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Robust Multifactor Speech Feature Extraction
Based on Gabor Analysis
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Abstract—The performance of speech recognition systems relies
on the consistency and adaptation of the speech feature in complex
conditions during the training and testing stages. Traditional sys-
tems usually perform poorly under adverse noisy conditions and
are not applicable to most real world problems. In this paper, we
investigate the speech feature extraction problem in a noisy envi-
ronment and propose a novel approach based on Gabor filtering
and tensor factorization. Recent physiological and psychoacoustic
experimental results suggest that the localized spectro-temporal
features are essential for auditory perception. To explore this prop-
erty, we represent the speech signal by using a general higher order
tensor and employ two-dimensional Gabor functions with different
scales and directions to analyze the localized patches of the power
spectrogram. Then the Nonnegative Tensor PCA with sparse con-
straints is proposed to learn the projection matrices from multiple
interrelated feature subspaces. The objective of the sparse con-
straints is to preserve the statistical characteristic of clean speech
data by finding projection matrices of speech subspaces and re-
duce the noise components which have distributions different from
those of clean speech. A multifactor analysis method is proposed
to extract robust sparse features by processing the data samples
in tensor structure. The simulation results indicate that our pro-
posed method is able to improve the speech recognition perfor-
mance, especially in noisy environments, compared with the tra-
ditional speech feature extraction methods.

Index Terms—Acoustic noise, auditory perception, feature ex-
traction, Gabor filtering, speech recognition, tensor factorization.

I. INTRODUCTION

I N SPEECH recognition systems, feature extraction and
recognition are two important modules. The primary ob-

jective of feature extraction is to find robust and discriminative
features in the acoustic data. The recognition module uses the
speech features and the acoustic models to decode the speech
input and produces text results with high accuracy. A number
of speech feature extraction methods have been proposed,
such as linear predictive cepstral coefficients (LPCCs) [1],
mel-frequency cepstral coefficients (MFCCs) and perceptual
linear predictive coefficients (PLPs) [2].
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Several available speech recognition systems are able
to achieve acceptable accuracy for clean speech, while the
recognition performance is degraded dramatically in noisy
environments. Performance degradation is attributed to the
inevitable mismatch of speech features between training and
testing conditions. Several methods have been proposed to
reduce the effect of mismatch. Feature compensation tech-
niques such as CMN [3] and RASTA [4] have been developed
for robust speech recognition. Given a priori knowledge of
the noise spectrum, the effectiveness of subspace-based fil-
tering and spectral subtraction techniques has been shown in
[5]–[7]. Temporal filtering approaches [8], [9] based on specific
optimization techniques have been proved to be capable of
enhancing the discrimination and robustness of speech features
in speech recognition. Temporal structure normalization (TSN)
[10] which normalizes the temporal statistics of the speech
features aims to reduce the noise disorders.

Recently, computational auditory neural models and sparse
coding have attracted much attention in the societies of neuro-
science and speech processing. The Gabor STRF model [11]
was proposed to fit the auditory nucleus of inferior colliculus
by using spectral and temporal Gabor functions. Kleinschmidt
[12] provided a brief overview on the work related to the local-
ized spectro-temporal features. In [13], a 2-D spectro-temporal
Gabor filterbank based on 2-D fast Fourier transform (FFT)
was developed to decompose the spectrogram patch into un-
derlying dominant spectro-temporal components. In [14], mul-
tiscale spectro-temporal modulation features based on auditory
cortex model were proposed and HOSVD was applied to per-
form multilinear dimensionality reduction for investigating con-
tent-based audio classification problem. Jeon [15] proposed a
computational central auditory system model and interpreted
various feature selection methods.

Multifactor analysis provides a potential approach for gener-
ating robust features that can discriminate speech entities better.
As a powerful data modeling tool for pattern recognition, multi-
linear algebra of higher order tensors has been proposed as a po-
tent mathematical framework to manipulate the multiple factors
underlying the observations. Tensor decomposition methods in-
clude CANDECOMP/PARAFAC model [16]–[18], the Tucker
Model [19], [20], and Nonnegative Tensor Factorization (NTF)
[21], [22]. Tensor discriminant analysis methods [23], [24] were
proposed to deal with the small sample size problem that occurs
in conventional discriminant learning.

In this paper, we propose a robust speech feature extraction
method based on Gabor analysis and tensor factorization. 2-D
Gabor functions are used to extract the spectro-temporal in-
formation, which employ multi-resolution wavelet over scales
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and directions to analyze the power spectrogram of speech. A
new tensor analysis approach called NTPCA is developed for
multifactor analysis of speech by maximizing the covariance of
data samples on the tensor structure. The Gabor tensor feature
extracted by NTPCA can be processed further into a represen-
tation called Gabor tensor cepstral coefficients (GTCCs) by
discrete cosine transform (DCT). Finally hidden Markov models
(HMMs) are used to construct a speech recognizer with GTCC
features. The advantages of our method include the following.
1) The features based on multi-resolution spectro-temporal
modulation with different scales and directions are biologically
plausible, which simulate the auditory cortical representation.
The speech signal can be represented in the framework of a
higher order tensor so that both spectral and temporal struc-
tures can be explored simultaneously within one model. 2) A
supervised learning procedure is proposed to find the projection
matrices of multi-related feature subspaces preserving the in-
dividual, spectro-temporal information in the tensor structure.
The maximum variance criterion avails to remove the noise
component as useless information in the minor subspace. 3) The
sparse constraints make the energy of speech signal concentrate
on a few components and the statistical characteristics of clean
speech data are preserved in the projection matrices. Therefore,
the projected components with consistent statistical character-
istic will be reserved, while the noise components with different
distributions will be suppressed. To validate the performance of
the proposed method, comparisons with commonly used fea-
ture extraction methods are given. Experimental results show
GTCC features are good speech representations, reserving
robust features in noisy environments.

The remainder of this paper is organized as follows. In
Section II, a tensor factorization algorithm NTPCA is pre-
sented for feature extraction. Section III describes the Gabor
tensor feature extraction framework for robust speech recog-
nition. Section IV presents the experimental results of speech
recognition in the noise-free and noisy environments. Finally,
Section V provides a summary and conclusions.

II. NONNEGATIVE TENSOR PRINCIPAL COMPONENT ANALYSIS

In this section, we introduce nonnegative tensor principal
component analysis (NTPCA) [28] as an extension of non-
negative sparse principle component analysis to preserve the
intrinsic structure of high-order tensor data and avoid the lose
of spatial information. The time complexity and convergence
analysis of NTPCA are also provided.

A. Fundamentals of Multilinear Algebra

For the integrity of this paper, we briefly introduce relevant
definitions of multilinear algebra, which is fundamental to this
paper. More details can be found in [19], [23], [25]. A tensor
is a multidimensional array that is an element of the tensor
product of vector spaces, each of which has its own coordi-
nate system. The order of a tensor is ,
that is the number of factors, also known as ways or modes. An
element of is denoted by , where
and .

Definition 1 (Tensor Product): The tensor product
of a tensor and another tensor

is a tensor defined by

(1)
for all index values.

Definition 2 (Matrix Unfolding): The matrix unfolding or
mode- matricizing of an -order tensor
is the set of vectors in obtained by keeping the th index
fixed and varying the other indices. The matrix unfolding or
mode- matricizing of an -order tensor is a matrix

, where . We denote the mode- matri-
cizing of as or .

Definition 3 (Tensor Contraction): In this paper, the con-
traction of a tensor is conducted on all indices except the th
index on the tensor product of and

. We denote the contraction result as

(2)

where , . Equivalent
expression of (2) can be written as

(3)

Definition 4 (Mode- Matrix Product): The mode- matrix
product defines multiplication of a tensor with a matrix in mode

. Let and

(4)

We simplify the notation of mode- matrix product as

(5)

and

(6)

where .
Definition 5 (Frobenius Norm): The Frobenius norm of a

tensor is given by

(7)
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Obviously the mode- matricizing of tensor has the same
Frobenius norm as tensor , that is .

B. Nonnegative Sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used dimen-
sionality reduction technique in data analysis. In [27], nonneg-
ative sparse principal component analysis (NSPCA) was pro-
posed by incorporating both nonnegativity and sparseness into
PCA with maintaining the maximal variance property.

The problem of NSPCA can be formulated as follows: given
a set of centered data points , we are to find a number
of principal vectors , such that those vectors
maximize the following objective function:

s.t. (8)

where and , is the square Frobe-
nius norm, the second term in (8) is to relax orthogonal con-
straints in traditional PCA, controls the additional orthog-
onality required, the third term in (8) is the sparse constraint,
is a column vector with all elements equal to one, and is
a parameter for controlling sparseness degree.

The sparse constraints can decrease the density of projection
matrices, i.e., reduce the average number of nonzero elements
per principal vector. To minimize the number of nonzero ele-
ments of a principal vector, we can impose the norm con-
straint on the principal vector. Generally, constraint will
bring in computational complexity in finding the optimal so-
lution. Therefore, we replace constraint with norm con-
straint, i.e., . Since is nonnegative
we can use the sparseness term: .

C. Nonnegative Tensor Principal Component Analysis

Similar to NSPCA, we denote the th centered training
sample (tensor) as an -order tensor , where

and , ( ) denotes the
th mode projection matrix to be found in training procedure.

Denote

(9)

The problem of NTPCA is to find th projection matrix which
maximizes the following optimization problem:

(10)

where is defined by ,
.

Because of the sparse constraints imposed on projection
matrices, minimizing will cause some elements
of projection matrices to be exactly zero. The detailed
derivation of problem foundation (10) is given in Appendix A.

For fixed and , the optimization problem (10) is an
NP-hard problem [26], [27]. Then we decompose the opti-
mization problem (10) into an iterative optimization of some

variables by fixing the rest of the variables invariant and find
the local optimal solutions. To find th mode projection matrix

, we first fix the projection matrices of other modes and solve
the optimization problem (10) by iterative procedures. The
suboptimization function of (the th row of the column
vector with index ) is defined as follows:

(11)

where

,
is a term independent of and is the element of . We
can calculate the derivative with respect to
and set it to zero to obtain the nonnegative roots and zero as the
nonnegative global maximum of .

Algorithm 1: Algorithm of NTPCA

Data: Training data , ,
dimensionality of output tensors , , ,
( ), maximum iterations , error threshold .

Result: The projection matrix ( ), the
output tensors .

1) Initialization: Set ( ) randomly,
iteration index ;

2) repeat
3) for to do

4) Calculate ;

5) Iterate over every entries of

6) -Set the value of to the global nonnegative
maximizer of (11).

7) until or update error ;

8)

The optimization problem (10) can be solved by the alter-
nating projection optimization procedure of the Nonnegative
Tensor PCA (NTPCA) (See Algorithm 1). The key steps in the
alternating projection procedure are Steps 4–6, which involve
finding the th projection matrix in the th iteration by using

found in the ( )th iteration. In Step 4 we cal-

culate the covariance matrix with given

in the ( )th iteration. Then is updated by maximizing
(11). By iterating Steps 4–6 in Algorithm 1, we can obtain the
projection matrices for different modes.

D. Time Complexity Analysis

The time complexity of NSPCA is when
the sample belong to , where is the max-
imal iteration number of NSPCA, is the number of selected
features. The time complexity of NTPCA based on the alter-
nating projection methods is , where is
the number of iterations to make the optimization procedure
NTPCA converge, is the dimension of sample in mode ,
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is the number of selected features in mode . The space com-
plexity of the alternating projection optimization of NTPCA is

.
The tensor representation can reduce the number of param-

eters for modeling the data. For common subspace methods, a
multifactor data structure with sample is
a vector in . Thus, we need to estimate the projec-
tion matrix in for NSPCA, while we only need
to estimate the projection matrices , 1, 2,
3 in NTPCA. The estimation procedure for each is imple-
mented independently, which makes the number of parameters
in NTPCA less than that of NSPCA.

E. Convergence Analysis

Similar to the convergence analysis in [23], [24], the con-
vergence of NTPCA is also guaranteed during the alternating
optimization procedure. We define a continuous function

(12)

where with the constraint , is the set,
which includes all possible . As described in (24), the opti-
mization problem of NTPCA can be decomposed into sub-
problems. With the definition (12), has different mappings,
as shown in (13) at the bottom of the page, where

, is a function of
with given and . According to the definition
(13), the objective function is locally convex. The value of func-
tion (12) in the th iteration approaches a local maximum as
the projection matrices are updated. We can calculate
by maximizing with the given in the th iteration
and in the ( )th iteration which are described in
Steps 4–6 in Algorithm 1.

The alternating projection can be illustrated by a composition
of sub-algorithms defined as

(14)

As discussed in [23] and [24], is a closed al-
gorithm and all sub-algorithms increase the values of ,

so it is clear that is monotonic with respect to . Therefore, the
alternating projection method to optimize NTPCA converges.
We can terminate the iteration procedure when the change of
between two successive iterations is sufficiently small.

III. GABOR TENSOR FEATURE EXTRACTION

The auditory system represents speech signals in both the
temporal and spectral domain. The response of an auditory
neuron in the primary auditory cortex (A1) can be described
in terms of its spectro-temporal receptive field (STRF). In this
paper, we employ 2-D Gabor functions to model the primary
auditory cortical representation [29] in the spectro-temporal
domain. The response of a population of cortical cells is repre-
sented in a high order feature space. The goal of our proposed
method is to extract the intrinsic representation of auditory
perception for building practical speech recognition systems.

A. Gabor-Based Multifactor Representation

As described in [30], the spectrum represents the responses of
a population of cortical neurons. In the primary auditory cortex
the auditory spectrum is decomposed into a more elaborate rep-
resentation which contains the spectral and temporal modula-
tion content. The neuron fires at its maximum rate for the input
tones at its particular center frequency (CF). For a given time
frame, the speech cortical representation is a higher order tensor
[14], [30], [32], [33]. This tensor model has three factors: the
center frequency , the scales (spectral bandwidth) , and the
phase (local symmetry) . The scales describe the bandwidth
of each response area along the tonotopic frequency axis. The
phase describes the symmetry parameters of neuron response.

We employ 2-D Gabor functions to model the STRF of cor-
tical cells in the auditory cortex [11] based on the observations
[31], [33], [34] that response of those cells are tuned to lo-
calized spectro-temporal modulations. The 2-D Gabor function

is defined as

(15)
where is the power spectrum at frame with
component index of frequency , is a vector and
controls the scale and direction of Gabor functions, where

, . We manipulate the scale and di-
rection of Gabor functions by changing parameters and , re-
spectively, and determines the total number of directions. The
parameters and are linked and controlled by vector . We
can obtain the temporal modulation and spectral modulation of
speech by this Gabor function. Three typical examples of Gabor
functions are shown in Fig. 1.

(13)
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Fig. 1. Cortical representation of primary auditory cortex.

Fig. 2. Gabor tensor feature. The tensor structure has four independent factors:
time, frequency, direction, and scale.

Fig. 1 represents the cortical representation with a primary au-
ditory cortex neuron which has coordinates . Three ex-
amples with different scale and direction parameters are given
in Fig. 1. The first example with parameters ,
describes the case that the response areas of neurons have a
centered excitatory band with symmetrical inhibitory sidebands.
The second example with parameters , shows the
band with of response areas shrinkages as parameter decrease.
The response areas in third example with parameters ,

become asymmetric with stronger inhibitory side-
bands above CF in one direction than below CF in the opposite
direction. The response result can be simulated by 2-D Gabor
functions as parameters and change.

Based on cortical representation in Fig. 1, we represent the
power spectrum in given time window as a
4-order tensor with four different fac-
tors: Frequency Time Scale Direction. It is clearly seen that
the cortical representation in Fig. 2 describes temporal-spectral
patterns with different Gabor functions. Compared with the
traditional spectral-temporal representation, the cortical rep-
resentation is biologically inspired and gives more elaborate
and abundant patterns for feature extraction. We calculate
cortical representation by convolving the Gabor functions

with the power spectrum and obtain a 4-order
tensor as shown in Fig. 2. For certain
parameters and of Gabor functions, the Gabor filtering
result is defined as

(16)

where is the power spectrum at frame with component
index of frequency , and , and
is the convolution operator.

Thus, we transform the speech signal into a high-order repre-
sentation of spectro-temporal modulations. The new represen-
tations with different parameters , describe multifactor
characteristics of cortical representation. We use the Mel scale

Fig. 3. Results of NTPCA applied to the clean speech data. (a) Projection ma-
trix of NTPCA in spectro-temporal domain. (b) Samples of sparse coefficients
(encoding) of feature vector (The �-axis is the dimension of the vector and the
�-axis is the amplitude of the coefficients).

as the frequency warping scale to preserve the perceived fre-
quency band. We define as the feature set after
Mel filtering:

(17)

where is a set of triangular filters which are linear ap-
proximately below 1 kHz and logarithm above, is the lowest
frequency, and is the highest frequency. Finally we obtain
the tensor-based representation as
data preparation for learning the projection matrices of different
subspaces.

B. Multifactor Analysis With Sparse Constraint

The auditory model transforms the speech signal into high-
order multifactor feature space. We employ NTPCA to learn
the projection matrices in each factor (frequency, time,
direction, and scale) from the Gabor-based cortical representa-
tion after the alternating projection optimization procedure. In-
tuitively, the projection matrices preserve the statistical charac-
teristic of clean speech data and transform the cortical represen-
tation into a sparse feature space. The extracted tensor features
characterize the elaborate spectro-temporal patterns of cortical
representation and preserve principal components of multiple
factors, which are superior to traditional subspace feature ex-
traction methods.

In order to extract robust feature suitable for recognition,
speech samples are first transformed to cortical representation

and then are projected onto fre-
quency, scale, and direction axes by matrices ,

, according to the cor-
tical model in Fig. 1. We obtain the sparse tensor feature

(18)

An example of projection matrix in frequency domain is
shown in Fig. 3(a) and most elements of this project matrix
are near zero, which accords with the sparse constraints of
NTPCA. Several samples of coefficients of feature vectors
after projection illustrated in Fig. 3(b) also show the sparse
characteristic of features. In Fig. 4, the statistics of the co-
efficients of the sparse tensor features (Clean, 0 dB, 10 dB),
babble noise, white noise, and factory noise are presented for
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Fig. 4. Distribution of coefficients of the speech features (Clean, 0 dB, 10 dB),
babble noise, white noise, factory noise. The �-axis is the coefficient � and the
�-axis is the probability function ����.

Fig. 5. (a) 40� 153 standard mel spectrum and (b) 18� 153 average sparse
Gabor tensor feature under � � � for sentence “place blue by f nine please,”
before DCT under different SNR conditions (Clean, 0 dB, 10 dB).

comparison. We observe from computer simulations that the
coefficient distribution of white noise is dense in the space of
sparse speech representation, while the distribution of speech
feature is sparse. Due to involving human speech in the babble
noise, the feature distribution of babble noise is not as dense as
white noise.

For comparison, Fig. 5 presents the standard Mel spectrum
and the average sparse tensor features for sentence “place blue
by nine please” before DCT under different SNR conditions
(Clean, 0 dB, 10 dB). In Fig. 5(a), Mel-based features with 40
filterbanks are shown and the degradation of the Mel spectrum
in presence of additive factory noise is observed. The distortion
of the Mel spectrum becomes severe with increase of noise in-
tensity, resulting in performance degeneration in speech recog-
nition by using MFCC features. From Fig. 5(b) we can find that
the average sparse tensor features after projection maintain most
spectral features from multiple subspaces compared with the
features in clean conditions.

The sparse representation is efficient and coincided with the
auditory neural coding [36]. Sparse coding theory [35] assumes
that given a sound stimulus, only a few auditory neurons are ac-
tive (nonzero elements) simultaneously. One can assume that

Fig. 6. (a) Feature coefficients distribution of clean speech. (b) Feature coeffi-
cients distribution of factory noise after transformation. (c) Feature coefficients
distribution of speech mixed with factory noise (SNR � �� dB). The �-axis is
the dimension of feature vector. The �-axis is the amplitude of coefficients. The
size of feature in (a)-(c) is 18� 231. The �-axis include 18 bins and each bin
include 231 coefficients of different samples.

the activity of neurons with small absolute values are purely
noise and set them to zero, retaining just a few components with
strong activities. The sparse constraint in the proposed method
is closely related to the method of sparse coding shrinkage [35].
The constraint term will cause some ele-
ments of to be exactly zero. As a result it can search for
uncorrelated directions in which the components are as sparse
(as in [35] super-Gaussian) as possible.

The sparse constraint results in feature robustness against
noise because in sparse coding we are to find a projection
subspace where the signal energy is only concentrated on a few
components. When the speech signal is corrupted by additive
noise, the Gaussian or weakly Gaussian noise usually has
different distribution from speech, and therefore distribution of
coefficients of noise in the space of sparse speech representation
are almost uniformly spread over all components. Due to the
sparse constraint, the coefficients of noise in the sparse speech
representation will be suppressed when those coefficients are
smaller than certain threshold. Therefore, the additive noise has
little effect on the speech features. Thus, the features of clean
speech are preserved in the sparse representation, while the
noise components with dense distribution are suppressed.

Fig. 6 illustrates the sparse tensor feature distribution compar-
ison of clean speech, factory noise and speech mixed with fac-
tory noise. The sparse tensor feature coefficients distribution of
clean speech is presented in Fig. 6(a). Most elements in Fig. 6(a)
is near to zero and the signal energy is concentrated on only a
few components. Fig. 6(b) presents the feature coefficients dis-
tribution of factory noise in the feature space. Compared with
sparse tensor features of clean speech, the coefficient distribu-
tion of factory noise is dense and uniform. The amplitude en-
velop of factory noise is given to compare the absolute value of
noise signal with clean speech. From Fig. 6(c), we can find that
the absolute value of feature coefficients is becomes smaller in
the space of sparse speech representation compared with clean
speech due to the shrinkage procedure, but the sparse tensor
features of speech mixed with noise preserve most sparse com-
ponents. This observation shows that the coefficients of noise
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Fig. 7. Average scale features based on sparse tensor features.

Fig. 8. Sparse Gabor tensor feature extraction framework.

with sufficiently small absolute values in the sparse representa-
tion are considered as disturbance of noise and will be discarded
after projection.

Fig. 8 presents a speech feature extraction framework based
on cortical representation and tensor analysis. We preform pre-
emphasis on the speech signal and calculate the power spec-
trum by FFT. Then according to the cortical model, Gabor fil-
tering and NTPCA are applied to transform the power spectrum
into multiple feature subspaces. This Gabor-based sparse rep-
resentation method is very similar to the image representation
methods [37]. Here we employ the method proposed in [23]
for the Gabor-based gait image representation to calculate the
average scale features , which are the average over
scales of the Gabor-based sparse features as shown in Fig. 7.
Finally, we employ discrete cosine transform (DCT) on spectral
feature vectors to reduce the dimensionality and de-correlate the
feature components.

IV. EXPERIMENTS RESULT AND DISCUSSION

In this section, we present computer simulation results of a
speech recognition system using GTCC features in different
noisy environments. Comparisons with MFCC feature and
CMN, HLDA, Spectral Substraction, Temporal PCA, and
NSPCA methods are also provided.

A. Grid Corpus

The performance of GTCC was tested on the Grid corpus
which is created for research in speech separation and recog-

nition. The total corpus consists of 17 000 sentences (500 from
each of the 34 speakers). Sentences in the Grid corpus are six-
word, fixed syntax utterances such as “bin blue at F 2 now.” In
this corpus, the vocabulary includes four verbs (bin, lay, place,
set), four color choices (blue, green, red, white), four preps (at,
by, in, with), 25 English letters (“W” is excluded due to its
multi-syllabicity), ten digits (0 to 9), and four codas (again, now,
please, soon). This recognition task is more difficult than digit-
or letter-based corpora, for a more complex phone set.

B. Experimental Setup

The sampling rate of speech signal was 8 kHz. To compute
the power spectrum, a Hamming window of 25 ms was shifted
over an input speech utterance every 10 ms. At each window po-
sition, a segmented utterance was converted to its corresponding
256-dimensional FFT-based power spectrum vector. The multi-
resolution Gabor-based features were derived from the power
spectrum by Gabor functions with four different scales and four
different directions. Then the Gabor features were filtered by
40-channel Mel filterbanks to create the multifactor representa-
tion for tensor factorization.

We randomly selected 2000 sentences as a training dataset to
learn projection matrices of data samples with tensor structure.
The speech signals were transformed into tensor feature sam-
ples as the input for NTPCA. The GTCC feature vectors were
obtained from the 26 sparse gabor tensor cepstral coefficients
and delta ( ) and acceleration ( ) coefficients, which cor-
responded to a vector of 78 coefficients. We also provided the
combination of 13 GTCC (without zeroth coefficient) and 13
MFCC and their and coefficients.

From the whole corpus, 8000 sentences were randomly
chosen to train a speaker-independent recognizer using GTCC
feature. The recognizer was a monophone-based system, where
each word is a 18-state HMM with the probability density
functions described by 3-Gaussian mixtures. 3600 sentences
were mixed with six types of noise: white, babble, factory,
leopard, m109, and destroyer operation room (each noise has
600 sentences), where noise samples were obtained from the
Noisex-92 Dataset [38]. The SNR intensities were 15, 10, 5,
and 0 dB for each noise. For comparison, the performance of
MFCC, CMN, HLDA, spectral substraction, temporal PCA
(TPCA) [8] with 39-order cepstral coefficients were tested.
Similar to the feature extraction procedure of GTCC, NSPCA
was performed on the frequency domain after Gabor filtering
and the 26-order cepstral coefficients with and coeffi-
cients were provided for testing.

C. Evaluation Results

Fig. 9 shows the recognition accuracy of seven methods in
different noise conditions. The speech recognition performance
of GTCC was tested on six different noises with various SNR
(15, 10, 5, and 0 dB). From Fig. 10, the above-mentioned
methods achieve a high recognition performance for clean
speech. Both GTCC and GTCC+MFCC provide acceptable
accuracy in a clean condition.

As seen in Fig. 9, GTCC maintains appropriate recognition
performance when noise reaches to signal levels (SNR reaching
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Fig. 9. Recognition accuracy in six noisy conditions (white, babble, factory,
leopard, m109, and destroyer operation room) for Grid corpus. (a) White noise.
(b) Babble noise. (c) Factory noise. (d) Leopard noise. (e) M109 noise. (f) De-
stroyer operation room noise.

Fig. 10. Recognition accuracy in clean condition and six noisy conditions av-
eraged over SNRs between 0–15 dB, and the overall average accuracy across all
the noisy conditions, for GTCC, GTCC+MFCC and other features using Grid
corpus mixed with additive noise.

0 dB). GTCC features perform significantly better in the pres-
ence of factory and M109 noise and slightly better in the pres-
ence of babble noise. The speech signal mixed with babble noise
consists of other humans’ speech signals, which corrupts the en-
tire frequency bands and also shares the statistical properties of
the reference signal. Then the performance of GTCC degrades
although it is more robust than MFCC. For the other types of
noise sources, their statistical characteristics are quite different

from that of reference statistics, which GTCC features utilize to
extract robust features. It is observed that GTCC features pro-
vide reasonable recognition performance especially for factory
and M109 noise at very low SNR.

From the experimental result, the GTCC+MFCC give better
performance than plain GTCC. This combination is similar to
the overcomplete representation [39], which has greater flexi-
bility in capturing structure in the data. Combing different basis
functions into a single overcomplete basis would allow compact
representations for widely types of signals. From Fig. 10 we can
see that GTCC and GTCC+MFCC features show better average
performance than the other features under different noisy con-
ditions, indicating the potential of the new feature for dealing
with a wider variety of noisy conditions.

D. Discussion

In this paper, we propose a multilinear framework for robust
speech feature extraction. Compared with traditional subspace
methods, NTPCA can preserve the intrinsic information in the
natural structure of data through multifactor analysis. As de-
scribed in Section II, multifactor analysis method may reduce
the computational complexity since it processes the data sample
in its natural structure with different factors alternatively.

Compared with other cortical models for feature extraction,
our feature extraction model assumes that speech data in the
feature space is sparsely distributed. The sparsity assumption is
based on the fact that in sparse coding the energy of the signal is
only concentrated on a few components. The learned projection
matriceswithsparseconstraintspreserve thestatistical character-
isticsofclean trainingdata.Therefore, thecomponentsconsistent
to statistical characteristics of clean speech data will be reserved
during the feature extraction procedure. Since the noise generally
has a different distribution from speech, the coefficients of noise
in the feature space are usually distributed widely in most com-
ponents. Then, the noise components with distributions different
from speech will be suppressed through setting coefficients in the
feature space to zero when those coefficients are smaller than a
given threshold. The maximum variance criterion in each factor
also ensures useful features in principal component subspace
are maintained while the noise components are reduced.

Traditional spectral analysis methods such as MFCC have
given an approximation of frequency integration of the auditory
system in the 2-D spectro-temporal feature space. In this paper,
we employ Gabor filters with different scales and directions to
model the neuron response, which was motivated by cortical
representation in the primary auditory cortex. As described in
Section III, the feature space is a higher order tensor space with
three independent modes. This model helps extract the robust
features for recognition by investigating the intrinsic relations
of different factors. Our proposed sparse Gabor feature is em-
ployed to describe the response characteristic of cortical neuron
in temporal and spectral domain. These features contain more
information on not only time dynamic characteristics but also the
spectral features which are beneficial to robust feature extraction.

V. CONCLUSION

In this paper, we investigate the problem of speech feature ex-
traction in noisy environments. Motivated by the auditory per-



WU et al.: ROBUST MULTIFACTOR SPEECH FEATURE EXTRACTION BASED ON GABOR ANALYSIS 935

ception mechanism, our method is focused mainly on the en-
coding of speech signals using a general higher order tensor
structure. A new feature extraction method called NTPCA is
developed for robust speech feature extraction from multiple
feature subspaces based on tensor structure. The sparse con-
straints on NTPCA are employed to reduce the noise compo-
nents and preserve useful information. The robust spectro-tem-
poral features are extracted after multiple subspace projection.
Experimental results demonstrate that the coding efficiency is
improved compared with MFCC, CMN, HLDA, spectral sub-
straction, TPCA, and NSPCA methods. It is believed that the
proposed acoustic representations based on tensor structure can
resemble auditory perception procedure to some extent.

APPENDIX

In this appendix, we give the detailed derivation of optimiza-
tion problem (10). Based on the definition of tensor contraction,
we have following equation:

(19)

where is a vector. Let denote a collection
of column vectors and a projection matrix.
According to (19) and and

, we obtain following equation:

(20)

Based on equation and the definition of
tensor contraction, we have the following equation for tensor

and a set of matrices :

(21)

According to (20), we rewrite the optimization problem (8)
as follows:

(22)

As the definition in Section II, is the
th training sample where and

is the th projection matrix where . According to
(22) and by replacing with , we reformulate the nonneg-
ative tensor principal component analysis (NTPCA) as the fol-
lowing optimization problem, as shown in (23) at the bottom of
the page. The optimization problem defined in (23) does not
have a close-form solution, so we employ the alternating pro-
jection method to find a solution. Based on (21), we decompose
the optimization problem (23) into different sub-problems, as
shown in (24) at the bottom of the page. Then, we obtain the
final optimization problem of NTPCA which is defined as (10)
by introducing , and to simplify (24).

(23)

(24)
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