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In neuroscience, phase is assumed to contain more important information about the neu-
ral activity than amplitude. However, the most exploited feature in electroencephalogram
(EEG) based brain computer interface (BCI) is the amplitude change, phase has been
largely ignored, and only phase locking values (PLV) has been introduced in EEG classi-
fication recently. In this paper, we define phase interval value (PIV) to explore the phase
information of EEG from a new perspective and propose a computational model based
on the ordered Parallel Factors (PARAFAC) algorithm to extract feature from multi-
way PIV data for single trial EEG classification. Application to the motor imagery task
demonstrates that PIV is quite effective for EEG classification, providing significant and
discriminative features in spatial and spectral dimension. PIV might become an impor-
tant new tool in the analysis of EEG phase characteristic, and has the great potential

use in BCI.

Keywords: Brain computer interface (BCI); electroencephalogram (EEG); ordered
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1. Introduction

Brain computer interface (BCI) is a system that is designed to translate brain
activities into sequences of commands for the computer. BCI provides a communi-
cation pathway for people to mentally control machines, and is valuable for those
with severe motor disabilities. The most popular sensory signal used for BCI is the
scalp-recorded electroencephalogram (EEG), because it is a noninvasive measure-
ment of the brain electrical activity and has a temporal resolution of milliseconds.1,2

The fundamental of EEG based BCI is to identify changes of brain electrical activ-
ities in different mental states and utilize classifying the EEG signals to transmit
information.3,4

EEG signal includes both amplitude and phase characteristics. Now, in EEG
based BCI, the most exploited feature is the amplitude change of EEG signal.5

A number of algorithms have been developed to capture distinctive features from
EEG amplitude information in different mental states, e.g., common spatial pattern
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(CSP)6 and power spectral density (PSD). Currently, CSP is the most successful
and widely used algorithm.7 It detects the spectral discriminations between two
classes of tasks by calculating discriminative spatial patterns that maximize the
variance of one class and at the same time minimize the variance of the other,
wherein the variance of the band-pass filtered EEG signals directly reflects the
spectral power of the band frequency. For the classification of two classes of motor
imageries, CSP is able to achieve the accuracy above 90%.6,8,9 PSD is another
popular method using amplitude information of EEG signals, which calculates spa-
tially localized power spectral density to obtain the spectral discriminative feature.
Phase, instead, has been largely ignored in BCI studies,10 although it is assumed
to contain more important information about the neural activity than amplitude in
neuroscience.11,12 Few studies in BCI community detect the phase change, because
there is lack of effective measurement to evaluate the phase change characteris-
tic, and moreover, few computation models have ever been proposed to extract
the discriminative features from phase information for EEG classification. To our
knowledge, so far, only phase locking values (PLV) have been proposed to charac-
terize the stability of the phase differences between the phases and of two signals,
that is, phase synchrony. It was first introduced in EEG by Lachaux et al.,13 and has
been used in a variety of studies to explore the dynamic integration of distributed
neural networks in the brain.14–16 Only recently, researchers begun to investigate
the usefulness of phase to classify EEG in the framework of BCIs by PLV.10,17,18

However, it has not been able to acquire comparable performance to the methods
based on amplitude information.

In this paper, we define phase interval value (PIV) to measure the degree of
phase difference between channels. Different from PLV detecting phase synchrony,
PIV explores the phase information of EEG from a new perspective. Referenced to
the tensor representation of EEG amplitude information,19–21 we were inspired to
construct the multi-way (channel× channel× frequency× time spices) PIV data.
A computational model based on the ordered Parallel Factors (PARAFAC) algo-
rithm is proposed to extract discriminative feature from multi-way PIV for single
trial EEG classification, and then is applied to the motor imagery task. The perfor-
mance of PIV is compared with CSP, PSD and PLV. Simulation results demonstrate
that PIV is quite effective for EEG single trail classification, achieving a compara-
ble performance to CSP which proves to be the most successful algorithm in this
context.7 Furthermore, PIV can supply more significant discriminative spatial and
spectral patterns than PLV, which indicates that PLV can be a new tool for analysis
of EEG phase characteristic.

2. Background Knowledge

In a BCI system, the subject is required to perform different tasks according to pre-
defined mental control paradigms, and then the subject’s intention is conveyed by
the induced pattern changes of the recorded EEG. The most commonly used mental
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control paradigm in BCI is the motor imagery. This is because the motor imagery
produces the attenuation of brain α (8–13Hz) and β (14–30Hz) rhythms activity
over sensorimotor cortex (ERD: event-related desynchronizations) and depending
on the part of the body imagined moving, the amplitude of multichannel EEG
signals exhibits distinctive spatial patterns.22 For example, imagining left hand
movement led to the decrease of α and β rhythms’ power on the sensorimotor cor-
tex of contralateral rain hemisphere and the increase on the ipsilateral hemisphere,
whereas the contrary phenomena occurs during imagining right hand movement.

3. Phase Interval Value (PIV)

In this section, we present the definition of phase interval value (PIV). Different
from PLV detecting phase synchrony between channels, PIV measures the degree
of the phase difference directly.

Given two signals x(t) and y(t), we calculate their convolutions with a complex
wavelet at frequency f , which are written as:

x̃(t, f) = ax(t) exp i(ft + Φx(t)) , (1)

ỹ(t, f) = ay(t) exp i(ft + Φy(t)) . (2)

The PIV between x and y at time t and frequency f across trial e is then defined
as follow:

PIV(x,y,f,t) =
1
n

n∑
e=1

∣∣∣∣(exp i(ft + Φx(t)) + exp i(ft + Φy(t))
2

)∣∣∣∣ , (3)

while the PLV is given by:

PLV(x,y,f,t) =

∣∣∣∣∣ 1n
n∑

e=1

(exp(i∆Φ(t)))

∣∣∣∣∣ , (4)

where the ∆Φ(t) is the phase difference Φx(t) − Φy(t).
They could also be calculated in time slices instead of trials,

PIV(x,y,f,t) =
1

∆tfs

t+∆t/2∑
t=t−∆t/2

∣∣∣∣(exp i(ft + Φx(t)) + exp i(ft + Φy(t))
2

)∣∣∣∣ , (5)

PLV(x,y,f,t) =

∣∣∣∣∣∣ 1
∆tfs

t+∆t/2∑
t=t−∆t/2

(exp(i∆Φ(t)))

∣∣∣∣∣∣ , (6)

where the fs is the sample rate.
Although PLV and PIV both focus on phase information, there are some signifi-

cant differences between them. PLV measures the variability of the phase difference.
If the phase difference varies little, PLV is close to 1, or close to zero, otherwise.
PIV measures the degree of the phase difference directly. If the degree of the phase
difference is small, PIV is close to 1, or close to zero, otherwise.
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The following example indicates the difference between PIV and PLV. Given
two complex signals, x(t) and y(t), as follows:

x(t) = exp((10t)i) 0 < t ≤ 1s ,

y(t) =

{
exp((10t + π)i) , 0 < t ≤ 0.5s

exp((10t)i) , 0.5s < t ≤ 1s
,

the phase difference between them vary from π to −π at 0.5 s. Suppose the sample
rate is 100Hz, and the PIV and PLV are both calculated in 100ms time slices. As
illustrated in Fig. 1, PIV can identify the change of phase difference between two
signals while PLV cannot detect it.

A further example illustrates the difference of PIV and PLV in real EEG data. It
is well known that motor imagery is accompanied by Event Related Desynchroniza-
tions (ERD) of EEG within 8–30Hz frequency band and this phenomenon could be
evidently observed at contralateral channels over the centro-parietal lobe, e.g., C3
or C4, when a subject imagines the left or right hand movement.22 For a typical sub-
ject performing hand-movement imagery, we calculate the PIV and PLV between
C4 and other channels over centro-parietal lobes in 100ms time slices at 12Hz.
The changes of PIV and PLV from rest state to motor imagery state are shown in
Fig. 2 (in order to give a clear illustration, the changes of PIV and PLV are both
averaged in 30 trials). As illustrated in Fig. 2, the PLV of C4 decreases when the
subject imagines the left-hand movement, and increases when imagines the right-
hand movement, while the PIV gives more information about the changing direction
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Fig. 1. The feather plots of signals, and PLV, PIV between them.
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Fig. 2. The left panel shows the change of PLV between C4 and other channels in imagining
the left-hand and right-hand movement respectively. The right panel shows the change of PIV
between C4 and other channels in imagining the left-hand and right-hand movement respectively.

of phase difference and presents two clear brain regions related respectively with
two classes of motor imagery.

4. Method

In this section, we propose a computational model to extract feature from multi-
way PIV data for single trial EEG classification and briefly introduce the Ordered
PARAFAC algorithm.

4.1. Computational model

As illustrated in Fig. 3, the proposed model mainly contains four components:
first, 2-way (channel × time) epoched EEG signals Xc,t at channel c and time t

are decomposed by the wavelet transform and represented as 4-way (channel ×
channel × frequency × time) tensors of PIV(c1,c2,f,t), which denote PIV between
channel c1 and channel c2 at frequency f and time t. In this work, the complex
Morlet wavelet with the center frequency fc = 1 and bandwidth parameter fb = 2
is used as the wavelet mother function, since it has been successfully applied in
the analysis of the temporal development of the frequency of EEG signals.20,21

Secondly, the assemble differences between two classes of PIV in the training dataset
are calculated and decomposed into a sum of n rank-one tensors by the ordered
PARAFAC algorithm. Lastly, the feature vectors of PIV are obtained by projecting
into the subspaces of the rank-one tensors, respectively (here, we can further select
several most effective subspaces by the performance in the training dataset and
omit others). Finally, a SVM classifier is trained for predicting class label in the
test dataset.

4.2. The ordered PARAFAC algorithm

A classic PARAFAC model of a m-way tensor T is to decompose the T in a minimal
sum of n rank-one tensors defined as the outer product of the mode unit vectors,23

T =
n∑

r=1

(
m∏

d=1

×du
d
r

)
. (7)
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Fig. 3. The proposed computational model to extract feature from multi-way PIV data for single
trial EEG classification.

The classical approach of estimating the PARAFAC model is using Alternating
Least Squares (ALS) to minimize the reconstruction error,∥∥∥∥∥T −

n∑
r=1

(
m∏

d=1

×du
d
r

)∥∥∥∥∥
2

. (8)

While the PARAFAC model is theoretically unique, the decomposed factors are
out of order, and the number of factors to be included in the PARAFAC model direct
impacts the decomposition.19 According to our previous work,24 small changes in
the number would lead to great alteration in decomposed factors.

Compared with the PARAFAC Model, the Ordered PARAFAC Model is
designed to find a set of rank-one tensors sequentially according to the rule in
the algorithm, and the number of factors has no impact on decomposed factors.
The Ordered PARAFAC algorithm is implemented as follows: we initialize the ith
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rank-one tensor by looking for the first largest component on all modes, then cycle
for obtaining the optimal mode vector by remaining fixed the other mode vectors
until convergence. After getting the projection coefficients of the X on the subspace
of the ith tensor, we replace X with its reconstruction error using the ith tensor
and the corresponding projection coefficients. This procedure cycles until we get
the desired number of the rank-one tensors.

5. Data Acquisition

The dataset was collected during the BCI experiment of motor imagery. Six healthy
male subjects, aged from 21 to 30, participated in data collection, and 62 channels
of EEG signals were recorded by an ESI-128 Channel High-Resolution EEG/EP
Systems (SynAmps2, Neuroscan at Lab for Brian-like Computing and Machine
Intelligence, Shanghai Jiao Tong University, China. EEG electrode positioning fol-
lowed the 10–20 International System of Electrode Placement). In the data collec-
tion stage, each subject was asked to seat in an armchair, keeping their arms on
the chair arm with two hands relaxed. They were requested to look at a computer
monitor placed approximately 1m in front of the subject (at eye level). They were
instructed to imagine the movement of right or left hand for about 2 s to control a
cursor movement on the computer screen.

EEG signals were recorded, sampled at 500 Hz, bandpass filtered between 8 Hz
and 30 Hz (which contains all α and β rhythms related to motor imagery). Visual
inspection showed that artifacts have been mostly filtered out. The filtered signals
were segmented into epochs (1–2000ms) then. For each subject, 100–130 left and
100–130 right trials were acquired, 80 trials (40 trials for each class) were used as
training data, and rest trials were taken as test data.

6. Simulations and Results

In this section, the proposed model is applied for single trial EEG classification in
the motor imagery task. For comparison, three methods, i.e., CSP, PSD, and PLV,
are also applied to the same dataset.

The number of spatial patterns in CSP was selected in 2–8 according to the
performance in the training dataset (more patterns would lead to overfitting). For
PSD, power spectral density values within 8–30Hz frequency bands in channel C3
and C4 were computed as feature vectors based on wavelet transform. The four-
way PIV tensors (channel× channel× frequency × time) were constructed in the
given spatial-spatial-spectral-temporal range (62 channel; 62 channel; 8–30Hz; 1–
2000ms, step by 20ms). By bootstrapping, it was proven that the 10-factors ordered
PARAFAC model was sufficient in this work, and then only two rank-one tensor
subspaces were further selected for classification in the training stage. In order to
compare the PLV and PIV equally, the construction and application of PLV were
the same as PIV. The SVM classifier with the Gaussian Radial Basis (RBF) kernel
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Table 1. Simulation results.

% Classification accuracy
Trial number

Subject Train set/Test set PIV CSP PSD PLV

Sub. 1 80/120 90.0 93.3 74.1 60.0
Sub. 2 80/120 66.7 52.5 50.1 42.5
Sub. 3 80/180 88.9 90.6 88.9 63.3
Sub. 4 80/140 59.3 52.1 48.6 54.3
Sub. 5 80/120 66.7 70.8 59.2 50.0
Sub. 6 80/140 45.0 55.0 51.4 51.4

function was determined by a 4-fold cross-validation procedure over the training
dataset.

Simulation results of four different methods are listed in the Table 1. For almost
all subjects (except Sub. 6), PIV achieved greatly higher accuracies than PLV. For
four-sixth of the subjects (Sub. 1, Sub. 2, Sub. 4, Sub. 5), classification accuracies
obtained by PIV are higher than PSD. For three of six subjects (Sub. 1, Sub. 3,
Sub. 5), PIV achieves very close results to CSP, and especially for two of six subjects
(Sub. 2 and Sub. 4), the accuracy of PIV is better than CSP. Considering that CSP
is the most successful algorithm in this context,7 the PIV can be proved to be very
effective for EEG classification.

According to Refs. 6 and 22 exemplary spectral characteristics of EEG in motor
imagery tasks are α rhythm (8–13Hz) and β rhythm (14–30Hz) which decrease
during movement or in preparation for movement and increase after movement
and during relaxation. In details, imagining left or right hand movement causes
ERD over the contralateral hemisphere, and this phenomenon could be evidently
observed at contralateral channels over the centro-parietal lobe, e.g., C3 or C4.
The two most important projection subspaces for PIV were selected in the training
stage. Figures 4 and 5 show the spatial patterns and the spectral patterns of them
respectively (because the PIV between channel c1 and channel c2 is equal to the
PIV between channel c2 and channel c1, that is, the spatial patterns are identical

Fig. 4. The two most important spatial patterns of PIV for each subject, respectively.
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Fig. 5. The two most important spectral patterns of PIV for each subject, respectively.

on two channel-mode, and then we only take one for illustration). Interestingly,
the spatial patterns show two regions with opposite weights over the motor-sensor
cortex belong to two brain hemispheres (for Sub. 4 and Sub. 6, all methods acquire
classification accuracies close to random. Therefore, we ignore them for the pattern
analysis). Compared with the spatial patterns of CSP illustrated in Fig. 6, the PIV
spatial patterns reflect more clear effects of ERD on contralateral brain hemispheres.
The feature vectors of PSD in C3 and C4 channel averaged in the training dataset
are also illustrated in Fig. 7, and they (except for Sub. 4 and Sub. 6) are highly
consistent with spectral patterns extracted from PIV. The two most important
spatial and spectral patterns of PLV are illustrated in Figs. 8 and 9 respectively.
For Sub. 1 and Sub. 3, the spatial patterns present some significant regions related
with ERD. However, for most of spatial and spectral patterns, it is difficult to
identify the motor imagery relevant characteristics.

The results confirm that phase can supply consistent discriminative features
with those amplitude information provided. Furthermore, PIV cannot only achieve

Fig. 6. The two most important spatial patterns extracted by CSP for each subject, respectively.
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Fig. 7. The feature vectors of PSD in C3 and C4 channel averaged in training dataset for each
subject, respectively. The first row is with data recorded in C3, and the second row is with data
recorded in C4.

Fig. 8. The two most important spatial patterns of PLV for each subject, respectively.
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higher classification accuracy, but also reveal more significant spatial and spectral
patterns for discrimination than PLV, though they are both based on phase.

7. Conclusions

In this paper, PIV is defined to further explore the phase information of EEG
data from a new perspective, because phase is assumed to contain most important
information about the neural activity in neuroscience. A computational model based
on the ordered PARAFAC algorithm is proposed to extract feature from multi-way
PIV for single trial EEG classification in the motor imagery task.

Simulation results demonstrate that PIV method is very effective for EEG clas-
sification, it achieves very close results to CSP, which is the most successful algo-
rithm for EEG classification. It is confirmed that discriminative features could be
obtained from phase information. Furthermore, compared with PLV detecting phase
synchrony between different channels, PIV can supply more significant spatial and
spectral patterns for discrimination by measuring the degree of the phase difference
directly.

Since phase information performs so excellently in EEG classification, it is sur-
prising that the phase has been employed so limitedly in BCI studies. PIV might
become an important new tool in the analysis of EEG phase characteristic, and has
the great potential use in BCI.
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