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a b s t r a c t

We propose a novel hierarchical latent topic model based on sparse coding in this paper. Unlike the

other topic models applied in the computer vision field, the words in our model are not discrete but

continuous. They are generated by sparse coding and represented with n-dimensional vectors in Rn. In

sparse coding, only a small set of components of each word is active, so we assume the probability

distribution over these continuous words is Laplace and the parameters of the Laplace distribution

depend on topics, which are the latent variables in this model. The relationship among word, topic,

document and corpus in our model is similar to Latent Dirichlet Allocation (LDA). Thereby this model is

a generalization of the traditional LDA by introducing the concept—continuous words. We use an EM

algorithm to estimate the parameters in our model. And the proposed method is applied to some

significant computer vision problems such as natural scene categorization and object classification.

The experimental results show the method is a valuable direction to generalize topic models.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Topic models such as probabilistic Latent Sematic Analysis
(pLSA) [1] and Latent Dirichlet Allocation (LDA) [2] were origin-
ally used in text understanding and information retrieval. In
recent years, they also have been widely used to solve computer
vision problems. In [3,4], topic model was used to learn and
recognize natural scene categories. Refs. [5–9] employed topic
model to discover objects from a collection of images. In [10], the
topic model was also applied to human action classification.

To borrow the algorithms from text analysis, the researchers of
above-mentioned applications construct visual words from images,
which are the basic elements in topic models. These words are
discrete variables and represented by unit-basis vectors that have a
single component equal to one and all other components equal to
zero (e.g. (0,y,0,1,0,y,0)). For example, a collection of patches are
firstly sampled from training images and resized into the same scale
in [3]. Then a codebook is learned by performing k-means algorithm.
Codewords are defined as the centers of the learned clusters. Each
image patch is assigned to the nearest codeword. In the other
applications, although other local descriptors [11] instead of image
patches are used to construct visual words, these words are still
discrete and represented by unit-basis vectors. Although this way is
easy and efficient, the difference between the original patch and
the assigned codeword is discarded and the discarded information
may be helpful to the classification task. For example, when using
ll rights reserved.

.

above-mentioned codewords to encode image patches, a patch
which is just the superposition of several codewords will be
assigned only to the nearest one and some useful information is
ignored. Fig. 1(a)–(e) illustrates this situation. (a) is an image patch.
(b), (c) and (d) are three codewords. As expressed in (e), (a) should
be assigned to (b) which is the nearest codeword to (a). The
representation of (a) with respect to this three codewords is
(1,0,0) now, so the information about (b) and (c) is ignored. A better
way to represent an image patch is using the coordinates with
respect to a set of basis images, which will avoid the above
limitation. The image patch can be absolutely reconstructed by the
linear combination of the basis images with the coordinates.
Fig. 1(f) illustrates how to code an image patch with respect to
three basis images. The coordinates is (1,1,1) in this example. We
can see the representation of a word is not a unit-basis vector but a
general vector in this way. We call this kind of words ‘‘continuous
words’’ to differ from the traditional discrete word. Can we construct
topic model based on continuous words like the traditional topic
models based on discrete words?

In this paper, we deal with the above problem by proposing a
three-level hierarchical Bayesian model similar to LDA. The essential
difference between the traditional LDA and our model lies in the
basic elements—words. In traditional LDA, a word is discrete and
represented by a unit-bases vector. But in our model, it is contin-
uous and represented with a general n-dimensional vector. We also
define a reasonable probability distribution over these words and
present an EM algorithm to estimate the parameters of the model.

Several matrix factorization algorithms such as PCA, ICA [12] and
NMF [13] can be used to generate the continuous visual words. And
we generate them by sparse coding in our model. The sparse code is
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Fig. 1. (a) An image patch. (b)–(d) Three codewords or bases. (e) Representing an

image patch with the nearest codeword. (f) Representing an image patch with the

combination of three bases.
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Fig. 2. Graphical model representation of LDA (SCLDA). w represents word, z

represents topic, y are parameters of multinomial variable z, a and b are hyper-

parameters. a are parameters of Dirichlet distribution and every column of b are

parameters of a multinomial distribution (Laplace distribution). The difference of

LDA and SCLDA lies in the conditional probability distribution over w i.e. pðw9z,bÞ.
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a kind of neural code in which each item is encoded by the strong
activation of a relatively small set of neurons. It is also an efficient
encoding method for visual signals. The advantages of sparse coding
have been discussed in these papers [14–16] from both physiologi-
cal and information processing viewpoints.

Fig. 2 shows the dependence relationship of variables in our
model. It seems the same as the traditional LDA. The critical
difference is the probability distribution over the word w. Our
model inherits the strength of LDA and improves it by introducing
continuous words, which are more natural representation of
images. Because our continuous words are generated by sparse
coding, we formally call the model Sparse Coding Latent Dirichlet
Allocation, or SCLDA for short.

The rest of the paper is organized as follows: In Section 2 we
introduce SCLDA, a novel hierarchical latent topic model based on
sparse coding including model construction and parameter estima-
tion algorithm. Section 3 illustrates the experimental results of
SCLDA on scene categorization and object classification. Finally, we
summarize our work and discuss future directions in Section 4.
Fig. 3. One hundred and twenty bases learned on 12�12 image patches by sparse

coding. Most of them appear to represent simple orientations and illumination

patterns, similar to the ones that the early human visual system responds to.
2. SCLDA

In this section, we propose our algorithm—SCLDA. We briefly
introduce sparse coding at first. Then we explain some notations
and terminologies used in our model. Next the generative process of
our model is described in detail. Finally, we present the variational
inference and parameter estimation in our EM algorithm.

2.1. Sparse coding

Sparse coding generally refers to a representation where a
small number of neurons are active, with the majority of the
neurons inactive or showing low activity. It has been proposed as
a guiding principle in neural representations of sensory input,
particularly in the visual system.

In this paper, we use an efficient sparse coding algorithm
proposed in [17]. Let XARk�m be the input matrix (each column is
an input vector), BARk�n be the basis matrix (each column is a
base), and SARn�m be the coefficient matrix (each column is a
coefficient vector). Sparse coding is formulated into an optimiza-
tion problem:

min
ðB,SÞ

1

2s2
JX�BSJ2

Fþl
X

i,j

fðSijÞ ð1Þ

subject to
P

iB
2
ijrc (8j¼ 1;2, . . . ,n), where fð�Þ is a sparsity

function. The prior distribution over each coefficient Sij is given
by pðSijÞpexpð�lfðSijÞÞ. In our implementation, fð�Þ is L1-norm, so
the prior distribution over Sij is Laplace with the location para-
meter is 0 and the scale parameter is 1=l i.e.

pðSijÞ ¼
l
2

e�l9Sij9: ð2Þ

Fig. 3 illustrates 120 sparse coding basis learned in a natural
scene categorization experiment. This experiment will be detail-
edly introduced in Section 3. Some example images are showed in
Fig. 4. We extracted totally 13 000 12�12 patches from these
images for training and obtained these 120 basis. Most of them
appear to represent simple orientations and illumination pat-
terns, similar to the ones that the early human visual system
responds to.

2.2. Notation and terminology

Fig. 5 is the flow chart of how to form a ‘‘corpus’’ from a
collection of images. At first, patches are sampled from images.
Then we use a sparse coding algorithm [17] to learn a basis. Each
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Fig. 4. Examples of scenes. Each column is a class of scenes and there are total 13 classes.
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Fig. 5. Flow chart of forming a corpus.
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patch is represented by the coefficients with respect to the basis.
These coefficients are ‘‘words’’ in our model. An image, which is a
‘‘document’’ in our model, is a bag of words. And a ‘‘corpus’’ is a
collection of these ‘‘documents’’ (images).

Formally, we define the following terms:
�
 A word is the basic element, defined to be sparse coding
coefficients of a image patch. It is a general n-dimensional
vector and denoted by w.

�
 A document is a sequence of N words denoted by

w¼ ðw1,w2, . . . ,wNÞ, where wn is the nth word in the sequence.

�
 A corpus is a collection of M documents denoted by
D¼ fw1,w2, . . . ,wMg.
2.3. Generative process

The conditional probability distribution over w i.e. pðw9z,bÞ is
multinomial in the traditional LDA. It is given by

pðw9z,bÞ ¼
YV
j ¼ 1

bwj

ij , zi ¼ 1, ð3Þ

w denotes a word, z denotes a topic. They are both unit-basis
vectors, wj is the jth component of w and zi is the ith component
of z. b is a matrix and each row of it is the parameters of a
multinomial distribution. However, in our model, w is a general
n-dimensional vector. The probability distribution over w cannot
be multinomial now. In the sparse coding algorithm, we use L1

penalty function, it means we have assumed that wj (j¼1,2,y,V)
are independent and identically distributed Laplace random
variables [17]. Here wj is the same with Sij in (2). The probability
density is given by

pðwjÞ ¼
l
2

e�l9w
j9, j¼ 1;2, . . . ,V : ð4Þ

And the joint density function of w is given by

pðwÞ ¼
YV
j ¼ 1

pðwjÞ ¼
YV
j ¼ 1

l
2

e�l9w
j9: ð5Þ

To accord with this, we also assume the probability distribution of
wj conditioned on z is independent Laplace with the location
parameter is 0. But they are not identical now. The scale para-
meters are related to the value of the topic variable z i.e.

pðw9z,bÞ ¼
YV
j ¼ 1

bij

2
e�bij9w

j9, zi ¼ 1: ð6Þ

In (6), we replace the uniform scale parameter 1=l in (5) with
1=bij. Because we use L1 regularization in our sparse coding
algorithm, the absolute value of wj is taken in (6). So the data
likelihood is the same if wj is taken the opposite sign. It means we
only care the intensity of neuron response in object recognition.

The following is the generative process of SCLDA:
1.
 For a document (image) d, a multinomial parameter yd over K

topics is sampled from Dirichlet prior yd �DirðaÞ.

2.
 For a word i in document d, a topic label zdi is sampled from

multinomial distribution zdi �MultðydÞ.

3.
 The value wj

di, which is the jth component of word i in
document d, is sampled from the Laplace distribution of topic
zdi, wj

di � Laplaceðbzdi ,j
Þ.

Given the parameters a and b, the joint distribution of
a topic mixture y, a set of N topics z, and a set of N words w is
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given by

pðy,z,w9a,bÞ ¼ pðy9aÞ
YN

n ¼ 1

pðzn9yÞpðwn9zn,bÞ, ð7Þ

where y is a K-dimensional Dirichlet random variable and the
probability density is given by

pðy9aÞ ¼ Gð
PK

i ¼ 1 aiÞQK
i ¼ 1 GðaiÞ

ya1�1
1 � � �yaK�1

K , ð8Þ

zn is a multinomial random variable and the probability mass
function is given by

pðzn9yÞ ¼
YK
i ¼ 1

yzi
n

i ð9Þ

and pðw9z,bÞ is given by (6). Then the marginal distribution of a
document is given by

pðw9a,bÞ ¼
Z

pðy9aÞ
YN

n ¼ 1

X
zn

pðzn9yÞpðwn9zn,bÞ

 !
dy, ð10Þ

and the probability of a corpus is given by

pðD9a,bÞ ¼
YM

d ¼ 1

Z
pðyd9aÞ

YNd

n ¼ 1

X
zdn

pðzdn9ydÞpðwdn9zdn,bÞ

 !
dyd:

ð11Þ

2.4. Parameter estimation

The optimal parameters a and b are estimated by maximize
the log likelihood term log pðD9a,bÞ. But it is intractable due to the
coupling between y and b in the summation. Approximation
inference or sampling methods can be used to solve such
optimization problems. Because the conjugate condition is satis-
fied in our model, we choose variational approximation inference
[18] to solve it.

We introduce variational parameters g and f. The variational
distribution is given by

qðy,z9g,fÞ ¼ qðy9gÞ
YN

n ¼ 1

qðzn9fnÞ: ð12Þ

The log likelihood of a document can be expressed as

log pðw9a,bÞ ¼Lðg,f;a,bÞþDðqðy,z9g,fÞJpðy,z9w,a,bÞÞ, ð13Þ

where

Lðg,f;a,bÞ ¼ Eq½log pðy,z,w9a,bÞ�log qðy,zÞ� ð14Þ

and DðqJpÞ is the KL divergence between q and p. For simplifica-
tion, we use q, p and L to denote qðy,z9g,fÞ, pðy,z9w,a,bÞ and
Lðg,f;a,bÞ. L is the lower bound of log pðw9a,bÞ. Then we use an
EM algorithm to maximize the lower bound instead of the log
likelihood.

In the E-step, the hyper-parameters a and b are treated as
known constants. Now, maximizing L is equivalent to minimizing
DðqJpÞ:

ðgn,fn
Þ ¼ arg min

ðg,fÞ
DðqJpÞ: ð15Þ

The update rules of g and f are

fnipexp CðgiÞþ
XV

j ¼ 1

ðlog bij�bij9w
j
n9Þ

0
@

1
A, ð16Þ

gi ¼ aiþ
XN

n ¼ 1

fni: ð17Þ
In the M-step, g and f are known and fixed. Now, L is a
function of hyper-parameters a and b. We wish to find para-
meters a and b that maximize the log likelihood of a corpus:

ðan,bn
Þ ¼ arg max

ða,bÞ

XM
d ¼ 1

log pðwd9a,bÞ, ð18Þ

ðan,bn
Þ � arg max

ða,bÞ

XM
d ¼ 1

Ld, ð19Þ

where Ld is the lower bound on the log likelihood of the dth
document. The update rule of b can be written out analytically:

bij ¼

PM
d ¼ 1

PNd

n ¼ 1 fdniPM
d ¼ 1

PNd

n ¼ 1 fdni9w
j
dn9

: ð20Þ

The update for Dirichlet parameter a can be implemented by an
efficient Newton–Raphson method [2]:

anew ¼ aold�HðaoldÞ
�1gðaoldÞ, ð21Þ

where HðaÞ and gðaÞ are the Hessian matrix and gradient,
respectively, at the point a. At the end of this subsection, we
summarize our iterative variational EM algorithm:
1.
 (E-step) For each document, find the optimizing values of the
variational parameters gn and fn to minimize DðqJpÞ.
2.
 (M-step) Maximize the lower bound on the log likelihood of
the corpus (

PM
d ¼ 1 Ld) with respect to the hyper-parameters a

and b.

The two steps are repeated until the lower bound converges.
3. Experiments

In this section, we apply the proposed algorithm SCLDA to
solve some interesting application problems in computer vision
field. There are two major ways to apply SCLDA—generative
framework and discriminative framework. In generative frame-
work, we treat each category of images as a ‘‘corpus’’ and learn
model parameters for each one, then the decision of an unknown
image is made by comparing the likelihood of each category. In
discriminative framework, SCLDA is regarded as a dimension
reduction algorithm, each image is projected to a fixed set of
real-valued features—the posterior Dirichlet parameters gnðwÞ
associated with the image, then a support vector machine
(SVM) is trained on these features.

3.1. Natural scene categorization

Natural scene categorization is very useful in our everyday life.
Humans can categorize all kinds of complex scenes very quickly
[19]. There are litter or no attention in this rapid procedure [20].
A number of recent studies use intermediate representations to
improve performance and these intermediate features are manual
annotated [21,22]. Our approach also takes the advantage of
intermediate features, but avoids manual annotation.

The natural scene data-set used in this experiment is the same
as [3], which contains 13 categories. They are suburb, coast,
forest, highway, inside city, mountain, open country, street, tall
building, office, bedroom, kitchen and living room. Some example
images are illustrated in Fig. 4.

In each category, we randomly selected 100 samples for training
and the rest for testing. To learn basis by sparse coding, we randomly
extracted 20 patches per image from half training samples. The total
number of the patches are 20�50�13¼13 000. The patch size is
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1 2 3 4 5 6 7 8 9 10 11 12 13

suburb 1 96 0 0 3 0 0 0 0 0 0 1 0 0
coast 2 0 86 1 0 0 1 0 0 0 1 0 8 3
forest 3 3 0 74 0 0 10 0 1 0 0 0 13 0

livingroom 4 3 0 0 32 2 1 6 4 1 19 33 0 0
insidecity 5 2 0 0 5 67 0 3 13 2 4 0 2 0
mountain 6 2 6 9 1 0 58 0 0 0 0 4 15 4

kitchen 7 0 0 0 15 9 0 37 2 0 22 15 0 0
street 8 1 0 1 3 4 1 0 83 2 0 2 1 5

tallbuilding 9 0 0 2 12 11 1 1 11 52 4 7 0 0
office 10 0 0 0 4 0 0 2 0 0 91 3 0 0

bedroom 11 0 0 0 21 3 1 9 3 0 14 50 0 1
opencountry 12 2 19 5 0 0 4 0 0 0 0 1 65 4

highway 13 2 9 1 1 1 0 0 4 1 1 2 3 77

Fig. 7. Confusion table of classifying 13 categories of natural scene. All the

numbers stand for the percentage number. The average precision is 66.8%.

Table 1
Performance comparison of three topic models.

Method LDA Spatial-LTM SCLDA

Precision 65.2 66.4 66.8

Table 2
Classes used in our multi-class object classification experiment.

airplanes bonsai cannon car_side

chair cup dalmatian dolphin

dragonfly elephant ewer Faces

hedgehog kangaroo ketch laptop

leopards Motorbikes panda snoopy
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12�12 in our experiments. Fig. 3 illustrated 120 bases learned by
sparse coding algorithm.

Some examples of sparse coding coefficient vectors are shown
in Fig. 6(a). We can see only a small set of components is active in
this three vectors. The average sparseness of all continuous words
is 0.87. The sparseness measure used here is given by

sparsenessðxÞ ¼

ffiffiffi
n
p
�
P

9xi9
� �� ffiffiffiffiffiffiffiffiffiffiffiP

x2
i

q
ffiffiffi
n
p
�1

, ð22Þ

where n is the dimensionality of x. This function is proposed in
[23], which evaluates to unity if and only if x contains only a
single non-zero component, and takes a value of zero if and only if
all components are equal (up to signs). In Fig. 6(b), the distribu-
tions of three components of the coefficient vector are illustrated
using histograms. We can see the distributions are similar to the
Laplace.

After the sparse coding basis was prepared, we generated a
corpus for each category by the flow described in Fig. 5. When a
document was formed, 12�12 patches are evenly sampled every
six pixels in each image.

In this experiment, we solved the classification problem by
generative approach. The proposed algorithm was run to learn
model parameters for each corpus. When asked to categorize one
test image, the decision is made to the category label which gives
the highest likelihood probability. The number of topics in this
experiment is 55 and the number of bases is 120. We use a
confusion table in Fig. 7 to demonstrate the performance of our
approach. The rows denote true label and the columns denote
estimated label. The average precision of 13 categories is 66.8%.

Table 1 lists the performance of three topic models. Spatial-
LTM [8] and SCLDA are both improved from the traditional
LDA [3]. Spatial-LTM tries to add spatial coherent information
such as colors or texture features to LDA. And our SCLDA focuses
on sufficiently using the information of the local image patches.
We can see our method works best in this three algorithms. In
this paper, we show the dedication of continuous words through
generalizing the traditional LDA. In fact, continuous words can be
introduced into not only LDA but also almost all topic models
(including above mentioned Spatial-LTM). It means the perfor-
mance of this experiment may be further improved by using
continuous words in the other topic models such as Spatial-LTM.

3.2. Multi-class object classification

In this experiment, we apply SCLDA to categorize 20 classes of
objects. Different with the scene categorization experiment, we
use SCLDA as a dimension reduction method this time. We only
generate one corpus for all classes, then train a model for it. For
each training and testing image, we use the posterior Dirichlet
parameters gnðwÞ to reduce it to a set of real-valued features. At
last, we input these features and labels into a SVM [24] to finish
the classification task.

The data-set used in this experiment is Caltech101. We select
20 classes from it, and most of these classes contain more than 60
images. We use 30 images each class for training and the rest for
testing. Table 2 lists the classes used in this experiment. As a
preprocessing procedure, we normalized all images to 140 pixels
in height (width is re-scaled accordingly so that the image aspect
ratio was preserved) and converted to gray values. Fifteen train-
ing images in each class were used to learn sparse coding basis.
The number of patches extracted from every image was 40. So
totally 20�15�40¼12 000 patches were used in sparse coding
algorithm. To form a document, we evenly sampled 12�12
patches every six pixel from an image. Then we generated a
corpus for all classes including totally 20�30¼600 documents
and a model was trained for it by SCLDA. Next all documents were
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reduced to a set of features by the procedure mentioned at the
beginning of this subsection. The number of features equals to the
number of topics used in SCLDA. Finally, the classification task
was finished by SVM.

Fig. 8 illustrates four classes of objects. Every point denotes a
sample. Every sample image is firstly reduced to 80 features by
SCLDA. Then the 80-dimensional vector are projected to a three-
dimensional vector by PCA. It seems these four classes of points
can be easily categorized by a linear classifier.

Fig. 9 is the confusion table of the classification result. We use
brightness instead of number to denote the precision. White
means 100% and black means 0%. The average performance is
75.1% with 80 topics.

Fig. 10 illustrates the performance vs. the number of training
examples and topics. In Fig. 10(a), the number of topics is fixed on
50 and the performance ascends as the increase of training
examples. In Fig. 10(b), the number of training examples is fixed
on 30 and the performance reaches the maximum when the
number of topic is 80.
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We compare the performance of our approach with other
dimension reduction algorithms in Fig. 11. The other four meth-
ods are PCA, ICA, sparse coding and the traditional LDA. We can
see two topic models (SCLDA and LDA) are significantly better
than three matrix factorization methods (PCA, ICA and sparse
coding), also our method clearly improves the performance of the
traditional LDA. This improvement is the dedication of introdu-
cing continuous words.

Fig. 12 shows some of the ‘‘easiest’’ and ‘‘hardest’’ classes for
our approach. Fig. 12(a) illustrates four classes on which our
approach works best, and Fig. 12(b) illustrates four classes on
which our approach is least effective.
4. Summary and conclusion

In this paper, we introduce continuous words to traditional
LDA and propose a novel hierarchical latent topic model. Our
purpose is to generalize the powerful topic models and apply
them to computer vision problems. The experimental results
show our work is really a valuable direction to generalize topic
models in computer vision field.

The continuous words used in our model are sparse coding
coefficients of image patches. Of course other matrix factorization
algorithms such as PCA, ICA, NMF, etc. can also be employed to
construct continuous words. And, in this paper, we assume the
probability distribution over the continuous words conditioned
on the topic is Laplace. In the scene categorization and object
classification applications, this assumption works well. What
distribution should be chosen depends on the application. A
direction of our future research is how to determine the prob-
ability distribution of continuous words automatically.
Acknowledgements

The work was supported by the National Natural Science
Foundation of China (Grant No. 90920014) and the NSFC-JSPS
International Cooperation Program (Grant No. 61111140019).

References

[1] T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis,
Mach. Learn. 42 (1–2) (2001) 177–196.
[2] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet Allocation, J. Mach. Learn. Res.
3 (2003) 993–1022.

[3] F.F. Li, P. Perona, A Bayesian hierarchical model for learning natural scene
categories, Proceedings of the IEEE Computer Society Conference on Compu-
ter Vision and Pattern Recognition (CVPR), vol. 2, 2005, pp. 524–531.

[4] P. Quelhas, F. Monay, J.M. Odobez, D. Gatica-perez, T. Tuytelaars, L.V. Gool,
Modeling scenes with local descriptors and latent aspects, in: Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2005, pp. 883–890.

[5] J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, W.T. Freeman, Discovering
objects and their location in images, Proceedings of the IEEE International
Conference on Computer Vision (ICCV), vol. 1, 2005, pp. 370–377.

[6] R. Fergus, L. Fei-Fei, P. Perona, A. Zisserman, Learning object categories from
google’s image search, Proceedings of the IEEE International Conference on
Computer Vision (ICCV), vol. 2, 2005, pp. 1816–1823.

[7] B.C. Russell, W.T. Freeman, A.A. Efros, J. Sivic, A. Zisserman, Using multiple
segmentations to discover objects and their extent in image collections, in:
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2006, pp. 1605–1614.

[8] L. Cao, L. Fei-Fei, Spatially coherent latent topic model for concurrent
segmentation and classification of objects and scenes, in: Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2007, pp. 1–8.

[9] X. Wang, E. Grimson, Spatial Latent Dirichlet Allocation, The Neural Informa-
tion Processing Systems (NIPS), vol. 20, 2007.

[10] J. Niebles, H. Wang, L. Fei-Fei, Unsupervised learning of human action categories
using spatial-temporal words, Int. J. Comput. Vision 79 (2008) 299–318.

[11] D.G. Lowe, Object recognition from local scale-invariant features, Proceedings
of the IEEE International Conference on Computer Vision (ICCV), vol. 2, 1999,
pp. 1150–1157.

[12] A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis, Wiley-
Interscience, 2001.

[13] D.D. Lee, S.H. Seung, Algorithms for non-negative matrix factorization, in:
The Neural Information Processing Systems (NIPS), 2000, pp. 556–562.

[14] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties
by learning a sparse code for natural images, Nature 381 (6583) (1996)
607–609.

[15] B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: a
strategy employed by v1? Vision Res. 37 (23) (1997) 3311–3325.

[16] M.S. Lewicki, B.A. Olshausen, Probabilistic framework for the adaptation and
comparison of image codes, J. Opt. Soc. Am. A: Opt. Image Sci. Vision 16
(1999) 1587–1601.

[17] H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: The
Neural Information Processing Systems (NIPS), 2007, pp. 801–808.

[18] C.M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics), Springer, 2006.

[19] S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system,
Nature 381 (6582) (1996) 520–522.

[20] F.F. Li, R. Vanrullen, C. Koch, P. Perona, Rapid natural scene categorization
in the near absence of attention, Proc. Natl. Acad. Sci. USA 99 (2002)
9596–9601.

[21] A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representa-
tion of the spatial envelope, Int. J. Comput. Vision 42 (3) (2001) 145–175.

[22] A. Vailaya, M.A.T. Figueiredo, A.K. Jain, H.J. Zhang, Image classification for
content-based indexing, IEEE Trans. Image Process. 10 (1) (2002) 117–130.

[23] P.O. Hoyer, Non-negative matrix factorization with sparseness constraints,
J. Mach. Learn. Res. 5 (2004) 1457–1469.

[24] C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, Software
available at /http://www.csie.ntu.edu.tw/�cjlin/libsvmS, 2001.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


W. Zhu et al. / Neurocomputing 76 (2012) 28–35 35
Wenjun Zhu was born in Changzhou, China, in 1978.
He received his B.S. degree in Computer Science from
Nanjing University, Nanjing, China, in 2001. He is
currently a Ph.D. student in the Department of Com-
puter Science, Shanghai Jiao Tong University, Shanghai,
China. His current research interests include statistical
learning and inference, perception and cognition com-
puting model, computational theory for cortical net-
works and computer vision.
Liqing Zhang received the Ph.D. degree from Zhongshan
University, Guangzhou, China, in 1988. He was promoted
to full professor position in 1995 at South China Uni-
versity of Technology. He worked as a research scientist
in RIKEN Brain Science Institute, Japan from 1997 to
2002. He is now a Professor with Department of Com-
puter Science and Engineering, Shanghai Jiao Tong Uni-
versity, Shanghai, China. His current research interests
cover computational theory for cortical networks, brain
signal processing and brain–computer interface, percep-
tion and cognition computing model, statistical learning
and inference. He has published more than 160 papers in
international journals and conferences.
Qianwei Bian was born in Yuncheng, China, in 1981.
He received his B.S. and M.S. from Shenyang University
of Technology, Shenyang, China, in 2006. He is cur-
rently a Ph.D. candidate in the Department of Compu-
ter Science, Shanghai Jiao Tong University, Shanghai,
China. His current research interests include 3D model
retrieval, human–computer interaction, computer gra-
phics, CAD and computer vision.


	A hierarchical latent topic model based on sparse coding
	Introduction
	SCLDA
	Sparse coding
	Notation and terminology
	Generative process
	Parameter estimation

	Experiments
	Natural scene categorization
	Multi-class object classification

	Summary and conclusion
	Acknowledgements
	References




