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a b s t r a c t

Multilinear algebra of the higher-order tensor has been proposed as a potential mathematical framework
for machine learning to investigate the relationships among multiple factors underlying the observa-
tions. One popular model Nonnegative Tucker Decomposition (NTD) allows us to explore the interactions
of different factors with nonnegative constraints. In order to reduce degeneracy problem of tensor
decomposition caused by component delays, convolutive tensor decomposition model is an appropriate
model for exploring temporal correlations. In this paper, a flexible two stage algorithm for K-mode
Convolutive Nonnegative Tucker Decomposition (K-CNTD) model is proposed using an alternating least
square procedure. This model can be seen as a convolutive extension of Nonnegative Tucker Decom-
position. The patterns across columns in convolutive tensor model are investigated to represent audio
and image considering multiple factors. We employ the K-CNTD algorithm to extract the shift-invariant
sparse features in different subspaces for robust speaker recognition and Alzheimer's Disease(AD)
diagnosis task. The experimental results confirm the validity of our proposed algorithm and indicate that
it is able to improve the speaker recognition performance especially in noisy conditions and has potential
application on AD diagnosis.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multilinear algebra provides a powerful data modeling frame-
work for exploring data with multiple factors. It has a wide
applications, ranging from machine learning to signal processing
and beyond [1–6]. Widely used tensor decomposition methods
include PARAFAC model [7], Tucker model [8], Nonnegative Tensor
Factorization [1] which imposes the nonnegative constraint on the
PARAFAC or Tucker model. Furthermore, extended tensor decom-
position models INDSCAL, DEDICOM [1,9,10] are proposed to
explore symmetry in tensors and Block Term Decomposition and
CANDELING considering models interpolating between PARAFAC
and Tucker models. Compared with traditional matrix factoriza-
tion methods, tensor decomposition models are suitable to pre-
serve the natural structures of higher order data.

Several widely used algorithms based on Tucker model have
imposed orthogonal constraints on factors for the feature extraction
or data mining tasks. For example, De Lathauwer [11] proposed the

Higher-Order Singular Value Decomposition (HOSVD) for tensor
decomposition, which is a multilinear generalization of the matrix
SVD. Higher Order Orthogonal Iteration (HOOI) [12–14] extended the
truncated SVD algorithms to the tensor-structure data. Panagakis [15]
developed a new tensor factorization method called Nonnegative
Multilinear Principal Components Analysis (NMPCA) to find a tensor-
to-tensor projection [16] via multilinear subspace learning for music
genre classification. Nonnegative Tucker Decomposition (NTD) [17] is a
natural extension of NMF algorithms. The multiplicative algorithm for
NTD is based on minimization of the squared Euclidean distance and
the KL divergence. Some generalized cost functions based on Alpha-,
Beta- and Bregman-divergence [1,18,19] were also used.
With regard to optimization solutions, ALS and HALS algorithms
[20] were derived from Newton methods and they achieved good
convergence rate.

Recently, the degeneracy problem of tensor decomposition
[21,22] has been investigated due to the component delays under
multiple factor observations. As stated in [22–24], we observe
often component delays in many applications based on tensor
structure, such as time shifts in fMRI data due to hemodynamic
delay, delays across trials in EEG data when onset changes were
not locked to the event. The shifted or convolutive tensor decom-
position model can been seen as an extension of original model.
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PARAFAC2 model [25] was proposed to handle retention time
shifts in resolving chromatographic data. As an extension of
shifted factor analysis, the N-way shifted factor analysis model is
investigated in [21,22,26,27]. In [28], Mørup proposed a 2D
Convolutive NTF (CNTF) algorithm for multichannel time–fre-
quency analysis. Shift Invariant Sparse Coding (SISC) model [29]
is an extension of sparse coding to handle data from linear
mixtures. Makkiabadi [30] proposed a generalization of PARAFAC2
model [25] for convolutive mixture. Therefore, there exist a large
number of demands on efficient and fast algorithms for shifted or
convolutive tensor decomposition model to suit with the practical
data better.

In order to reduce the effect of degeneracy problem caused by
component delays, we propose a novel K-mode Convolutive
Nonnegative Tucker Decomposition (K-CNTD) model as an exten-
sion of NTD. A two stage algorithm is developed to estimate the
shifted factor matrices and core tensor. In the first stage we
employ NTD to factorize the convolutive mixture in tensor
structure into factor matrices and core tensor. For the purpose of
considering components delays, in the second stage the original
components in K modes are recovered by the convolutive NMF
algorithms. The efficiency of K-CNTD algorithm is verified on
synthetic data, noisy speech signal and AD sMRI data. Extensive
simulation results demonstrate that the shift-invariant sparse
features extracted by our proposed algorithm are robust for
speaker recognition in noisy conditions and efficient to improve
the diagnosis/classification performance for Alzheimer's Disease.

The remainder of this paper is organized as follows. In Section 2,
the background knowledge about convolutive nonnegative matrix
factorization and tensor analysis is introduced. In Section 3, a two
stage algorithm for Convolutive Nonnegative Tucker Decomposition
model is presented for feature extraction. Section 4 describes the
experimental results of synthetic data, robust speaker recognition in
noisy environments and AD sMRI diagnosis task. Finally, Section 5
provides a summary and conclusions.

2. Background

2.1. Convolutive nonnegative matrix factorization

Convolutive Nonnegative Matrix Factorization (CNMF) [31] is
generalization of NMF by considering the relative position of basis
functions or coefficients in feature space. It aims at extracting
cross-column patterns as single basis function. First, we introduce
the following operations, upward, downward, left and right shifted

operators ðAÞ
k↑
; ðAÞ
k↓
; ðAÞ
k←

; ðAÞ
k-

on the matrix A by shifting and zero
padding the rows or columns of A. For example

A
0-

¼
1 2 3
4 5 6
7 8 9

0
B@

1
CA A

0←
¼
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7 8 9

0
B@

1
CA A

1-
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0 7 8

0
B@

1
CA

A
1←

¼
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0
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1
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1↑
¼
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0 0 0

0
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1
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1↓
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0 0 0
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0
B@

1
CA ð1Þ

where the matrix A is

A¼
1 2 3
4 5 6
7 8 9

0
B@

1
CA

Based on the definition of shifted operators, the CNMF model is
defined as

V � ∑
L�1

l ¼ 0
WlH

l-
ð2Þ

where VARM�NZ0 is the input matrix, WljL�1
l ¼ 0ARM�RZ0 is a set

of basis functions and HARR�N is the weight coefficients.
Model (2) can be decomposed into a set of NMF approxima-

tions [31]. The Alternating Least Square(ALS) method has been
widely applied to find the decomposed factors. The algorithm is
a Newton-like method and has good convergence rate [1].
As described in [32], the ALS update rules of each NMF approx-

imation for Wl and H
l-

can be derived as

Hl←½ðWT
l WlÞ�1ðWT

l V
l←
Þ�þ ; Wl←½V H

l-T

ðH
l-

H
l-T

Þ�1�þ ð3Þ

where ð�ÞT is the transpose operator, ½a�þ ¼maxðε; aÞ is a half-wave
rectifying nonlinear projection to enforce nonnegativity [32]. For

each l, Hl corresponds to H
l-
. The basis function Wl and coefficient

matrix Hl are updated for each l. As stated in [31], the algorithm
first update all Wl and then final H is assigned to the average of
HljL�1

l ¼ 0, i.e.

H←
1
L

∑
L�1

l ¼ 0
Hl ð4Þ

We use the relative error enmf defined in (5) as a stop criterion
of the algorithm:

enmf ¼ V� ∑
L�1

l ¼ 0
WlH

l-
�����

�����
F

‖V‖F= ð5Þ

where ‖ � ‖F is the Frobenius norm.

2.2. Multilinear algebra

Multilinear algebra is the algebra of higher order tensors. A
tensor is a higher order generalization of matrix. Let XARI1�I2⋯�IN

denote a tensor. The order of X is N. The mode-n matricization of
an N order tensor X rearranges the elements of X to form the
matrix XðnÞARIn�Inþ 1 Inþ 2⋯IN I1⋯In� 1 .

The n-mode product of a tensor XARI1�I2�⋯�IN and matrix
AARJn�In is denoted by Y ¼ X�nAARI1�⋯�In� 1�Jn�Inþ 1⋯�IN and it is
defined as

yi1 ;i2 ;…in� 1 ;jn ;inþ 1 ;…iN ¼∑
in

xi1 ;…in ;…;iN ajn ;in ð6Þ

In this paper we simplify the notation as

G�1A
ð1Þ �⋯�NA

ðnÞ ¼ G ∏
N

n ¼ 1
�nA

ðnÞ ð7Þ

The Frobenius norm of a tensor XARI1�I2�⋯�IN [33] is given by

‖X‖F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
I1

i1 ¼ 1
⋯ ∑

IN

iN ¼ 1
x2i1 ;…;iN

s
ð8Þ

Obviously the mode-n matricization of tensor XðnÞ has the same
Frobenius norm as tensor X that is ‖XðnÞ‖F ¼ ‖X‖F .

Some basic notations of multilinear algebra are described in
Table 1. The details about tensor decomposition can be found in
[1,11,32,33].

2.3. Nonnegative Tucker Decomposition

Nonnegative Tucker Decomposition (NTD) [17] model is
defined as

X ¼ G�1U
ð1Þ�2U

ð2Þ⋯�NU
ðNÞ þE ð9Þ
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where XAR
I1�I2⋯�INþ Z0 is the data tensor, GAR

J1�⋯�JNþ Z0 is the
core tensor, UðnÞjNn ¼ 1AR

In�Jnþ Z0 is a set of nonnegative factor
matrices, E is the residual tensor. Equivalently, NTD model can be
written in matrix notation by use of Kronecker product as

XðnÞ ¼UðnÞGðnÞU
� � nT þEðnÞ ð10Þ

As described in [1,20,32], the ALS update rules for factor matrices
UðnÞjNn ¼ 1 and core tensor G are given by

UðnÞ←½XðnÞU
� � nGT

ðnÞðGðnÞðUTUÞ� � nGT
ðnÞÞ�þ ð11Þ

G←G⊛ X ∏
N

n ¼ 1
�nU

ðnÞT
� �

⊘ G ∏
N

n ¼ 1
�nU

ðnÞTUðnÞ
� �� �

ð12Þ

3. Two stage algorithm for K-mode Convolutive Nonnegative
Tucker Decomposition

The component shifts or delays have been considered in many
areas of science [21]. For example, audio signal in the reverberant
environment exists the temporal shifts that cause the cocktail
party problem. Shifting of absorption and emission spectra occur
in chemistry and physics. There also exist component delays in
fMRI and EEG data. So current tensor decomposition model with-
out considering shifting will cause the model mismatch with the
data. As stated in [21,22,34], the degeneracy problem of tensor
decomposition model will occur due to the component delays.

In order to consider the potential dependencies across the
columns of factor matrices and investigate component delay
patterns that span multiple columns of factor matrices, we extend
NTD model into convolutive form. Considering the delays in first
mode, we write the convolutive NTD model in one mode as

X ¼ ∑
L�1

l ¼ 0
Gl�1H

ð1Þ
l↓

�2U
ð2Þ �⋯�NU

ðNÞ þE ð13Þ

where the original data tensor X is decomposed into a set of core
tensor GljL�1

l ¼ 0, factor matrices UðnÞjNn ¼ 2 and shifted factor matrix
Hð1Þ. The core tensors can be seen as a set of higher order basis
functions. UðnÞjNn ¼ 2 and Hð1Þ are the weights or coefficients.
Especially, the basis functions with higher order tensor structure
will be shifted and scaled in the first mode by convolution across
the axis of l with the rows of Hð1Þ. Our objective is to estimate the
appropriate set of core tensors GljL�1

l ¼ 0, factor matrices UðnÞjNn ¼ 2 and
Hð1Þ to approximate data tensor X . In order to simplify the
estimation process, we can decompose the set of core tensors into
a intermediate common tensor G and a set of matrices W ð1Þ

l jL�1
l ¼ 0,

i.e. Gl ¼ G�1W
ð1Þ
l ; l¼ 0;…; L�1. Then we can obtain the equivalent

expression of Eq. (13) as follows:

X ¼ ∑
L�1

l ¼ 0
ðG�1W

ð1Þ
l Þ�1H

ð1Þ
l↓

�2U
ð2Þ �⋯�NU

ðNÞ þE

¼ G�1 ∑
L�1

l ¼ 0
Hð1Þ
l↓

W ð1Þ
l

 !
�2U

ð2Þ �⋯�NU
ðNÞ þE

¼ G�1U
ð1Þ�2U

ð2Þ �⋯�NU
ðNÞ þE ð14Þ

where Uð1Þ ¼∑L�1
l ¼ 0H

ð1Þ
l↓

W ð1Þ
l , the common core tensor G is the

multiple factor basis functions of tensor X without considering
component delays. From Eq. (14), we find the estimation proce-
dure can be separated into two stages. In the first stage, we can
use NTD algorithm to estimate the common core tensor G and
factor matrices UðnÞjNn ¼ 1. In the second stage, the intermediate

matrix Uð1Þ can be decomposed into Hð1Þ and W ð1Þ
l jL�1

l ¼ 0 by con-
volutive NMF algorithm. Then the higher order basis functions

GljL�1
l ¼ 0 can be estimated by Gl ¼ G�1W

ð1Þ
l ; l¼ 0;…; L�1. Fig. 1

illustrates the model of convolutive NTD in one mode.
More generally, we can extend Eq. (13) into convolutive form in

K modes as

X ¼ ∑
L1 �1

l1 ¼ 0
⋯ ∑

LK �1

lK ¼ 0
Gl1⋯lK

�1H
ð1Þ
l1↓

�⋯�KH
ðKÞ
lK↓

�Kþ1U
ðKþ1Þ �⋯�NU

ðNÞ þE ð15Þ

where Gl1…lK
, lk ¼ 0;1;…; Lk � 1, k¼ 1;…;K are the higher order

basis functions, HðkÞjKk ¼ 1 are the shifted factor matrices and

UðnÞjNn ¼ Kþ1 are the factor matrices. Similar to Eq. (14), we can
derive the following expression:

X ¼ ∑
L1 �1

l1 ¼ 0
⋯ ∑

LK �1

lK ¼ 0
Gl1⋯lK

�1H
ð1Þ

l1↓

�⋯�KH
ðKÞ
lK↓

�Kþ1U
ðKþ1Þ �⋯�NU

ðNÞ þE

¼ ∑
L1 �1

l1 ¼ 0
⋯ ∑

LK �1

lK ¼ 0
G ∏

K

k ¼ 1
�kW

ðkÞ
lk

 !
�1H

ð1Þ
l1↓

�⋯�KH
ðKÞ
lK↓

�Kþ1U
ðKþ1Þ

�⋯�NU
ðNÞ þE

¼ G�1 ∑
L1 �1

l1 ¼ 0
Hð1Þ
l1↓

W ð1Þ
l1

 !
�⋯�K ∑

LK �1

lK ¼ 0
HðKÞ
lK↓

W ðKÞ
lK

 !
�Kþ1U

ðKþ1Þ

�⋯�NU
ðNÞ þE ¼ G�1U

ð1Þ�2U
ð2Þ �⋯�NU

ðNÞ þE ð16Þ

where the core tensors Gl1…lK
¼ G∏K

k ¼ 1�kW
ðkÞ
lk
, lk ¼ 0;1;…; Lk � 1,

k¼ 1;…;K , the intermediate matrices UðkÞ ¼∑L1 �1
l1 ¼ 0H

ð1Þ
l1↓

W ð1Þ
l1
,

k¼ 1;…;K . According to Eq. (16), we can derive the two stage
algorithm for K-Mode Convolutive NTD (K-CNTD) based on the ALS
NTD [1,20] and ALS convolutive NMF algorithms. The algorithm in
detail is described in Algorithm 1.

Algorithm 1. Algorithm for K-CNTD.

Input:
Given data tensor XARI1�I2⋯�IN Z0, the components number

fJngNn ¼ 1 for NTD, the convolutive length Lk, the components
number Tk for CNMF, ðk¼ 1;…;KÞ.

Output:

The estimated components W ðkÞ
lk
jLk ;Klk ¼ 0;k ¼ 1, H

ðkÞjKk ¼ 1,

UðnÞjNn ¼ Kþ1, Gl1 ;…;lK
.

1: Initialization: Set UðnÞ
0 jNn ¼ 1;G0 randomly, normalize all

UðnÞ
0 jNn ¼ 1;

2: repeat
3: for n¼1 : N do
4: % Update UðnÞ

5: UðnÞ←½XðnÞU
� � nGT

ðnÞðGðnÞðUTUÞ� � nGT
ðnÞÞ�þ ;

Table 1
Notations in multilinear algebra.

Notation Description

� Kronecker product
⊛ Hadamard product
⊘ Element-wise division
X Matrix

UðnÞ The nth factor after tensor factorization

X Tensor
XðnÞ n-mode matricized of tensor X
� n n-mode product of tensor and matrix
U� UðNÞ � ⋯ � Uð1Þ

U� � n UðNÞ � ⋯ � Uðnþ1Þ � Uðn�1Þ � ⋯ � Uð1Þ
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6: end for
7: % Update core tensor G
8: G←G⊛ X ∏N

n ¼ 1�nU
ðnÞT

� 	
⊘ G∏N

n ¼ 1�nU
ðnÞTUðnÞ

� 	h i
;

9: until ‖X�G ∏N
n ¼ 1�nU

ðnÞ‖F=‖X‖Foε
10: for k¼1 : K do
11: Set W ðkÞ

lk
jLk �1
lk ¼ 0 and HðkÞ randomly;

12: repeat
13: for lk¼0 : Lk�1 do

14: HðkÞ
lk
← W ðkÞT

lk
W ðkÞ

lk

� 	�1
W ðkÞT

lk
UðkÞT
lk←

 !" #
þ
;

15:

W ðkÞ
lk
← UðkÞT HðkÞ

lk-
 !T

HðkÞ
lk-

HðkÞ
lk-

 !T0
@

1
A

�12
64

3
75

þ

;

16: end for
17: HðkÞ← 1

L∑
Lk �1
lk ¼ 0H

ðkÞ
lk
;

18: until ‖UðkÞT �∑Lk �1
lk ¼ 0W

ðkÞ
lk
HðkÞ
lk-

‖F=‖UðkÞT‖Foε
19: end for
20: Gl1 ;…;lK

¼∑l1⋯∑lkG�1W
ð1Þ
l1
⋯�NW

ðKÞ
lK

;

Here we derive that the alternating least square algorithm for
K-CNTD model and the update rules with half-wave rectifying
nonlinear projection for ALS CNMF and NTD are similar to the
Exponential Gradient in NMF. The monotonic convergence analysis
in [35,36] can be applied to our case as well. And from the
experimental result, our proposed algorithm also shows good
convergence as proved in [36].

The proposed K-CNTD algorithm is able to extract the repeating
patterns across columns in given modes. When analyzing audio or
image data, such dependencies across successive columns are
frequently explored. Here, we investigate the repeating patterns
in multifactor form as a new desire feature for audio or image
representation. These features have the expressive ability to
capture the temporal or frequency dependencies within a set of
convolutive higher order basis functions.

4. Simulation

In this section, we present the simulation results on synthetic
data, robust speaker recognition and AD diagnosis task using
K-CNTD algorithm. The proposed algorithm is effective for com-
plex feature extraction task by identifying hidden components.

4.1. Synthetic data

In order to evaluate the K-CNTD algorithm in term of its effec-
tiveness, a simulation study on synthetic data was undertaken.

We used S1AR2�1000 and S2AR2�1000 as sources signal to generate
convolutive mixture X1 and X2 respectively. Several samples of S1 and

S2 are shown in Fig. 2. The convolutive mixture Xk ¼∑Lk �1
lk ¼ 0A

k
lk
S

lk-

k,

k¼1,2, where Ak
lk
jLk �1
lk ¼ 0 are the mixture matrices.

We used X1, X2, X3AR2�2 and GAR2�2�2 to generate a 3-order
tensor XtestAR1000�1000�2 which can be seen as a mixture proce-
dure in tensor structure by factor matrix X3 and core tensor G, i.e.

Xtest ¼ G�1X1�2X2�3X3 ð17Þ

We employed K-CNTD to recover the sources components and
the estimated components were denoted as Hkj2k ¼ 1. Fig. 2 gives
the estimated signal with the convolution length L¼2 and 4. From
this result, K-CNTD algorithm can recover the original signal from
the tensor mixture.

4.2. Speaker recognition in noisy conditions

In this experiment we applied K-CNTD algorithm to extract
robust features for the speaker recognition task in noisy condi-
tions. Grid corpus (speech of 34 persons) mixed with different
noise was used to test the recognition performance. We employed
the cortical-based feature extraction framework described in [37]
with 4-order tensor structure (time × frequency × scale × direc-
tion) and K-CNTD algorithm to extract the shift-invariant sparse
speech features in time–frequency domain. We employed follow-
ing steps to extract the robust speech features:

1. Suppose that the speech signal is denoted by s(t), we first
perform pre-emphasis and Short Time Fourier Transformation
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Fig. 2. Estimated results with convolution length L¼2 and 4.

Fig. 1. Convolutive NTD model in one mode.
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(STFT) on the speech signal and calculate the power spectrum
Sðf ; tÞ.

2. Employ the Gabor filtering with different scales and directions
and Mel filtering to filter Sðf ; tÞ and obtain the cortical repre-
sentation S .

3. Calculate the shifted factor matrices in different modes and
core tensor set using K-CNTD algorithm; using factor matrix
Hð2Þ in frequency mode we projected the cortical represen-
tation into feature subspace and calculate the sparse tensor
features Y .

4. Unfold tensor Y into feature matrix SR and employ Discrete
Cosine Transform (DCT) to reduce the dimension.

The sampling rate of speech signal was 8 kHz. A hamming
window of 25 ms was shifted over an input speech utterance every
10 ms to calculate power spectrum. At each window position,
a segmented utterance was converted to its corresponding
256-dimensional FFT-based power spectrum vector. Gabor filters
with four different scales and four different directions were
employed to derive the multiresolution Gabor-based features from
power spectrum. Then the multifactor Gabor features were filtered
by 40-channel Mel filterbanks to create the cortical representation
for tensor decomposition. K-CNTD algorithm was employed to
decompose the Gabor-based tensor data to obtain the shift factor
matrix. The component number fJng4n ¼ 1 for NTD were 50, 25,
3 and 3 and component number T1 for time mode and T2 for
frequency mode were all 20. The convolutive length in time and
frequency modes were all set to 3.

We randomly selected 1700 sentences (50 sentences for each
speaker) as training data and testing data includes 10 sets, each set
contained 2040 sentences (60 sentences for each speaker). The
testing samples in noisy conditions were generated by mixing
with Babble, Destroyer engine, Buccaneer, Factory, Pink, White
noises in SNR intensities of �5 dB, 0 dB, 5 dB and 10 dB respec-
tively. The basis function Hð2Þ in frequency mode was used to
project the cortical representation into feature subspace and
obtain the sparse tensor features. The final feature vectors were
extracted by DCT with 16 cepstral coefficients. GMM with
64 Gaussian mixtures was employed as the recognizer for speaker
modeling.

For comparison, we tested the performance of MFCC, PLP,
Spectral Substraction (SS), CNMF and NTD. For MFCC and PLP,
the windows width and overlap length was the same as K-CNTD
algorithm-based method. After 40-channel Mel filterbanks filter-
ing and DCT, MFCC features were obtained. PLP features with
8-order model were calculated by power spectrum after RASTA
filtering and DCT. The speech enhancement method spectral
substraction proposed in [38] was used to reduce the noise
component with initial silence 0.25 s. CNMF algorithm was
employed to extract the spectral-temporal features after fixed
scale and directions Gabor filtering from power spectrum. NTD-
based feature extraction procedure was the same as our proposed
framework. The component number fJng4n ¼ 1 were 50, 25, 3 and 3.

Fig. 3 gives the DCT feature comparison between MFCC and
features extracted by K-CNTD in clean and 5 dB conditions. The
degradation of MFCC is evident. Compared with the clean condi-
tion, the shift-invariant features extracted by K-CNTD maintain the
useful information and provide robust and natural representation
for speaker modeling.

We summarize the average recognition accuracy of K-CNTD
and baseline systems in all conditions in Fig. 4. The speaker
recognition performance using K-CNTD is tested on six different
noises with various SNR (�5, 0, 5 and 10 dB). Final recognition
accuracy in each SNR with different noises is averaged on
10 different testing sets. The accuracy in six noisy conditions
averaged over SNRs between �5 and 10 dB, and the overall

average accuracy across all the conditions is presented in Fig. 4.
These results suggest that our proposed K-CNTD algorithm can
give a better average recognition result than NTD algorithm and
traditional feature extraction methods.

It is observed that the features extracted by K-CNTD perform
significantly better in the presence of white and destroyer engine
noise and slightly better in the presence of babble and factory
noise. The speech signal mixed with babble noise consists of other
humans' speech signals. The noisy components corrupt the entire
frequency bands and also share the statistical properties of the
reference signal. So the performance of our proposed method in
babble noise condition degrades compared with other noises such
as white noise, although the recognition accuracy of our method is
still better than the baseline methods. For the other types of noise
sources such as white and destroyer engine, their statistical
characteristics that K-CNTD algorithm utilizes to extract robust
features are quite different from that of reference statistics.

4.3. Diagnosis of Alzheimer's disease by sMRI with convolutive
tensor model

Alzheimer's disease is the most common cause of dementia
that leads to progressive loss of memory and cognition function.
Its early and accurate diagnosis/classification is important for the
disease prevention. In this experiment, we applied K-CNTD algo-
rithm to analyze structural magnetic resonance imaging (sMRI)
data of AD subjects and Health Control (HC) subjects. Efficient
features for classification of AD and HC were extracted. The
performance of classification was tested on the freely public brain
imaging data from OASIS [39]. Two groups subjects were selected:
100 AD subjects (the CDR score greater than 0, 59 females and
41 males) and 109 HC subjects (62 females and 47 males).

For two groups sMRI data, we realigned all images to the first
image. Then, the sMRI images of all subjects were normalized into
a standard space defined by T1 template image provided by SPM8
toolbox. After normalization, the sMRIs were re-sliced and
smoothed into 2�2�2 mm3 voxel-size images.

Based on these normalized sMRI images, we constructed a
4-order tensor XAR81�97�83�209 with four different modes: coor-
dinates x,y,z and subjects. Then K-CNTD algorithm was employed
to decompose tensor X to obtain the higher order basis functions
and factor matrices. The convolutive lengths of each mode were
5,5,5 and 2 respectively. The component number in subjects mode
was 60. We regarded the row of shifted factor matrix Hð4ÞAR209�60

as feature vector for each subject.
We separated the AD and HC data into training set and testing

set respectively. The training set included 90% feature samples and
the testing set was the remaining 10% samples. Finally, we built
the SVM classifier to distinguish AD and HC subjects. The training
and testing procedures were repeated over 100 times by randomly
selecting training and testing samples. The classification frame-
work based on convolutive tensor model is shown in Fig. 5.

In order to evaluate the performance of our proposed method,
the accuracy, sensitivity, specificity of classification were calcu-
lated and the last two were defined as

Sensitivity¼ TP
TPþFN

; Specificity¼ TN
TNþFP

ð18Þ

where TP is the number of true positives (AD subjects classified
correctly), TN is the number of true negatives (HC subjects
classified correctly), FP is the number of false positives (HC
subjects classified as AD subjects), FN is the number of false
negatives (AD classified as HC subjects).

For comparison, CNMF and NTD algorithm was applied to test
the classification performance as baseline system. The 3D sMRI
images of all subjects are vectorized to construct data matrix with
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two dimensions subjects and samples as input data of CNMF
algorithm. We set the convolutive length as 3 and extract the
rows of basis functions as feature vectors for training SVM
classifier. The feature extraction and classification procedure of
NTD algorithm was similar to our proposed framework in Fig. 5.
The evaluation results of K-CNTD and baseline system, which was
the mean of accuracy, sensitivity, specificity for 100 times repeat-
ing were summarized in Fig. 6. From the experimental results,
classification levels in the range of 80–95% were achieved.

Especially, the performance of K-CNTD algorithm was over
90% which is better than CNMF and NTD algorithms. This indicated
that the shift-invariant sparse feature in multifactor form
extracted by K-CNTD algorithm was more efficient than CNMF
and NTD for distinguishing the AD subjects with HC subjects.
It showed that the proposed diganosis/classification framework
has big potential for the early AD diagnosis.

4.4. Discussions

In this paper, we present a flexible convolutive tensor decom-
position algorithm. Compared with Tucker decomposition model,
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our algorithm considers the component delays in given modes,
to fit with the practical data better. The extracted features are able
to preserve the intrinsic features in the natural structure of data
through the multifactor analysis. A two stage algorithm is pre-
sented for estimation of K-CNTD model. We employ the alternate
least square method to estimate desired factors.

When the input data has higher order complex pattern and
limited number of samples for training, the linear subspace
convolutive model like CNMF will be inadequate to deal with the
data in tensor structure. CNMF usually represents the higher order
data as vectors or matrices and finds an optimal linear mapping to
lower-dimensional space by iteration procedures. The vectoriza-
tion or matricization of data will destroy the essential structure
and correlation in original tensor data. K-CNTD algorithm aims to
find the optimal decomposition for each factors by keeping the
input data in their natural higher order form. Furthermore the
experimental results confirm the superiority of K-CNTD algorithm
compared with CNMF for audio and image feature extraction tasks.

The proposed algorithm discovers qualitatively similar higher
order basis functions with NTD algorithm. The difference is that a
set of convolutive basis functions is extracted for repeating
patterns across columns in given modes. These basis functions
encode a lot of information about the speech or image data
and naturally reflect particular patterns. For speech signals, these
basis functions in frequency mode are representing harmonic
series with various inflections and consonant sounds. For images,
repeating patterns in these basis functions with sparse constraint
recover the truly localized, parts-based components.

Based on the cortical representation, we use 2D Gabor filtering
with different scales and directions to simulate the receptive field
in cortical simple cells. These representations describe the neuron
response for different cues of perceptions. By K-CNTD algorithm,
the intrinsic features of different factors can be extracted after
projection and feature selection.

According to the auditory neural coding [40], we assume that
the speech data in the feature space is sparse. Sparse coding
theory [41] assumes that given a sound stimulus, only a few
auditory neurons are active (nonzero elements) simultaneously.
The activity of neurons with small absolute values are regarded as
noise and can be set to zero, only a few components with strong
activities are considered. The shift-invariance sparse assumption
in our proposed method is similar to sparse coding shrinkage
method [41]. The sparse assumption can make the feature robust
because the energy of clean signal is concentrated on a few
components only, while the energy of noises spreads on all the
components. From the experimental results, the features extracted

by K-CNTD algorithm provide better average performance than
CNMF and NTD algorithms and traditional feature extraction
methods. This result indicates that the K-CNTD algorithm can
extract more robust shift-invariance sparse features for speaker
recognition in noise conditions.

We model the sMRI data of AD and HC subjects as 4-order
tensor with four modes (x,y,z and subjects). The final feature set is
the coefficients of shifted factor matrix in subjects mode. The
simulation results show that K-CNTD algorithm provides better
diagnosis/classification performance compared with NTD algo-
rithm under same feature extraction framework. This indicates
that the shift-invariance sparse features extracted by convolutive
model are more distinguishable for AD and HC subjects classifica-
tion. The proposed method discovers more precisely hidden
patterns for sMRI image feature extraction.

5. Conclusions

In this paper, we investigate the component delays model for
tensor decomposition. A two stage ALS algorithm for K-mode
Convolutive Nonnegative Tucker Decomposition model is deve-
loped to reduce the degeneracy problem caused by component
delays. Our proposed model is an extension of Nonnegative Tucker
Decomposition and can preserve the intrinsic information in the
natural structure of tensor data. We applied K-CNTD algorithm for
robust speaker recognition and early AD disease diagnosis task.
Based on cortical representation of speech signal, multifactor
shift-invariant sparse features were extracted by reduce noisy
components and improve the robustness of speaker recognition
system. By the convolutive model, K-CNTD algorithm extracts
more discriminative sparse features for AD and HC subjects
classification. The final simulation results demonstrated that our
proposed algorithm is more efficient for robust speaker recogni-
tion and early AD diagnosis compared with the baseline methods.
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