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Abstract— This paper investigates spatiotemporal feature
extraction from temporal image sequences based on invariance
representation. Invariance representation is one of important
functions of the visual cortex. We propose a novel hierarchical
model based on invariance and independent component analysis
for spatiotemporal feature extraction. Training the model from
patches sampled from natural scenes, we can obtain image basis
with properties of translational, scaling, and rotational features.
Further experiments on TV videos and facial image sequences
show different characteristics of spatiotemporal features are
achieved by training the proposed model. All these computer
simulations verify that our proposed model is successful for
spatiotemporal feature extraction.

I. INTRODUCTION

WE can recognize an object regardless of its trans-
formation, such as translation, rotation or scaling.

Such capability of our recognizing transformation-invariant
objects is one of important functions in the brain. Many
recent studies in the fields of neuroscience, neurophysiology
and psychology show that such a transformation invariant
preprocessing could be a necessary step towards achieving
transformation-invariant classification or detection in a hier-
archical system. In this paper, we focus on extracting spa-
tiotemporal features from image sequences and videos, and
propose a hierarchical model that simulates the mechanism
in the visual pathway.

On the other hand, due to evolution from nature in the
long term, this mechanism of neural representation has an
important correlation with statistical properties of natural
scenes. Following the way, Barlow[1] found that the role
of early sensory neurons in the visual pathway is to reduce
statistical redundancy in the sensory inputs, suggesting that
Redundancy Reduction is an important processing princi-
ple in the neural system. Based on this concept, Gabor-
like features resembling the receptive fields of V1 cells
have been derived either by imposing sparse over-complete
representations[2] or statistical independence as in the frame-
work of independent component analysis[3].

However, these studies have not taken transformation in-
variance into account. In other words, what are the responses
of simple cells and complex cells when one transforma-
tion is applied to an object within the receptive fields of
these cells? Some researchers have addressed this problem.
Van Hateren[4] obtained spatiotemporal receptive fields of
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complex cells and Hyvarinen and Hoyer[5] modelled the
receptive fields of complex cells. Grimes and Rao[6] pro-
posed a bilinear generative model to study the translation-
invariance. However, there are few models in the literatures
of physiologically and neurophysiologically extracting si-
multaneously multi-temporal features from image sequences
or videos. To investigate this problem, we combine the
visual perception invariance mechanism and Independent
Component Analysis(ICA) to learn spatiotemporal features,
and these spatiotemporal features can be used to construct a
model for transformation-invariant perception.

The rest of the paper is organized as follows. Section II
introduces our model and learning algorithm for learning
spatiotemporal features. In section III, we will demonstrate
computer simulation results to show the basic characteristics
in the trained model. In the final section IV, we provide some
discussions and conclusions.

II. THE PROPOSED MODEL AND LEARNING ALGORITHM

The visual information received by the visual system is
very complex and the resources of the optic nerve are limited.
How does the visual system compromise between them?
Barlow[1] found that the role of early sensory neurons is to
remove statistical redundancy in the sensory inputs, provided
a criterion called Redundancy Reduction. Olshausen and
Field[2] presented the Sparse Coding method based on that
only minor neurons respond to the stimulus from the natural
environment, whereas the major neurons weakly respond.
To verify it, they provided experimental results that natural
images are able to be reconstructed by linearly combining the
basis functions and the corresponding coefficients, which are
considered as the receptive fields and responses of simple
cells, respectively. The coefficients are described as the
supergaussian probability distribution. An alternative method
is (ICA)[3][4][5] that imposes the mutual independent con-
straint on the responses of neurons, and the similar results
are obtained.

Using ICA model, we propose a hierarchical model
combining the ICA and invariance representation. In the
following section we will introduce the model and the
corresponding learning algorithm.

A. The model for spatiotemporal feature extraction

In this section, we propose a model for spatiotemporal
feature extraction, as shown in figure 1. The model is a four-
layer network which includes the input layer L1, the sparse
representation layer L2, the integrated layer L3, and the final
invariance representation layer L4. In the first layer L1, each
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neuron in the retina receives gray value of one pixel as its
activity. L2 is a layer for sparse representation, and its main
function is to represent the input images with features and
the corresponding independent components. The layer L3 is
the integrated layer at which neurons average all activities
of neurons connected from layer L2. And the final layer
L4 is a senior representation layer at which each neuron
receives responses of connected neurons in the layer L3 to
extract the transformation invariance. In other words, the L4

layer possesses the capability of representing transformation
invariance.

Fig. 1. Model for spatiotemporal features. L1 is the input layer, u(t)
denotes a stimuli at time t. L2 is a layer for sparse representation, and x(r, t)
denotes the response of neuron r at time t, w(r, t) denotes the connect
weights with L1. The layer L3 is the integrated layer, and their activities
are denoted by x(r). And the final layer L4 is a senior representation layer,
here, h(r) denotes neighborhood connect, and y(r) denotes responses.

B. The learning algorithm of the model

To derive the learning algorithm of the model, we intro-
duce briefly the standard ICA algorithm. For the standard
ICA model u(t) = A(t)x(t) = W−1(t)x(t), Cichocki
et al.[7] used the Kullback-Leibler divergence between the
distribution p(x(t); W(t)) of obtained by the actual value
W(t) and the reference distribution q(x(t)) to give the cost
function as

R(x(t), W(t)) = −1

2
log |det(W(t)W(t)T )| (1)

−
n∑

r=1

Elog q(r)(x(r, t)).

Applying the Natural Gradient rule to the cost function, the
learning algorithm of W(t)(the corresponding basis functions
A(t) = W−1(t)) can be described[8] as

�W(t) = −η(t)
∂R

∂W(t)
WT (t)W(t) (2)

= η(k)[I − ϕ[x(t)]xT (t)]W(t),

where, ϕr(x(r)) = − q
′

r
(x(r))

qr(x(r)) , q(x(r)) is the prior probability
distribution over the coefficients x(r) are highly peaked at
zero with heavy tails as compared to a Gaussian distribution

of the same variance (i.e., the Laplace probability distribution
function).

The standard ICA estimation methods constrain the inde-
pendent components to be uncorrelated. These components
have the properties of higher-order correlation, which can be
interpreted biologically as simultaneous activation of neurons
at the same time when neurons receive a stimulus. Thus,
we can use this mechanism to analyze the higher-order
correlation of neural responses.

Suppose x(r1) and x(r2) are responses of two neurons in
the layer L3, if x(r1) and x(r2) are topographical neighbor-
hood, the covariance between x(r1) and x(r2) satisfies

cov(x2(r1), x2(r2)) = E{x2(r1), x2(r2)} (3)

−E{x2(r1)}{x2(r2)}
�= 0.

Due to the higher-order correlation, the response of each
complex cell in the layer L4 is described as |y(r1)| =
(
∑n

r2=1 h(r1, r2)x2(r2))
1/2, h(r1, r2) is the connect weights

between a complex cell r1 and a simple cell r2 in its vicinity.
That is, the receptive field of the complex cell consists of that
of its neighborhood simple cells and is bigger than that of
simple cells. Its probability distribution function is described
as equation (4).

q(y(r1)) =
1√
2σ

exp

(
−
√

2|y(r1)|
σ

)
(4)

=
1√
2σ

exp

⎛
⎝−

√
2

σ

√√√√ n∑
r2=1

h(r1, r2)x(r2)2

⎞
⎠ ,

where, σ2 is the variance of responses. Therefore, we obtain

ϕr1
(y(r1)) = −q

′

r1
(y(r1))

qr1
(y(r1))

(5)

=

⎛
⎝ n∑

r2=1

√
2h(r1, r2)x(r2)

2

σ

√√√√ n∑
r2=1

h(r1, r2)x(r2)2

⎞
⎠ .

As vectors in the matrix ϕ(y), all ϕ(y(r1))s are rewritten as

ϕ(y) = [ϕ(y(1)), ϕ(y(2)), · · · , ϕ(y(n))]. (6)

Combining equations (6) and (2), the learning algorithm
of topographically self-organized receptive fields of simple
cells is described as

�W(r, t) = η(k)[I − ϕ(y(r))x(r, t)T ]W(r, t). (7)

According to the equation (7), we are able to learn
W(r, t) with topographical characteristics of receptive fields
of simple cells. The steps of learning spatiotemporal features
is given as the following pseudocode.

1) Input: The training data U={u(i, j, t)} is centered and
whitened using PCA, the whitened data is denoted
by Z(l, j, t) ∈ R

L×N×T and the whitening matrix
denoted by V, here, L is the dimensionality of data, N

is number of samples, and T is length of sequences.
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2) Initialization: Randomly initialize the weights
WZ(M, L, t), where, M denotes the number of
neurons in each group in the layer L3 in figure 1, L

and t is same as the above.
3) Iteration:

a) for each t (=1,2,· · · ,T)
b) Update X(m, j, t)=WZ(m, l, t)*Z(l, j, t);
c) end
d) Calculate the mean of X for all t, denoted by

X(m, j);
e) Replace each X(m, j, t) with X(m, j) for all t;
f) for each t

g) Update the WZ(t) according to the eqution
(7);

h) Normalize WZ(m, l, t) to the unity.
i) end
j) Calculate the ΔWZ(t);
k) until ΣΔWZ(t) < ε.

4) Output: Calculate W(t) = WZ(t)Z, the inverse of
W(t) is denoted by A(t)

III. SIMULATION RESULTS

In this section, we will show three experiments to verify
our proposed model and the learning algorithm. The first one
is about learned spatiotemporal features from natural image
sequences, the second from TV videos, and the third from
multi-view faces.

A. Spatiotemporal features from natural image sequences

Training Set: Randomly select patches of size
12×12 from natural images, and then translate them by
{2,4,6,8,10,12} pixels along horizontal and vertical direction
respectively, rotate them by angles {0,15,30,45,60,75} in
degree. Vectorize them into column vectors as samples
denoted by u(i, j, t) ∈ R

I×N×T . Here, I(=144) is the
dimensionality of samples, T (=6×6×6=216) transformation
sequences, and j the number of samples. The training data
U={u(i, j, t)} consists of all these samples.

We use the data to train our proposed model and the
resulting features A(t)(= W−1(t)) are shown in figure 2.
For the simplicity of analyzing feature regularity, we show a
spatiotemporal feature in figure 3. From the figure, we can
easily find that there are 216 features including six horizontal
translations, six vertical translations, and six rotations. All
the features can be considered as one spatiotemporal feature
of a complex cell which is able to detect transformations of
translation and rotation.

By the way, our extra experiments show that, taking no
account of rotating angle, features repeat in the range of
{90, 105, · · · , 345} in degree.

From the figures 2 and 3, the features are localized,
oriented, and bandpass, which resemble the receptive fields
of simple cells. In figure 3, all the 216 features can be con-
sidered as a spatiotemporal feature which has the properties
of horizontal translation, vertical translation, and rotation.
These characteristics are same as that of training data. In
other words, when stimuli like the training data are presented

Fig. 2. Subsets of spatiotemporal features.

Fig. 3. An example of spatiotemporal features. The spatiotemporal feature
is composed of 216 features, including six intervals of translation (Δx =
2, Δy = 2) pixels in a slice and six rotational angles in the range of
{0,15,30,45,60,75} in degree. Each row in a slice represents one translation
in horizontal direction and each column in vertical direction. Between two
neighborhood slices, features are rotating by angle interval of fifteen in
degree.

930 2008 International Joint Conference on Neural Networks (IJCNN 2008)



within the receptive field of neuron, the neuron will be firing
all the time. In the neurophysiological term, the neuron has
an ability of invariance-transformation representation, which
is the fundamentals of cognitive ability.

B. Structure of Spatiotemporal features

The learned spatiotemporal features can be considered as
3-D data set, denoted by A(X, Y, T ), where, X and Y are
the 2 spatial dimensions and T is the temporal dimension.
Integrating this 3-D data set along the Y-axis yields a
simplified spatiotemporal profile, or X-T plot[9]. Figure 4
shows the contour of integrating 36 features with a same
rotating angle.
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Fig. 4. Spatiotemporal structure. Integrating the 3-D data set of spatiotem-
poral features along the Y-axis yields a simplified spatiotemporal profile, or
X-T plot.

This space-time profile resemble the spatiotemporal
receptive-field profiles for simple cells[9]. Because of in-
tegrating 3-D data along Y-axis, horizontal translation is
eliminated between time 1-12, 13-24, and so forth, whereas
the vertical translation is very obvious with time.

C. Spatiotemporal features from TV video sequences

Training Set: Each video sequence consists of a stack
of 10 time frames of 12×12 image patches. Vectorize
image patches into column vectors as samples denoted by
u(i, j, t) ∈ R

I×N×T . Here, I(=144) denotes the dimen-
sionality of samples, T (=10) denotes the length of video
sequences, and j denotes the number of samples. All these
samples form the training data U={u(i, j, t)}.

The video data comes from the situation video ’Six
Friends’, in which there are almost indoor shows. Sampling
frequency is 25 frames per second. We resample one out of
five frames from the videos. Then we randomly select suc-
cessive video sequences of 12×12×10 as a spatiotemporal
sample. The total 20000 spatiotemporal samples are used to

train the model. The resulting spatiotemporal features are
shown in figure 5.

Fig. 5. Subsets of spatiotemporal features for Videos.

Spatiotemporal features: The figure 5 tells us five points:
(1) the features resemble the receptive fields of simple cells in
the primary visual cortex; (2) each row has ten features that
can be considered as a spatiotemporal features; (3) between
features, there are slightly horizontal or vertical movement;
(4) the neighborhood two features in a spatiotemporal feature
have scale changes; (5) there are little rotation transforma-
tion.

All the characteristics consist with that of videos. For
(1), applying the spatiotemporal ICA to the video sequences
yields edge-detectors similar to the receptive fields of simple
cells. For (2), ten successive frames have strong correlation
and continuous movements. For (3) and (4), when capturing
two successive frames, the vidicon only move slightly its
view in the horizontal, vertical, and relative direction, or
objects shift a little in the scene in the opposite direction. For
(5), because there are little rotating view in this TV video,
there are not obvious rotational features.

Further more experiments show that different sampling
rates will result in different results. If a sampling rate is
smaller, the two neighborhood features in a spatiotemporal
feature is less correlation. The higher the sampling rate is,
the much similar the features. If sampling is appropriate, the
characteristics mentioned above are obtained. In summary,
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Fig. 6. Topographical maps of features.
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Fig. 7. PDF of responses and fitted Laplace function.

spatiotemporal features must be learned in so far as training
sequences have spatiotemporal properties of transformation.

Topographical map: To examine the topographical map
of features, we show subset of all features at the first column
in figure 5. As shown in figure 6, most of features are
similar to that in their vicinity. The orientations of features
are gradually changing in the neighborhood. The charac-
teristics resemble results found in the neurophysiological
experiments.

Analysis of sparseness of responses: A neuron fires
sparsely through its receptive field, a feature obtained by
ICA. That is consistent with the results of neurophysiological
experiments: when neurons are stimulated, a few neurons are
active and most of them are inactive. In other words, the
probability distribution of neuronal activity will be highly
peaked around zero with heavy tails.

To analyze the sparseness of responses, we fit the probabil-
ity distribution with Laplace function. The fitted results are
shown in figure 7, where, the solid line denotes the probabil-
ity distribution of responses and the dashed line does the that
of fitted Laplace function. From this figure, the responses are
sparse and can be described as the supergaussian probability
distribution.

D. spatiotemporal facial features

Further to verify the learning algorithm for extracting
spatiotemporal feature, we have made an experiment on
facial images with view changes.

Training Set: The training set is selected from the pose
subset, images of 1040 subjects across 7 different poses,
included in the CASE-PEAL-R1 face database[10]. The
training data are generated as follows: for any pose t facial
image, detect and crop the face, resize it to size of 36×30
pixels. Then these seven cropped faces are reshaped to a col-
umn vector as a sample u(i, j, t), size of 1080×1×7. Here,
u(i, j, t) ∈ R

1080×1040×7(t = 1, 2, · · · , 7). The training data
U={u(i, j, t)} consists of all these samples.

Fig. 8. Subsets of spatiotemporal features for facial squences.

The learned features is given in figure 8. For faces of an
individual, there are only different poses without more such
as lighting and expression, and so the learned spatiotemporal
features only possess the characteristics of pose changes.

IV. DISCUSSIONS AND CONCLUSIONS

By imposing a constraint of invariance representation, our
proposed model extends ICA model [4][5][11] to generate
spatiotemporal features. Experiments on natural image se-
quences, TV video, and facial images with view changes
demonstrate that this model has some characteristics: (1)
extracting spatiotemporal features, (2) overcomplete features,
(3) theoretically limitless length of sequences, and (4) easier
implementation.

Furthermore, compared with the bilinear generative
model[6] proposed by Grimes and Rao, our model has some
advantages such as easy realization and less computing cost,
and more rich properties for transformation-invariant fea-
tures. They only explored the model for learning translation-
invariant basis functions.

Compared to the previous methods [4][5][11] in which a
sample sequence , for example, size of 12 × 12 × 10, is
vectorized into one column as a sample, size of 1440 × 1,
we divide it into 10 subsets, size of 144 × 1. In the proposed
model, we add an integrated layer L3 with a constraint of
invariance representation to learn spatiotemporal features.
Our method has some advantages such as: (1) sequences
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are not to be limited anymore, any length of sequences of
data can be used to learned spatiotemporal features and then
decide right length; (2) data preprocessing becomes easier, if
sequences are long enough, the previous methods are difficult
in dimensionality reduction and de-correlation of training
data to promote the convergence of ICA algorithm.

Compared to the recent multi-linear methods such as
MICA[12] and Tensor Factorization (TF)[13], our method
is better for performing a great data set and learning more
multi-way, whereas MICA and TF is limited to the comput-
ing resources for large number of multi-way and samples.
Meanwhile, our method can learn, with less computing
resources, more spatiotemporal features than that obtained
from MICA and TF.

From the viewpoint of models, we compare our model
with Neocognitron proposed by Fukushima [14]. The
Neocognitron was actually a relative classifier which rec-
ognized patterns from given testing data. The model cannot
perceive object motions or transformations. However, these
are important functions in the visual pathways of the brain.
Different from Neocognitron, the goal of our model focuses
on extracting spatiotemporal features which are used to
construct more complicated networks for perceiving input
patterns and object motions.

Our further work will focus on applying learned spatiotem-
poral features to visual perception of transformations such
as translation, rotation, view change, and scaling, and object
recognition.
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