, the basis matrix A is
overcomplete. The aim is to find a solution to equation 1.1 under some
reasonable constraint(s) on s (Lewicki & Sejnowski, 2000).

2 The New Mathematical Proof of the Lewicki-Sejnowski Gradient

By maximizing the posterior distribution of x, learning basis matrix A
can be converted to solve the following optimization problem (Lewicki &
Sejnowski, 2000):

{
max L(A, s) = max

A,s
{log[p(x)]} = max

A,s
{log[p(x1, . . . , xm)]},

subject to: x = As,
(2.1)

where p(x) = p(x1, . . . , xm) is the joint probability density function (PDF)
of observation vector x.

For convenience, the Lewicki-Sejnowski gradient learning can be ex-
pressed as the following theorem:

Theorem 1 (Lewicki & Sejnowski, 2000). For optimization problem 2.1, the
Lewicki-Sejnowski gradient �A can be used to learn the basis matrix A. �A
is given by

�A = −A · [φ(s) · sT + I], (2.2)
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where φ(s) = (φ(s1), . . . , φ(sn))T , φ(sk) = ∂ log p(sk)/∂sk , k = 1, . . . , n (Lewicki
& Sejnowski, 2000). And the learning rule can be

A = A + µ�A, (2.3)

where step size µ > 0 .

Proof. We prove this theorem in two cases: (1) m = n, matrix A is square
and nonsingular, and (2) m < n, A is overcomplete.

Case 1: m = n, matrix A is square and nonsingular. In this case, A is
invertible. Denote W is the inverse of A: W = A−1. So s = W · x. Then the
joint PDF of s should be p(x) = |det(W)| · p(s). So optimization problem 2.1
is equivalent to the following problem:

{
max L(W) = max

W
{log[p(x)]} = max

W
{log[|det(W)| · p(s)]},

subject to: s = Wx.
(2.4)

From Lee, Girolami, and Sejnowski (1999), we have

∂L
∂W

= (WT )−1 + φ(s) · xT = (φ(s) · sT + I) · (WT )−1. (2.5)

Since W = A−1, from the matrix differential formula in lemma 1 of He, Xie,
Ding, and Cichocki (2007), we have

∂L
∂ A

= −(AT )−1 · ∂L
∂W

· (AT )−1 = −(AT )−1 · (φ(s) · sT + I). (2.6)

So the natural gradient of L(·) with respect to A is

�A = AAT · ∂L
∂ A

= −A · (φ(s) · sT + I). (2.7)

From lemma 2 of He et al. (2007), we know that the natural gradient 2.7,
�A = −A · [φ(s) · sT + I], can be used to learn basis matrix A in the case
that A is square and nonsingular.

Case 2: m < n, A is overcomplete. In this case, A is a rectangular matrix
because m < n. We can add extra n − m virtual observed mixtures xvirtual

(2n−m)×1
and have the following equations:

xnew = Anews, (2.8)
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where xnew = ( x
xvirtual

(n−m)×1
), Anew = ( A

Avirtual
(n−m)×n

), and (n − m) × n matrix Avirtual
(n−m)×n

associates with xvirtual
(n−m)×1. Now Anew in equation 2.8 is an n × n nonsingular

square matrix. From the discussion in case 1, the natural gradient of L(·)
with respect to Anew is

�Anew =
(

�A

�Avirtual
(n−m)×n

)
= −Anew · [φ(s) · sT + I]

=−
(

A

Avirtual
(n−m)×n

)
· [φ(s) · sT + I]

=
( −A · [φ(s) · sT + I]

−Avirtual
(n−m)×n · [φ(s) · sT + I]

)
. (2.9)

From equation 2.9, we still have �A = −A · [φ(s) · sT + I] when m < n.
The theorem is proved.

Lewicki-Sejnowski gradient �A (see equation 2.2) is the extension of
Amari’s natural gradient (Amari, Cichocki, & Yang, 1996; Amari, 1998; Lee,
Lewicki et al., 1999). When A is square, Lewicki-Sejnowski gradient �A is
exactly the natural gradient (Lewicki & Sejnowski, 2000). Note that �A =
−A · [φ(s) · sT + I] �= AAT · ∂L

∂ A when m < n. More exactly, expression 2.2
can be seen as the extended version of the natural gradient. Compared with
the standard gradient, the (extended) natural gradient 2.2 is much more
advantageous: (1) it can speed up convergence (Amari, 1998; Lee, Lewicki
et al., 1999), and (2) the (extended) natural gradient 2.2 is simple and more
efficient because of no matrix inverse calculations.

In addition, given the basis matrix A and the observation x, we can
estimate or update s by the maximum a posteriori (MAP) method. Then
we can estimate A and s by alternatively updating A and s repeatedly until
convergence (Lee, Lewicki et al., 1999; Lewicki & Sejnowski, 2000).

3 The Constrained Lewicki-Sejnowski Gradient

To fix the arbitrary scaling, we usually set the constraints ‖ai‖2
2 = 1, i =

1, . . . , n (Bofill & Zibulevsky, 2001; Li, Cichocki, & Amari, 2004; Parra &
Spence, 2000), that is,

∑m
j=1 a2

j i = 1, i = 1, . . . , n. To enforce the solutions to
satisfy these constraints, here instead of Lewicki-Sejnowski gradient 2.2, we
consider their projections onto the hyperplanes defined by ‖ai‖2

2 = 1, i =
1, . . . , n and derive the constrained natural gradient 3.1 or 3.3 in the same
way as Parra and Spence’s (2000) constrained gradient method.
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Figure 1: Gradient projection on the hyperplane � defined by the constraint
‖ai‖2

2 = 1.

Theorem 2. The projection operator P for the ith column �ai of �A onto the
hyperplane � defined by the constraint ‖ai‖2

2 = 1 is

P (�ai ) = (
I − ai · aT

i

) · �ai , or P : �ai → (
I − ai · aT

i

) · �ai . (3.1)

Proof. The normal vector of the hyperplane � defined by the constraint
f (ai ) = ‖ai‖2

2 − 1 = 0 is v = ∂ f (ai )
∂ai

/‖ ∂ f (ai )
∂ai

‖ = ai . Incidentally, the hyperplane

equation at the point ai = a(0)
i is 〈 ∂ f (ai )

∂ai
|ai =a(0)

i
, ai − a(0)

i 〉 = 0. So the projection
(of the vector �ai ) on v is 〈v,�ai 〉 · v (see Figure 1). Thus, the projection
operator P for �ai is as follows:

P(�ai ) =�ai − 〈v,�ai 〉 · v = �ai − (vT · �ai ) · v

=�ai − (
aT

i · �ai
) · ai = �ai − ai · (

aT
i · �ai

)
=�ai − (

ai · aT
i

) · �ai = (
I − ai · aT

i

) · �ai , (3.2)

that is, P(�ai ) = (I − ai · aT
i ) · �ai .

Alternatively, formula 3.1 can be rewritten as the following constrained
Lewicki-Sejnowski gradient:

�A|‖ai ‖2
2=1, i=1,...,n = �A − A · diag(AT · �A). (3.3)

It should be noted that since the constraints ‖ai‖2
2 = 1, i = 1, . . . , n can

absorb the scaling ambiguity, these constraints play an important role in
learning the basis matrix A for overcomplete sparse representation (see
Bofill & Zibulevsky, 2001; Li et al., 2004). The constrained Lewicki-Sejnowski
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gradient 3.3 is more robust than the conventional Lewicki-Sejnowski gra-
dient 2.2 because it can search the solutions under the constraints ‖ai‖2

2 =
1, i = 1, . . . , n, especially when the number of the sources is much larger
than the number of the mixtures (see example 2 in section 4).

4 Experiments

Similar to Lee, Lewicki et al.’s (1999) experiment, here we assume the source
sk follows Laplacian density p(sk) ∝ exp(−α|sk |) (a sparse distribution) in
the considered domain (time domain, frequency domain, time frequency
domain). So φ(sk) = ∂ log p(sk)/∂sk ∝ −sign(sk). To get robust solutions, we
set the initial basis matrix A(0) such that ‖a(0)

i ‖2
2 = 1, i = 1, . . . , n in the

following examples. To evaluate the quality of the separations, we use the
SIR (signal-to-interference ratio), which is the same as the performance
index S/N in Bofill and Zibulevsky (2001).

Example 1. First we tested, Lee, Lewicki et al.’s (1999) “two mixtures and
three sources” BSS example. The same three sources and mixing matrix were
used. The Lewicki-Sejnowski gradient 2.2 and the constrained Lewicki-
Sejnowski gradient 3.3 were respectively employed. By many tests and
trials, we found that both gradients 2.2 and 3.3 could well estimate A
and s, and they almost always produced the same results in each trial
for this example. To compare these two gradients further, we tested a more
challenging example.

Example 2. We used Bofill and Zibulevesky’s (2001) “two mixtures and six
sources” BSS example. The sources s are six flute signals (32,768 samples)
and are from the experiment SixFlutes I in Bofill and Zibulevsky (2001). The
2 × 6 mixing matrix A is

A =
(

0.9659 0.7071 0.2588 −0.2588 −0.7071 −0.9659

0.2588 0.7071 0.9659 0.9659 0.7071 0.2588

)
.

Then two mixtures were produced by model x = As. The sources s are very
sparse in frequency domain (Bofill & Zibulevsky, 2001), so we performed
blind separation in frequency domain.

We conducted 100 Monte Carlo runs to evaluate their robustness of
(extended) natural gradients 2.2 and 3.3. In each Monte Carlo run, the step
size was set as µ = 0.01, and both approaches started from the same initial
matrix randomly generated. The Lewicki-Sejnowski gradient 2.2 nearly
failed to estimate A and s in each Monte Carlo run, while the constrained
Lewicki-Sejnowski gradient 3.3 succeeded in all Monte Carlo runs. For
example, A was randomly initialized and followed by normalization as
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Table 1: SIRs of the Estimated Sources.

SIR (dB)

Sources s1 s2 s3 s4 s5 s6

Lewicki-Sejnowski 12.8135 9.0512 0 14.3304 10.4519 0
gradient 2.2

Constrained Lewicki- 50.5133 52.1840 49.1864 43.4974 49.1196 51.9210
Sejnowski gradient 3.3

follows:

A(0) =
(

−0.2514 0.3994 −0.6935 0.9995 0.8823 −0.2491

−0.9679 0.9168 0.7204 −0.0316 0.4708 0.9685

)
.

After 200 iterations, both solutions, using the above extended natural gradi-
ents 2.2 and 3.3, respectively, were convergent. We obtained the estimations
of A and s. The results are shown in Table 1, and two estimations Â LSG and
Â CLSG of A from two gradients are, respectively, as follows:

Â LSG =
(

6.1008 3.2397 0.0000 −1.3476 −4.5548 −0.0620

1.4805 4.2478 0.0000 5.4940 3.8266 0.0165

)
,

ÂCLSG =
(

0.9667 0.7096 0.2579 −0.2597 −0.7055 −0.9657

0.2560 0.7046 0.9662 0.9657 0.7087 0.2595

)
.

From Table 1, we can see that Lewicki-Sejnowski gradient 2.2 failed, but
the constrained Lewicki-Sejnowski gradient 3.3 succeeded in obtaining the
correct solutions.

5 Conclusion

In this note, we rigorously and briefly proved the Lewicki-Sejnowski gradi-
ent and presented the more robust constrained Lewicki-Sejnowski gradient.

Acknowledgments

This work is in part supported by the National Natural Science Foundation
of China (grants 60774094, U0635001, and 60505005), the Natural Science
Fund of Guangdong Province, China (grants 04205783 and 05103553), SPSF
(grant 20070410237), and the National Basic Research Program of China
(grant 2005CB724301).



Lewicki-Sejnowski Gradient for Learning Overcomplete Representations 643

References

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation,
10, 251–276.

Amari, S., Cichocki, A., & Yang, H. H. (1996). A new learning algorithm for blind
signal separation. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in
neural information processing systems (Vol. 8, pp. 757–763). Cambridge, MA: MIT
Press.

Bofill, P. & Zibulevsky, M. (2001). Underdetermined blind source separation using
sparse representations. Signal Processing, 81, 2353–2362.

Girolami, M. (2001). A variational method for learning sparse and overcomplete
representations. Neural Computation, 13(11), 2517–2532.

He, Z. S., Xie, S. L., Ding, S. X., & Cichocki, A. (2007). Convolutive blind source
separation in the frequency domain based on sparse representation. IEEE Trans.
Audio, Speech, and Language Processing, 15(5), 1551–1563.

Lee, T. W., Girolami, M., & Sejnowski, T. (1999). Independent component analysis us-
ing an extended informax algorithm for mixed sub-gaussian and super-gaussian
sources. Neural Computation, 11(2), 609–633.

Lee, T. W., Lewicki, M. S., Girolami, M., & Sejnowski, T. J. (1999). Blind source
separation of more sources than mixtures using overcomplete representations.
IEEE Signal Processing Letter, 6(4), 87–90.

Lewicki, M.S., & Sejnowski, T. J. (2000). Learning overcomplete representations.
Neural Computation, 12(2), 337–365.

Li, Y. Q., Cichocki, A., & Amari, S. (2004). Analysis of sparse representation and
blind source separation. Neural Computation, 16, 1193–1234.

Parra, L., & Spence, C. (2000). Convolutive blind separation of non-stationary
sources. IEEE Trans. Speech and Audio Processing, 8(3), 320–327.

Received July 31, 2006; accepted April 4, 2007.


