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Abstract How to extract robust feature is an important research topic in machine learning community. In this paper, we
investigate robust feature extraction for speech signal based on tensor structure and develop a new method called constrained
Nonnegative Tensor Factorization (cNTF). A novel feature extraction framework based on the cortical representation in
primary auditory cortex (A1) is proposed for robust speaker recognition. Motivated by the neural firing rates model in A1,
the speech signal first is represented as a general higher order tensor. cNTF is used to learn the basis functions from multiple
interrelated feature subspaces and find a robust sparse representation for speech signal. Computer simulations are given to
evaluate the performance of our method and comparisons with existing speaker recognition methods are also provided. The
experimental results demonstrate that the proposed method achieves higher recognition accuracy in noisy environment.
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1 Introduction

Finding succinct, robust and discriminative features
from acoustic data is one of important tasks for a
speaker recognition system. Acoustic features such as
Linear Prediction Cepstral Coefficients (LPCC), Mel-
Frequency Cepstral Coefficients (MFCC)[1], Percep-
tual Linear Predictive (PLP)[2] are common solutions.
And conventional speaker modeling methods such as
Gaussian mixture models (GMM)[3] achieve very high
performance for speaker identification and verification
tasks on high-quality data when training and testing
conditions are well controlled.

However, in the real application such systems usu-
ally do not perform well due to a large variety of speech
signals corrupted by adverse conditions such as envi-
ronmental noise and channel distortions. Numerous
efforts have been made on the robust speech feature
extraction to adapt noisy environments. Feature com-
pensation techniques[4-7] such as cepstral mean nor-
malization (CMN), RASTA, have been developed for
robust speech recognition. Spectral subtraction[8-9]

and subspace-based filtering[10-11] techniques have been
widely used because of their simplicity. Dimension

reduction methods such as PCA, LDA and NMF[12-13]

are also proved to be efficient for speech feature extrac-
tion in noisy environment. These methods bring certain
process, but the overall performances are still far from
satisfactory. Some methods need noise information be-
forehand. Non-stationary noise and low signal-to-noise
ratio (SNR) are still open problems.

Human auditory system can solve all these problems
quite well. Recently, many researchers explore how to
incorporate models of auditory system for robust speech
feature extraction. In the procedure of the peripheral
auditory system, the auditory spectrum is encoded by
population of cortical cells in primary auditory cortex
and separated into different cues and features associated
with different sound percepts. In the central auditory
system, the speech spectrum can be analyzed as spec-
tral and temporal modulations by a bank modulation-
selective filters in primary auditory cortex[14]. An an-
alytically tractable framework based on wavelet rep-
resentation and multiresolution processing[15] was de-
scribed to explain mechanical and neural processing in
the early stages of the auditory system. Mesgarani[16]

investigated audio classification problem based on mul-
tiscale spectro-temporal modulation features inspired
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by auditory cortex model and applied HOSVD to per-
form multilinear dimensionality reduction. Jeon[17] pro-
posed a computational auditory central system model
based on the physiological model in [14]. This model is
a data-redundant, multilinear representation of neural
firing rates in A1 and has been validated in a conven-
tional phoneme classification task.

All these feature extraction or denoising meth-
ods investigate the representation in time or spectro-
temporal domain, while for speech feature extraction
especially in the noisy condition we may need more in-
formation or factors to improve the robustness of fea-
tures. Multi-factors analysis has been brought into
consideration for speech feature extraction or general
audio signal processing tasks. Currently there are
two types of common tensor decomposition methods
such as CANDECOMP/PARAFAC model[18-20] and
Tucker Model[21-23]. Nonnegative Tensor Factorization
(NTF)[24-26] imposes the nonnegative constraint on the
CANDECOMP/PARAFAC model. In computer vision,
tensor factorization approach was used as image repre-
sentation. Vasilescu[27] introduced a multifactor model
called Multilinear ICA to learn the statistically inde-
pendent components of multiple factors resulting in a
better performance for face recognition. Tao[28-29] de-
veloped general tensor discriminant analysis for the gait
recognition which reduces the under sample problem.

In this paper, we propose a new framework for ro-
bust speaker modeling based on cortical model and ten-
sor factorization. Firstly, we investigate the cortical
representation of speech signal in the primary audi-
tory cortex, which is a intrinsic array structure with
multiple factors. Then, a new tensor factorization
method with orthogonal and nonnegative constraints
called cNTF is developed to learn the basis functions of
multi-related feature subspaces from the cortical repre-
sentation. Sparse constraint on basis functions enhances
energy concentration of speech signal, keeping the use-
ful feature during the noise reduction. The features
extracted by cNTF can be further processed into a rep-
resentation called Cortical Tensor Cepstral Coefficients
(CTCC) via discrete cosine transform. The CTCC is
used as feature representation for speaker recognition
in this paper. Finally, GMM is employed to perform
speaker modeling and recognition.

The reminder of this paper is organized as follows.
In Section 2 a new supervised learning algorithm cNTF
is derived for feature extraction. Section 3 describes
the auditory model and sparse tensor feature extrac-
tion framework. Section 4 presents the experimental re-
sults for speaker identification task on Aurora2 dataset
recorded in noisy environments. Finally, Section 5 gives
a conclusion of this paper.

2 Method

As an extension of matrix factorization, PARAFAC
model is an efficient tool for high order data analysis. In
this section, a new tensor factorization algorithm called
cNTF is proposed to extend PARAFAC model by or-
thogonal and nonnegative constraints. First, a brief
overview of multilinear algebra and PARAFAC model
is given. Then cNTF algorithm is presented. Some
basic notations of multilinear algebra are described in
Table 1.

Table 1. Notations in Multilinear Algebra

Notation Description

X N -way tensor

X Matrix

X(d) Mode-d matricization of tensor X
¯ Khatri-Rao product

◦ Outer product

⊗ Kronecker product

2.1 PARAFAC Model

Multilinear algebra is the algebra of higher order ten-
sors. A tensor is a higher order generalization of a ma-
trix. Let X ∈ RN1×N2×···×NM denote a tensor of or-
der M . An element of X is denoted by xn1,n2,...,nM

,
where 1 6 nd 6 Nd and 1 6 d 6 M . The mode-d ma-
tricization or matrix unfolding of an Mth-order tensor
X ∈ RN1×N2×···×NM rearranges the elements of X to
form the matrix X(d) ∈ RNd×Nd̄ , which is the ensemble
of vectors in RNd obtained by keeping index nd fixed
and varying the other indices. Here Nd̄ =

∏M
j 6=d Nj .

Matricizing a tensor is similar to vectoring a matrix.
The PARAFAC model was suggested independently

by Carroll and Chang[18] under the name CANDE-
COMP (canonical decomposition) and by Harshman[19]

under the name PARAFAC (parallel factor analysis)
which has gained increasing attention in data mining
fields. This model has structural resemblance with
many physical models of common real-world data and
its uniqueness property[30] implies that data following
the PARAFAC model can be uniquely decomposed into
individual components.

An M -way tensor X ∈ RN1×N2×···×NM can be de-
composed in a sum of M rank-1 terms, i.e., represented
by the outer product of M vectors[31]:

X =
R∑

r=1

A(1)
:,r ◦A(2)

:,r ◦ · · · ◦A(M)
:,r , (1)

where A(d)
:,r represents the r-th column vector of the

mode matrix A(d) ∈ RNd×R, the rank of tensor X , de-
noted by R = rank(X ), is the minimal number of rank-1
tensors.
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Given a tensor X ∈ RN1×N2×···×NM , PARAFAC
model aims to find a rank-R approximation of the tensor
X in the form of (1),

X ≈
R∑

r=1

A(1)
:,r ◦A(2)

:,r ◦ · · · ◦A(M)
:,r , (2)

or in the element-wise form

xn1,n2,...,nM
≈

R∑
r=1

a(1)
n1ra

(2)
n2r · · · a(M)

nM r. (3)

The PARAFAC model can also be written in matrix
notation by use of the Khatri-Rao product, which gives
the equivalent expressions:

X(d) ≈ A(d)[A(d−1) ¯ · · · ¯A(1) ¯A(M) ¯ · · · ¯A(d+1)]T.

(4)

For further detailed discussions about tensor factoriza-
tion, refer to [31].

2.2 Constrained Nonnegative Tensor
Factorization

Given a nonnegative M -way tensor X ∈
RN1×N2×···×NM , nonnegative tensor factorization
(NTF) seeks a factorization of X in the form:

X ≈ X̂ =
R∑

r=1

A(1)
:,r ◦A(2)

:,r ◦ · · · ◦A(M)
:,r , (5)

where the mode matrices A(d) ∈ RNd×R for d =
1, . . . , M are restricted to have only nonnegative ele-
ments in the factorization. In order to find an approx-
imate tensor factorization X̂ , we can construct Least
Square cost function JLS and KL-divergence cost func-
tion JKL as follows

JLS(X , X̂ ) =
1
2
‖X − X̂‖2F

=
1
2

∑
n1,n2,···,nM

(
xn1,n2,...,nM

−
R∑

r=1

a(1)
n1ra

(2)
n2r · · · a(M)

nM r

)2

,

(6)

JKL(X , X̂ ) = D(X||X̂ )

=
∑

n1,n2,...,nM

(
xn1,n2,...,nM

log
xn1,n2,...,nM

x̂n1,n2,...,nM

−

xn1,n2,...,nM
+ x̂n1,n2,...,nM

)
(7)

where ‖ · ‖2F is the Frobenius norm.
Based on the approximate factorization model (4),

we can redefine the cost function with mode matrices

A(d)

JLS1(A(d)|Md=1) =
1
2

M∑

d=1

‖X(d) −A(d)Z(d)‖2F

=
1
2

M∑

d=1

Nd∑
p=1

Nd̄∑
q=1

([X(d)]pq − [A(d)Z(d)]pq)2, (8)

JKL1(A(d)|Md=1) =
M∑

d=1

D(X(d)‖A(d)Z(d))

=
M∑

d=1

Nd∑
p=1

Nd̄∑
q=1

(
[X(d)]pq log

[X(d)]pq

[A(d)Z(d)]pq

−

[X(d)]pq + [A(d)Z(d)]pq

)
, (9)

where

Z(d) = [A(d−1)¯· · ·¯A(1)¯A(M)¯· · ·¯A(d+1)]T (10)

and Nd̄ =
∏M

j 6=d Nj . These cost functions are quite sim-
ilar to NMF[32], which perform matrix factorization in
each mode and minimize the error for all modes. In
this model, we can impose additional constraint which
makes the basis functions be as orthogonal as possible,
i.e., ensures redundancy minimization between different
basis functions. Then, the cost functions become:

JLS2(A(d)|Md=1)

=
M∑

d=1

(1
2

Nd∑
p=1

Nd̄∑
q=1

([X(d)]pq − [A(d)Z(d)]pq)2+

α
∑

p6=q

[A(d)T A(d)]pq

)
, (11)

JKL2(A(d)|Md=1)

=
M∑

d=1

( Nd∑
p=1

Nd̄∑
q=1

(
[X(d)]pq log

[X(d)]pq

[A(d)Z(d)]pq

−

[X(d)]pq + [A(d)Z(d)]pq) + α
∑

p6=q

[A(d)T A(d)]pq

)
,

(12)

where α is a balancing parameter between reconstruc-
tion and orthogonality.

A number of approaches have been proposed to con-
trol the sparseness by additional constraints or penali-
zation terms. These constraints or penalizations can be
applied to the basis vectors or both basis and encoding
vectors. The nonsmooth NMF (nsNMF) model[33] pro-
posed a factorization model V = WSH, providing a
smoothing matrix S ∈ Rk×k given by

S = (1− θ)I +
θ

k
11T, (13)
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where ‖ · ‖T is the transpose operater, I is the identify
matrix, 1 is a vector of ones, and the parameter θ sat-
isfies 0 6 θ 6 1. For θ = 0, the model (13) is equivalent
to the original NMF. As θ → 1, stronger smoothing is
imposed on S, leading to a strong sparseness on both
W and H. By this nonsmooth approach, we can con-
trol the sparseness of basis vectors and encoding vectors
and maintain the faithfulness of the model to the data.
The corresponding cost functions can be given by

JLS3(A(d)|Md=1)

=
M∑

d=1

(1
2

Nd∑
p=1

Nd̄∑
q=1

([X(d)]pq − [A(d)SZ(d)]pq)2 +

α
∑

p6=q

[A(d)TA(d)]pq

)
, (14)

JKL3(A(d)|Md=1)

=
M∑

d=1

( Nd∑
p=1

Nd̄∑
q=1

(
[X(d)]pq log

[X(d)]pq

[A(d)SZ(d)]pq

−

[X(d)]pq + [A(d)SZ(d)]pq) + α
∑

p6=q

[A(d)TA(d)]pq

)
.

(15)
The gradient for A

(d)
ij can be obtained:

LS :
∂JLS3(A(d))

∂A
(d)
ij

= −(
[X(d)Z

(d)TST]
ij
−

[A(d)
ij SZ(d)Z(d)T ST ]

ij

)
+ α

∑

p6=j

[A(d)T]pi,
(16)

KL :
∂JKL3(A(d))

∂A
(d)
ij

= −
( ∑

k

[SZ(d)]jk

[X(d)]ik
[A(d)SZ(d)]ik

−
∑

k

[SZ(d)]jk

)
+ α

∑

p6=j

[A(d)T]pi. (17)

Here we derive multiplicative learning algorithms for
mode matrices A(d) using the Exponential Gradient,
which are similar to those in NMF. The monotonic con-
vergence analysis in [32] can be applied to our case as
well. Updating algorithms in an element-wise manner
for minimizing the cost function (14) and (15) are di-
rectly derived as done in [24-25]:

LS :

A
(d)
ij ←

A
(d)
ij [X(d)Z

(d)TST]
ij

[A(d)
ij SZ(d)Z(d)TST]

ij
+ α

∑
p6=j [A

(d)T]pi

,

(18)
KL :

A
(d)
ij ←

A
(d)
ij

∑
k [SZ(d)]jk

[X(d)]ik

[A(d)SZ(d)
]ik∑

k [SZ(d)]jk + α
∑

p6=j [A
(d)T]pi

. (19)

Table 2 lists the alternating projection optimization
procedure for constraints Nonnegative Tensor Factor-
ization. The key steps in the alternating projection pro-
cedure are step 3, which aims to find the basis functions
[A(d)](t) in the t-th iteration by using [A(d)](t−1)|Md=1

found in the (t− 1)-th iteration.

Table 2. Algorithm for Constrained NTF

Input: data tensor X ∈ RN1×N2×···×NM , the number of
basis functions k, α, θ, q, maximum iteration steps
T , error threshold ε.

Output: the factorization components matrix A(d), (d =
1, . . . , M)

Initialization: set A(d) > 0, (d = 1, . . . , M) randomly.

Step 1. Repeat until convergence {
Step 2. For d = 1 to M {
Step 3. Iterate over every entries of A(d) until convergence

Calculate A(d) using update rules (18) and (19)

A
(d)
ij ← A(d)

ij∑
i A(d)

ij

Z(d) = [A(d−1) ¯ · · · ¯A(1) ¯A(M) ¯ · · ·¯
A(d+1)]T

}
Step 4. Calculate the LS or KL update error e by (14) and (15)

Step 5. Check convergence: the factorization stage of
cNTF converges if iteration number exceeds T
or update error e < ε

}

For cNTF algorithm at LS case, the major opera-
tion in (18) is the matrix product X(d)Z

(d)T ST and
SZ(d)Z(d)T ST , which takes O(NdR

∏M
i 6=d Ni + NdR

2)
and O(2R2

∏M
i 6=d Ni + R3). When R ¿ ∏M

i 6=d Ni, the
time complexity of cNTF at LS case is O(TR2(2RM +∑M

d=1 Nd)
∏M

i=1 Ni), where T is the maximum iteration
number. Similarly, the time complexity of cNTF algo-
rithm at KL case in (19) is same as the LS case. Table
3 gives the time complexity comparison between cNTF,
PARAFAC and Tucker algorithm. Here Jk|Mk=1 is the
dimension of core tensor for Tucker algorithm. The
comparison results in Table 3 indicate cNTF algorithm
is time-consuming in some way. From our practical ex-
perimental results, cNTF algorithm is more efficient and
provides better recognition performance than other al-
gorithms.

Table 3. Computational Cost Comparison Between cNTF,

PARAFAC, Tucker Algorithms

Algorithm Time Complexity

cNTF O(TR2(2RM +
∑M

d=1 Nd)
∏M

i=1 Ni)

PARAFAC O(TMR
∏M

i=1 Ni)

Tucker O(T (M − 1)
∑M

k=1 Jk
∏M

i=1 Ni)
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3 Cortical Representation Based on Tensor
Structure

In this section, we employ multi-resolution spectro-
temporal modulation filters to model the primary
auditory cortical representation based on tensor struc-
ture. The power spectrum is represented in a multi-
linear feature space by a population of cortical cells.
cNTF is applied to learn the basis functions of corti-
cal representation. Our proposed method is to explore
some intrinsic attributes and mechanism for aiding the
design of robust speaker recognition system.

3.1 Cortical Response in Primary Auditory
Cortex

In the early stages of auditory processing, speech sig-
nals undergo a complex series of transformations and
are converted into a 2-dimensional pattern that we call
auditory spectrum. The peripheral auditory system de-
composes the speech into topographically organized ar-
ray of channels that are tuned to different center fre-
quencies (CF’s). These CF’s are similar to logarithmic
frequencies and create the tonotopic axis of the auditory
system[34]. The auditory spectrum[35-36] represents the
neural activity distributed along the tonotopic axis.

The cortical stage concentrates on the neural re-
sponse of higher central auditory system such as A1 and
estimates the spectral-temporal modulation content of
an auditory spectrum[35]. The spectrum is decomposed
into more elaborate representations and separated into
the cues and features associated with different sound
percepts such as pitch and timbre.

The neurons in A1 are well organized and have sys-
tematic response selectivity to various stimulus features.
Every cell is tuned to a specific range of center fre-
quencies and intensities called the response area of the
cells[34]. Similar to the topographic characteristic of
the receptive fields in visual system, the response areas
of A1 also have topographical organization which orig-
inates from the segregation of neural response selectiv-
ity. Furthermore, it has also been observed that many
neurons in A1 are selective to the scale and rate of a fre-
quency modulation (FM) tone[37]. As described in [14],
the response areas in A1 are organized along three axes:
tonotopic axis, symmetry axis and scale axis. The tono-
topic axis gives the change of CF’s, the symmetry axis
describes asymmetries of response area and the scale
axis reflects the bandwidth of each response area along
the tonotopic frequency axis.

The above observation suggests that it is reasonable
to model the output cortical representation as a higher
order tensor structure with three independent modes:
the center frequency x, the scale (spectral bandwidth)
s and the phase (local symmetry) φ. Fig.1 is a sketch

of the cortical model for A1. The cuboid in Fig.1 can
be seen as arranged with neurons (black dots). Each
dot represents a neuron which has its own (x, s, φ) co-
ordinates. One example shows the cortical response in
the case φ = 0. The curve that the arrow points to re-
flects the response magnitude of corresponding neuron.
The neural response areas have a centered excitatory
band that is symmetrically flanked by inhibitory side
bands. While as φ increases above 0, the response ar-
eas become more asymmetric with stronger inhibitory
sidebands above CF in one direction and below the CF
in the opposite direction.

Fig.1. Cortical model of primary auditory cortex.

3.2 Gabor Functions

Inspired by recent physiological and psychoacoustic
experimental results for auditory system, much insight
has been obtained from the measurements of so-called
spectro-temporal response field (STRF) of primary au-
ditory cortex (A1) cell. STRF summarizes the way that
neuron cell responds to the stimulus. The neuronphys-
iological evidence[35] indicates that the cells in the au-
ditory cortex are tuned to localized spectro-temporal
modulations. The STRF of these cortical cells[38] can
be modeled by 2D Gabor functions. The 2D Ga-
bor filterbank-based method[39] transforms spectrogram
into local constituent spectro-temporal amplitudes, fre-
quencies, orientations and phases. In this paper, we
model the cortical representation based on tensor struc-
ture by the 2D-complex Gabor function gu,v(f, t), which
is the product of a Gaussian envelope and a complex
plane wave,

gu,v(f, t) = gk̄(x̄) =
k̄

2

σ2
·e− k̄2·x̄2

2σ2 · [ei ¯k · x̄−e−
σ2

2 ], (20)

where x̄ = (f, t) is a sample of the power spectrum
at frequency f and time frame t, k̄ is a vector, which
determines the direction and scale of Gabor functions
k̄ = kveiφ, where kv = 2−

v+2
2 ·π, φ = u π

K , u determines
the direction of Gabor functions, v determines the scale
of Gabor functions and K determines the total num-
ber of directions. Fig.2 gives examples of the real part



750 J. Comput. Sci. & Technol., July 2010, Vol.25, No.4

of Gabor functions with four different scales and four
different directions.

Fig.2. The real part of Gabor functions for four different scales

and four different directions.

3.3 Cortical Representation

To explore neural representation in the auditory cor-
tex, we transform speech signals into a form of 4-order
tensor. In a given time window, the power spectrum
X(f, t) ∈ RNf×Nt can be represented as a 4-order ten-
sor X ∈ RNf×Nt×Nu×Nv . From Fig.3 we can see clearly
that the cortical representation has different spectral
patterns which lie on the neuron response area.

Fig.3. Cortical representation with different parameters. The

rows show different directions and the columns show different

scales for the power spectrum.

The cortical representation is calculated by convolv-
ing the Gabor functions gu,v(f, t) with the power spec-
trum X(f, t). The result is a 4-order tensor X ∈
RNf×Nt×Nu×Nv , where the first two indices give the
time and frequency axes, the third index gives the di-
rection parameters, and the fourth index gives the value
of scale. We select the magnitude part of this tensor
shown in Fig.3 as our Gabor-based speech feature after

the Gaobr filtering. For a Gabor function with fixed
scale and direction parameters, the convolution result
can be defined as

Gu,v(f, t) = |X(f, t) ~ gu,v(f, t)|. (21)

The convolution results Gu,v(f, t) are spectro-
temporal features with different filter characteristics to
investigate the multilinear feature space. Here we em-
ploy mel-scale filterbanks to map the actual frequency
into perceived frequency without losing useful auditory
information. The filtered results Gm

u,v(f, t) are obtained
by a set of critical bands triangular filters which are
linear below 1kHz and logarithm above.

3.4 Tensor Analysis and Sparseness Constraint

In order to extract the robust speech feature based
on the tensor structure, we transform the Gabor-based
multi-resolution representation into multiple interre-
lated subspaces by cNTF to learn the basis functions
Al, (l = 1, 2, 3, 4). Compared with traditional subspace
learning methods, the extracted tensor features may
characterize the elaborate spectro-temporal patterns of
cortical representation and preserve the discriminative
information for recognition.

As described in Subsection 3.1, the Gabor-based fea-
tures can be considered as neuron responses in the pri-
mary auditory cortex. Here we employ the sparse local-
ized basis functions A1 ∈ RNf×d in time-frequency sub-
space to transform the auditory feature into the sparse
feature subspace, where d is the dimension of sparse fea-
ture subspace. The sparse feature representation Su,v

is obtained from:

Su,v(f, t) = AT
1 ∗Gm

u,v(f, t). (22)

Fig.4 is an example of basis functions in spectro-
temporal domain. From this result we can see that most
elements of this project matrix are near to zero, which

Fig.4. Basis functions of cNTF in spectro-temporal domain.
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accords with the sparse constraint of cNTF. The intu-
itive interpretation why the sparse constraint results in
feature robustness is that in sparse coding the energy of
signal is only concentrated on a few components, while
the energy of additive noise remains uniformly spread
on all the components. Noise is reduced for the sparse
projection while the useful sparse information is not
strongly affected.

Fig.5 shows a comparison between CTCC features
and MFCC features for digit two before discrete co-
sine transform (DCT) operation with different signal-to-
noise ratio (SNR) levels (clean, 20dB, 10dB). Fig.5(a)
presents the standard MFCC features with additive car
noise. The degradation of spectral features for MFCC
is evident. In Fig.5(b) sparse tensor features with dif-
ferent Gabor function parameters are shown and we can
see that the spectral features based on cortical represen-
tation after transformation maintain most useful infor-
mation compared with feature in clean environments.

Fig.5. (a) Standard MFCC features. (b) Spare Gabor tensor fea-

tures with u = 0, π/4 and v = 5 before DCT under different SNR

conditions (Clean, 20 dB, 10 dB).

The framework of feature extraction is shown in
Fig.6. cNTF is employed to learn the basis functions of
cortical representation. In a given time window, the cor-
tical representation X ∈ RNf×Nt×Nu×Nv can be calcu-
lated by convolving the Gabor functions gu,v(f, t) with
the power spectrum X(f, t) ∈ RNf×Nt . Then we em-
ploy the cortical representation X as the input tensor
data and learn the basis functions Al, (l = 1, 2, 3, 4) by
cNTF.

In the GMM model training and testing stage, the
robust feature can be extracted by the following steps:

1) employ pre-emphasis on the speech signal and

Fig.6. Feature extraction framework based on cortical represen-

tation and tensor structure.

obtain the power spectrum X(f, t) via Fast Fourier
Transformation (FFT);

2) calculate the cortical representation X by convolv-
ing Gabor functions with the power spectrum;

3) employ the sparse localized basis functions A1 to
transform the cortical representation into sparse feature
subspace as (22) and obtain the spare tensor features S;

4) reorganize S into a feature matrix FG and perform
discrete cosine transform (DCT) on spectral feature vec-
tors to reduce the dimensionality and de-correlate the
feature components.

4 Experiments and Discussion

In this section we describe the application of CTCC
features to the task of speaker recognition in noisy con-
ditions. Moreover, for the comparison purposes, we
evaluate the performance of features MFCC, Mel-PCA,
Mel-NMF, PARAFAC and Tucker algorithms. Finally,
we discuss several issues about our model.

4.1 Experimental Setup

In this paper, Aurora2 speech corpus is used to test
the recognition performance, which is designed to eval-
uate speech recognition algorithms in noisy conditions.
In this corpus noise is added to the filtered clean data
using the ITU recommendation. The training corpus
includes 8440 sentences of digit sequences (about 76
from each of 110 speakers) in clean condition for build-
ing recognition model. Three different test datasets
(TestA, TestB, TestC) in clean and noise conditions
(20 dB, 15 dB, 10 dB, 5 dB, 0 dB, −5 dB) are taken for
the recognition.

In our experiment, the sampling rate of speech sig-
nal was 8 kHz. To compute the power spectrum, a
Hamming window of 25 ms was shifted over an in-
put speech utterance every 10 ms. In each frame, a
segmented utterance was converted to its correspond-
ing 256-dimensional FFT-based power spectrum vector.
The multi-resolution Gabor-based features were derived
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from the power spectrum by Gabor functions with 4
different scales and 4 different directions. The output
magnitude results were filtered by 40-channel Mel fil-
terbanks to create the tensor representations for tensor
factorization. We randomly selected 110 sentences as
training data to learn the basis functions using cNTF
after the calculation of cortical tensor features.

In order to estimate the speaker model and test the
efficiency of our method, we use 5500 sentences (50 sen-
tences each person) as training data which is indepen-
dent with the data samples for basis functions learning
and 1320 clean sentences (12 sentences each speaker) are
selected for testing. The testing samples in noise con-
dition are created by former clean test sentences mixed
with subway, babble, car noise, exhibition hall in SNR
intensities of 20 dB, 15 dB, 10 dB and 5 dB respectively.
For the final feature set, 16 cepstral coefficients were ex-
tracted and used for speaker modeling. GMM was used
to build the recognizer with 64 Gaussian mixtures.

4.2 Experimental Results

For comparison, the performance of MFCC,
Mel-NMF, Mel-PCA, PARAFAC and Tucker algo-
rithms with 16-order cepstral coefficients are also tested.
We use PCA and NMF to learn the part-based repre-
sentation in the spectro-temporal domain after Mel fil-
tering, which is similar to [40]. The feature after PCA
or NMF projection was further processed into the cep-
stral domain via discrete cosine transform. PARAFAC
and Tucker algorithms are used to learn the basis func-
tions and the feature extraction procedure is same as
our framework.

The identification accuracy results obtained by

CTCC and baseline system in all testing conditions are
summarized in Table 4. We can observe from Table
4 that the performance degradation of CTCC is slower
with increasing noise intensity compared with other fea-
tures. It performs better than other features in the high
noise conditions such as 5dB condition noise. Fig.7 de-
scribes the identification rate in four noisy conditions
averaged over SNRs between 5∼20 dB, and the over-
all average accuracy across all the conditions. The re-
sults suggest that this cortical representation feature is
robust against the additive noise, which indicates the
potential of the new feature for dealing with a wider
variety of noisy conditions.

Fig.7. Identification accuracy in four noisy conditions averaged

over SNRs between 5∼20dB, and the overall average accuracy

across all the conditions, for CTCC and other features using Au-

rora2 noise testing dataset.

4.3 Discussion

We generalize the common NTF algorithm by
the nonsmooth approach and orthogonal constraint.
Smoothing matrix S is introduced to control the sparse-
ness of basis function and encoding matrix in each

Table 4. Identification Accuracy in Four Noisy Conditions for Aurora2 Noise Testing Dataset

Noise SNR (dB) CTCC (%) MFCC (%) PARAFAC (%) Tucker (%) NMF (%) PCA (%)

Subway 5 34.55 2.73 7.27 19.09 15.45 3.64

10 75.45 16.36 39.09 40.90 40.91 12.73

15 89.09 44.55 75.45 71.81 67.27 50.91

20 96.36 76.36 92.73 84.54 88.18 88.18

Babble 5 28.18 16.36 23.64 15.45 23.64 21.82

10 57.27 51.82 60.00 45.45 41.82 51.82

15 88.18 79.09 86.36 70.00 61.82 79.09

20 96.36 93.64 97.27 90.00 82.73 96.36

Car Noise 5 22.73 5.45 14.55 15.45 3.64 2.73

10 54.55 17.27 52.73 40.00 26.36 10.00

15 81.82 44.55 75.45 69.09 57.27 38.18

20 98.18 78.18 90.91 87.27 74.55 79.09

Exhibition Hall 5 23.64 1.82 9.09 13.63 9.09 3.64

10 47.27 20.00 28.18 36.36 29.09 20.91

15 75.45 50.00 69.09 72.72 68.18 59.09

20 91.82 76.36 88.18 91.81 86.36 89.09
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mode. For cNTF algorithm, S will control the sparse-
ness of mode matrices A(d). By this sparseness con-
trol operator, cNTF can produce more localized and
less overlapped representations which enhance the ro-
bustness of features and reduce the noise components.
The orthogonal constraint

∑
p6=q[A

(d)T A(d)]pq makes
the basis functions be as orthogonal as possible to en-
sure redundancy minimization between different basis
functions.

Motivated by the cortical representation in the pri-
mary auditory cortex, we model the neuron response
by the 2D Gabor function with different scales and di-
rections. It is assumed that the Gabor functions are
similar to the receptive field profiles in the mammalian
cortical simple cells. The cortical stage in central audi-
tory system analyzes the spectrum into more elaborate
multiple factor representations. These representations
reflect the neuron response for different perception cues
and will enhance the robustness of features.

Under the multilinear analysis framework, we employ
cNTF to learn the basis functions of cortical representa-
tion. The basis functions with sparse constraint fit the
statistical characteristic of the clean speech data. The
sparse assumption makes the energy of signal concen-
trate on a few components. After transformation, the
components that accord with former statistical charac-
teristic will be preserved, while the noise components
with different distributions will be suppressed.

Traditional spectral analysis methods such as MFCC
provide an approximation of frequency integration of
the auditory system in the 2D spectro-temporal fea-
ture space. Actually, as described in Subsection 3.1,
the feature space is a higher order tensor space with
four independent modes. Therefore we believe that the
spectro-temporal patterns of speech in different feature
subspaces provide more robust information for speech
feature analysis. This model can be considered as the
paralleled spectral analysis within the context of audi-
tory framework.

5 Conclusion

In this paper, we derive a new feature extraction
method called cNTF for learning basis functions in mul-
tiple interrelated subspaces. Sparse constraint on cNTF
enhances energy concentration of speech signal, keeping
useful features during noise reduction. Furthermore the
orthogonal constraint ensures redundancy minimization
between different basis functions. A novel robust fea-
ture extraction framework for speech is proposed based
on integration cortical representation and tensor fac-
torization, inspired by the multilinear representation
of central auditory system. Our approach is primar-
ily data-driven and effectively extracts robust feature of

speech called CTCC which is invariant to the types and
interference of noise with different intensities. The cor-
tical sparse representation is extracted after the multi-
related subspace projection, preserving the discrimina-
tive and robust information of different speakers. Ex-
perimental results demonstrate that the CTCC feature
improves the noisy robustness and recognition accuracy
compared with baseline systems.
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