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ABSTRACT

We present a new supervised tensor regression method
based on multi-way array decompositions and kernel ma-
chines. The main issue in the development of a kernel-based
framework for tensorial data is that the kernel functions have
to be defined on tensor-valued input, which we define based
on multi-mode product kernels and probabilistic generative
models. This strategy enables a range of machine learning
methods to take into account the underlying multilinear struc-
ture during the learning process. Based on the defined kernels
for tensorial data, we develop a kernel-based tensor partial
least squares approach for regression. The effectiveness of
our method is demonstrated by a real-world application, i.e.,
the reconstruction of 3D movement trajectories from electro-
corticography signals recorded from a monkey brain.

Index Terms— Tensor, Kernels, Partial Least Squares,
ECoG, Motion trajectory

1. INTRODUCTION

Tensors (also called multiway arrays) are generalization of
vectors and matrices to higher dimensions with correspond-
ing multilinear operators. The theory and algorithms of tensor
decomposition (or factorization techniques) have been exten-
sively investigated in the past decade, see e.g. [1, 2], and
successfully applied to problems in unsupervised learning
and exploratory data analysis. Tensor decompositions typi-
cally enable us to capture the structure of the data, which is
usually available as a priori information on the data nature,
and hence might provide advantages over matrix factoriza-
tions. Machine learning methods have been increasingly used
for the analysis of neural/medical data, such as functional
magnetic resonance (fMRI), electrocorticography (ECoG)
and electroencephalography (EEG) data, and have empha-
sized the need to take the structural information of original
data into account. To this end, tensor representation is natural
and efficient for such multiway structural data, meanwhile its
corresponding learning techniques should explicitly exploit

the a priori information of data structure and capture the
underlying multiway relations, resulting in useful decompo-
sitions with good generalization ability. Kernel methods, on
the other hand, have proven successful in many applications,
providing an efficient way to solve nonlinear problems [3]
by mapping input data space into a high dimensional feature
space, where the problem becomes linearly solvable. Recent
research has addressed the incorporation of kernel concept
into tensor decompositions [4], which aims to bring together
the desirable properties of kernel methods and tensor decom-
positions for significant performance gain when the data are
structured and nonlinear dependencies do exist.

Partial Least Squares (PLS) is a well-established frame-
work for estimation, regression and classification, whose ob-
jective is to predict a set of dependent variables (responses)
from a set of independent variables (predictors) through the
extraction of a small number of latent variables [5, 6, 7]. In
order to predict response variables Y from independent vari-
ables X, PLS finds a set of latent variables (also called latent
vectors, score vectors or components) by projecting both X
and Y onto a new subspace, while at the same time maxi-
mizing the pairwise covariance between the latent variables
of X and Y. There are many variations of the PLS model
including the orthogonal projection on latent structures (O-
PLS) [8], biorthogonal PLS (BPLS) [9], recursive partial least
squares (RPLS) [10], and nonlinear PLS [11]. An extension
of PLS to tensor data is N -way PLS (N-PLS) that decompos-
es the independent and dependent tensor into rank-one ten-
sors, subject to maximum pairwise covariance of the laten-
t vectors, resulting in enhanced stability, resilience to noise,
and intuitive interpretation of the results [12, 13]. The tensor
decomposition used within N-PLS is Canonical Decomposi-
tion/Parallel Factor Analysis (CANDECOMP/PARAFAC or
CP), which makes N-PLS inherit both the advantages and lim-
itations of CP. In [14], the generalized mutilinear regression
model, called Higher-Order Partial Least Squares (HOPLS),
is introduced such that a tensor Y can be predicted from a ten-
sor X by projection onto a low-dimensional common latent
subspace. Owing to the better fitness ability of the orthog-
onal Tucker model as compared to CP and the flexibility of



the block Tucker model [15], HOPLS is demonstrated to be
a promising multilinear subspace regression framework that
provides an optimal tradeoff between fitness and model com-
plexity and enhanced predictive ability in general.

In this study, we introduce a novel supervised learning
method, called kernel tensor partial least squares (KTPLS),
for tensor regression problems using kernel machines. The
key issue in developing a kernel-based framework for tenso-
rial data is the definition of the kernel function on the tensor-
valued input, which we define based on multi-mode produc-
t kernels and probabilistic generative models [16]. In addi-
tion, we apply KTPLS to electrocorticography (ECoG) sig-
nals recorded from a monkey for reconstruction of 3D move-
ment trajectories.

2. BACKGROUND AND NOTATION

N th-order tensors (multi-way arrays) are denoted by callig-
raphy letters X , matrices (two-way arrays) by boldface cap-
ital letters X, and vectors by boldface lower-case letters x.
The ith entry of a vector x is denoted by xi, element (i, j)
of a matrix X is denoted by xij , and element (i1, i2, . . . , iN )
of an N th-order tensor X ∈ RI1×I2×···×IN by xi1i2...iN or
(X )i1i2...iN . Indices typically range from 1 to their capital
version, e.g., iN = 1, . . . , IN .

The mode-n matricization of a tensor is denoted by
X(n) ∈ RIn×I1···In−1In+1···IN , while the vectorization of
a tensor is denoted as vec(X ). The n-mode product of a
tensor X ∈ RI1×···×In×···×IN and matrix A ∈ RJn×In is
denoted by Y = X ×n A ∈ RI1×···×In−1×Jn×In+1×···×IN

and is defined as:

yi1i2...in−1jnin+1...iN =
∑
in

xi1i2...in...iNajnin . (1)

The inner product of two tensors X ,X ′ ∈ RI1×···×IN is
defined by 〈X ,X ′〉 =

∑
i1i2...iN

xi1i2...iNx
′

i1i2...iN
, and the

squared Frobenius norm by ‖X‖2F = 〈X ,X〉.
The two most commonly used decompositions are the

Tucker model and CANDECOMP/PARAFAC (CP) model,
both of which can be regarded as higher-order generaliza-
tions of the matrix singular value decomposition (SVD). Let
X ∈ RI1×I2×···×IN denote an N th-order tensor, then Tucker
model is defined as follows:

X = G ×1 U(1) ×2 U(2) · · · ×N U(N) (2)

where G ∈ RR1×···×RN denotes the core tensor and U(n) ∈
RIn×Rn denotes the mode-n factor matrix. When all factor
matrices {U(n)}Nn=1 are orthonormal and the core tensor is
all-orthogonal this model is called HOSVD [17] (see Fig. 1).
When all the factor matrices have the same number of com-
ponents, and the core tensor is super-diagonal, Tucker model
simplifies to CP model. In general, CP model is considered to
be a multilinear low-rank approximation while Tucker model
is regarded as a multilinear subspace approximation.

Fig. 1. The illustration of HOSVD scheme whose objective is
to optimize orthonormal factor matrices {U(n), n = 1, 2, 3}
and all-orthogonal core tensor G.

3. KERNEL-BASED TENSOR PLS REGRESSION

Partial least squares (PLS) models two datasets by a genera-
tive process driven by a small number of latent variables. PLS
regression actually consists of two steps: dimension reduc-
tion and linear regression. For N pairs of tensor observations
{(X (n),Y(n))}Nn=1 where X (n) ∈ RI1×···×IL is an Lth-order
independent tensor and Y(n) ∈ RJ1×···×JM is an M th-order
dependent tensor, which can be concatenated as an (L+1)th-
order tensor X ∈ RN×I1×···×IL and (M + 1)th-order tensor
Y ∈ RN×J1×···×JM . The objective of HOPLS [18, 14] is to
find the optimal tensor decompositions for X and Y , yield-
ing the maximum correlated latent vectors T = [t1, . . . , tR]
and U = [u1, . . . ,uR] from independent and dependent data
respectively, i.e.

X = GX ×1 T×2 P(1) · · · ×L+1 P(L) + EX ,
Y = GY ×1 U×2 Q(1) · · · ×M+1 Q(M) + EY , (3)

where
{
P(l),Q(m)

}
denote factor matrices on specific modes

and {GX ,GY} denote block structured core tensors. These pa-
rameters are learned sequentially from training data and then
used to make a prediction by projecting a data example onto
latent space and then making regression from the correspond-
ing latent variables.

Let us now consider how the kernel-based approach can
be exploited to obtain kernel-based tensor PLS (KTPLS). We
shall assume the tensorial observations are mapped into the
Hilbert space F by

φ : X (n) → φ
(
X (n)

)
∈ RF1×···×FL . (4)

Note that the projected tensor φ
(
X (n)

)
has the same order

L with X (n), but the mode-l dimension is Fl or even an infi-
nite dimension depending on the nonlinear function φ(·). For
dependent data Y , we can choose to either apply nonlinear
mapping or not. For simplicity, we denote φ(X ) by tensor Φ
and φ(Y) by tensor Ψ. The KTPLS model is formulated as

Φ = G̃X ×1 T + EX ,

Ψ = G̃Y ×1 U + EY ,
U = TD + EU ,

(5)



where D is a diagonal matrix denoting inner relation between
latent vectors tr and ur, G̃X , G̃Y are core tensors absorbing
several factor matrices, both of which cannot be computed
explicitly. Note that G̃X can be obtained as Φ ×1 TT when
T is orthogonal, implying that it can be represented as a lin-
ear combination of {φ(X (n))}. Hence, instead of comput-
ing high-dimensional core tensors G̃X , G̃Y , we only need to
explicitly estimate T,U by solving an optimization problem
sequentially for any rth component, which is expressed by

max
{wr,vr}

[cov(tr,ur)]
2, (6)

s. t. tr = Φ(1)wr, ur = Ψ(1)vr and r = 1, . . . , R.

This can be solved by a kernelized version of the eigenvalue
problem, i.e., the optimal tr,ur can be obtained by solving
Φ(1)Φ

T
(1)Ψ(1)Ψ

T
(1)tr = λtr and ur = Ψ(1)Ψ

T
(1)tr. Note

that Φ(1)Φ
T
(1) contains only the inner products between vec-

torized input data tensors, which can be regarded as anN×N
Gram matrix KX . Similarly, Ψ(1)Ψ

T
(1) is represented as KY .

Thus, we have KXKYtr = λtr and ur = KYtr. In or-
der to take the structure information into account, the ker-
nel matrices should be computed using the specially defined
kernel functions for tensorial data, which will be discussed
in the next section, i.e., (KX )nn′ = k

(
X (n),X (n′)

)
and

(KY)nn′ = k
(
Y(n),Y(n′)

)
. Finally, the prediction of new

data point X ∗ can be achieved by

y∗T = k∗TU(TTKXU)−1TTY(1), (7)

where (k∗)n = k
(
X ∗,X (n)

)
and y∗T should be reorganized

to tensor form Y∗.
Let us examine the predictive function given in (7). Ob-

serve that the prediction is a linear combination of N obser-
vations {Y(n)} with the coefficients k∗TU(TTKXU)−1TT .
The second interpretation is that y∗j is predicted by a linear
combination of N kernels, each one centered on a training
point, i.e.,

y∗j =

N∑
n=1

αnk
(
X ∗,X (n)

)
, (8)

where αn = (U(TTKXU)−1TTY(1))nj . The third inter-
pretation is that the prediction can be represented as a linear
regression against low dimensional latent variables t∗ ∈ RR,
obtained by projecting X ∗ onto the latent space, with regres-
sion coefficient C = TTY(1), i.e., y∗j = t∗T cj . Note that an
interesting property is that although we apply nonlinear map-
ping φ(·) for data Y , it is still possible to predict Y in the
original input space, without solving the preimage problem
[19] due to the fact that two kernel matrices of KX ,KY only
affect the solution of the latent variables.

3.1. Kernel function for tensorial data

The kernels are considered as defining a topology implying
the a priori knowledge about invariance in the input space.

Although many kernels have been designed for a number of
structured objects, few approaches exploit the structure of ten-
sorial representations. Recently, M. Signoretto et al. pro-
posed a tensorial kernel exploiting algebraic geometry of s-
paces of tensors and a similarity measure between the differ-
ent subspaces spanned by higher-order tensors [20]. There are
a number of valid reproducing kernels toward a straightfor-
ward generalization to M th-order tensors, such as the kernel
functions k : X × X → R given as

Linear kernel: k(X ,X ′) = 〈vec(X ), vec(X ′)〉,

Gaussian kernel: k(X ,X ′) = exp
(
− 1

2σ2
‖X − X ′‖2F

)
.

In order to define the similarity measure that takes advan-
tage of the multilinear algebraic structure of input tensors, the
general product kernels can be defined by M factor kernels,
which is valid if the factor kernels are positive semi-definite,
denoted by k(X ,X ′) =

∏M
m=1 k

(
X(m),X

′
(m)

)
, where each

factor kernel represents a similarity measure between two ma-
trices obtained by mode-m unfoldings of two tensor exam-
ples. One possibility of similarity measure between matrices
is Chordal distance [20] (projection Frobenius norm) on the
Grassmannian manifolds. Let X denote an M th-order ten-
sor example, SVD can be applied on mode-m unfoldings as
X(m) = U

(m)
X Σ

(m)
X V

(m)T
X , then the Chordal distance can be

computed based on the right singular vectors V
(m)
X , thus we

have

k(X ,X ′)=
M∏

m=1

exp
(
− 1

2σ2

∥∥∥V(m)
X V

(m)T
X −V

(m)
X′ V

(m)T
X′

∥∥∥
F

)
.

(9)
This kernel provides us rotation and reflection invariance for
elements on the Grassmann manifold, which is effective for
video classification and recognition.

As kernels can be interpreted as measures of similarity, it
is also possible to define kernels based on information diver-
gences that are measures of dissimilarity between probabil-
ity distributions, such as Fisher kernel and Kullback-Leibler
kernel [21]. We propose a new probabilistic kernel for ten-
sorial data based on the assumption that an M th-order tensor
can be considered as M generative models, and each mod-
el corresponds to a set of observations obtained by matri-
cization of the tensor in specific mode. We assume X (n) is
generated individually by M models governed by parameters{
θ(n)
m

}M

m=1
. Once the model parameters θm have been esti-

mated from mode-mmatricization X(m), we can define the k-
ernel distance based on the symmetric Kullback-Leibler (sKL)
divergence, given by

D
(
p(x|θ)||q(x|θ′)

)
=

∫ +∞

−∞
p(x|θ) log

(
p(x|θ)
q(x|θ′)

)
dx

+

∫ +∞

−∞
q(x|θ′) log

(
q(x|θ′)
p(x|θ)

)
dx. (10)



In order to ensure that the kernel matrix is a positive definite
matrix, we use exponential kernel function with the sKL di-
vergence. Finally, the product kernel based onM sKL kernels
is represented by

k(X ,X ′) =
M∏

m=1

exp

(
−
D
(
p(x|θm)||q(x|θ′m)

)
2σ2

m

)
, (11)

where {σm}Mm=1 are kernel parameters corresponding to
mode-m sKL kernel.

For simplicity, Gaussian model assumption can be em-
ployed with model parameters including a mean vector and a
full covariance matrix, i.e., θm = {µm,Σm} that can be esti-
mated by maximum likelihood from X(m). The detailed algo-
rithms of sKL divergences between two multivariate Gaussian
distributions are given in[21, 22].

4. EXPERIMENTAL RESULTS
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Fig. 2. The prediction performance for 3D movement trajec-
tories recorded from elbow, wrist and hand using four regres-
sion models including linear PLS (LP), HOPLS (HP), KT-
PLS with Chordal distance-based kernel (KT-1) and KTPLS
with sKL divergence-based kernel (KT-2). The performance
ofQ2 = 1−‖ŷ−y‖2/‖y‖2 indicates that TK-2 outperforms
the other methods.

We apply KTPLS for decoding of 3D movement trajecto-
ries from ECoG signals recorded from monkey brain1. The
movements of a monkey were captured by an optical mo-
tion capture system with reflective markers affixed to the left
shoulder, elbows, wrists and hand, thus the dependent data
was naturally represented as a 3rd-order tensor Y (i.e., sam-
ples× 3D positions×markers). In order to represent the dis-
criminative features, the ECoG signals are transformed to the
time-frequency domains and are represented as a 4th-order
tensor X (i.e., epoch × channel × frequency × time) where
each ECoG epoch X (n) corresponds to one sample of move-
ment data Y(n). Since KTPLS enables us to create a regres-
sion model between two higher-order tensors, it is used to pre-
dict every sample of positions of monkey movements based

1The datasets and more detailed description are freely available from
http://neurotycho.org.
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Fig. 3. The visualization of predicted and recorded trajecto-
ries of hand movements.

on the most recent past 1-second ECoG epoch. The dataset is
divided into training set (10 minutes) and test set (5 minutes)
and the selection of tuning parameters, such as kernel param-
eters σm and number of latent vectors, is performed by cross-
validation on the training data. The prediction performances
for the test set are shown in Fig. 2, demonstrating the supe-
riority of KTPLS over linear PLS and HOPLS. Fig. 3 illus-
trates the predicted 3D movement trajectories of hand using
two different kernel functions defined in (11) and (9) for com-
parison, which demonstrates the advantages of the proposed
generative probabilistic kernels based on sKL divergence with
respect to predictive performance.

5. CONCLUSIONS

In this paper, we discussed PLS regression, extension to ten-
sor (e.g., NPLS and HOPLS) and developed a kernel-based
tensor regression approach based on specially defined kernel
functions for tensorial data, which has been successfully ap-
plied for reconstruction of movement trajectories from brain
signals. The experimental results demonstrats the effective-
ness and advantages of the proposed method.
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