IEEE SIGNAL PROCESSING LETTERS, VOL. 6, NO. 11, NOVEMBER 1999 293

Natural Gradient Algorithm for Blind Separation of
Overdetermined Mixture with Additive Noise

L.-Q. Zhang, A. CichockiMember, IEEE,and S. Amari,Fellow, IEEE

Abstract—n this letter, we study the natural gradient approach an available sensor vector, which is a linear instantaneous
to blind separation of overdetermined mixtures. First we intro-  mjxture of sources by
duce a Lie group on the manifold of overdetermined mixtures,
and endow a Riemannian metric on the manifold based on the x(t) = As(t) + n(t) 1)
property of the Lie group. Then we derive the natural gradient i . i
on the manifold using the isometry of the Riemannian metric. WhereA € R™*™ is an unknown mixing matrix of full rank,

Using the natural gradient, we present a new learning algorithm n(¢) is the vector of additive white Gaussian noises. In this

based on the minimization of mutual information. letter we consider the overdetermined case> n. The blind
separation problem is to recover original signa(g) from
I. INTRODUCTION observationx(t) without prior knowledge on the source sig-

R ECENTLY, blind separation of independent sources hials and the mixing matrid except for independence of the

become an increasingly important research area dueS/rce signals. The demixing model is a linear transformation

its rapidly growing applications in various fields, such a¥' the form

telecommunication systems, image enhancement and biomed- y(t) = Wx(t) (2)
ical signal processing [1]-[11]. It has been shown that the T ) ,
natural gradient improves dramatically the learning eﬁicienﬁherey“) n (yl(t)x’ . '."y"(t)) Isan est!mate of source sig-
in blind separation [1][8]. For the standard case where thaSs(), W € R™" is a demixing matrix to be determined.
number of sources is equal to the number of sensors, e general solution to the blind separrlitrllop is to flngl a matrix
natural gradient algorithm has been developed by Amtai. W such thatWA = AP, whxere_A €R IS a nonsingular
[3], and independently as the relative gradient by Cardoso [ﬂ_agonal matrix and®> € R™*" is a permutation.
However, in most practical cases, the number of active source
signals is unknown and changing over time. Therefore, in the
general case the mixing matrix and demixing matrix are not In this section, we discuss some geometrical structures, such
square and not invertible. The blind separation of more sourassthe Lie group and the Riemannian metric, on the manifold
than mixtures was discussed in [10] by using overcompleté demixing matrices defined a&sl(n,m) = {W € R**™ |
representations. In this letter, we study blind separation ofnk(W) = min(n, m)}. For W € Gl(n,m), there exists an
overdetermined mixtures, where the number of sensors is wothogonal matrixQ € R™*™ such that
less than the number of sources.

The main objective of this letter is to extend the idea of W =W, W2lQ @)
natural gradient to overdetermined mixtures, and apply thhereW; € R™*" is nonsingular, andV, € R™»*(m=n),
natural gradient to derive an efficient learning algorithm. It is
a surprise that the optimal natural gradient algorithm, in thee Lie GroupGi(n,m)
sense of minimizing the effect of noises on the output signals,the Lie group plays a crucial role in deriving natural
is in the same form as the standard case where the nUMgg[yient of the manifold(n, n). We introduce the Lie group
of sources is equal to the number of sensors. It is plausiligycture on the manifoldsi(n, m). It is easy to verify that
to use overdetermined mixtures to improve upon blind sourgg,, 1) is aC'> manifold of dimensiomm. The operations
separation algorithms in extracting the signals of interest frogy, the manifoldGi(n, m) are defined as follows:

Ill. NATURAL GRADIENT

mixtures.
X*xY = [XlYl,XlYg +X2]Q, (4)
Il. BLIND SEPARATION OF OVERDETERMINED MIXTURE X' = [X{1 -X{'X,]Q (5)
Assume that the unknown source signat§t) = whereX =[X;,X;]Q andY =[Y1,Y,]Q are inGi(n,m),
(s1(t),---,s.(t))T are zero-mean processes and mutuallyis the multiplication operator of two matricé andY, and

statistically independent angl(t) = (z(t), -,z ()T is 1t is the inverse operator oi(n,m). The identity element
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B. Riemannian Metrics I[(W) measures the mutual independence of the output signals

The Lie Group has an important property that it admits &fi(%). The output signaly are mutually independent if and
invariant Riemannian metric. LeFw be the tangent space®V if I(W) = 0. In order to develop an efficient on-line
of Gl(n,m), and X, Y € Tw be the tangent vectors.leam_'”g algorithm, we simplify (10) into the following cost
We introduce an inner product ofi with respect tow function: ((y, W),
as (X,Y)w. Since Gi(n,m) is a Lie group, anyZ ¢ =
Gl(fz,m) >defines an o(nto—r21appingW Wz The W)= —log(|det(WE)]) - Zbgpi(yi(k)’w)
multiplication transformation maps a tangent vec¥orat W =t (11)
to a tangent vectoiX =« Z at W x Z. Therefore we can
define a Riemannian metric ofl(n,m), such that the right whereE is the identity element of the Lie grou@i(n,m),
multiplication transformation is isometric, that is, it preserveand det(WE?) is the determinant of matriWE™. In the
the Riemannian metric o&i(n,m). Explicitly, we write it following discussion, we use the following decomposition:

as follows: r[x1
W= [W17W2]Q7 X = Q ’ (12)
<X, Y>W = <X *Z,Y % Z>W*Z (6) X2
If we define the inner product at the identl/by (X,Y)g = WhereW, € R**" andx; € R". The ordinary gradient of
tr(XYT), then(X,Y)w is automatically induced by I(y, W) with respect toW is given by.
dlly, W dl(y, W
(X, Y)w = (X s WY « Wi, 0 B W Tt TN oy
C. Natural Gradient (13)
For a cost functiori( W) defined on the manifoldi(n,m), where o(y) is a vector of qonlinear activation functions
the natural gradienVI(W) is the steepest ascent directionp;(y;) = _‘“’%171’7'(%) = —IL‘“; Therefore, the natural

. . . Yi Di
of the cost function/(W) as measured by the Riemanniagyradient learning algorithm o(n, m) can be implemented
metric onGI(n, m), which is the contravariant form of partialas follows:

derivativesVI(W) = (%z‘(]gv) Jnxm- The natural gradient of AW = (I — o(y)y" YW — o(y)xTNy). (14)

the functionl(W) is defined by [1]
(X, VI(W))w = (X, VI(W))g 8)
for any X € Iyy. Comparing the both side of (8), we have

V. OPTIMIZATION OF LEARNING ALGORITHM

A . The demixing model projects the sensor signals iRfo,
VI(W) = VI(W)(W"W + Ny) (9) and the projection depends on the mafNx. In this section
whereNy = QT[g L ® ]1Q € R™™ is a block diagonal We consider the optimization of such projection. Decompose

m—n

matrix, I,_, is an (m — n) x (m — n) identity matrix. It the mixing matrix in the following form:

is worthy noting that the natural gradient on the manifold A

Gl(n,m) has an additional term compared with the one on A= QT{ 01} (15)
the manifoldGi(n,n). In the overdetermined case, the matrix

T i i i T i i i
W*W is singular, whileW* W + Ny is a positive definite where matrixQ is an orthogonal matrixA, € R™*" is a

tmhatrlx tfor lany?jy f dGl(”’”tl)' ITh(_athpmﬁerty etr;]sures thaktno singular matrix. The mixing model transforms the source
e natural gradient descent algorithm keeps the same king - 510 hyperplanes = {x | x = QT[S ],x, €

of equilibria of the learning system as the ordinary gradielﬁn} The orthogonal complement & is denoted byS-

descent one. . : . o ;
Remark 1 It is easy to see that th& is a projection The question .here 1S that Wh.ICh projection mathi s 'the
: I : best for learning algorithms in the sense of minimizing the
matrix. The result indicates that the natural gradient forfI f noi hi d hat th .
overdetermined mixtures is not unique, which depends on t'lq uence of noises. To this end, we assume that the noises
orthogonal matrixQ. The redundanc 'makes it possible t&' fe Gaussian with the covariance matdi(nn®) = o°L
9 . T Y tp and are independent of sources. We decompose the demixing
choose an optimal projection for learning algorithms.

matrix using the same orthogonal matf)in (15) asW =
IV. LEARNING ALGORITHM [W1, W5]Q, and we have

Assume thap(y, W), p;(y;, W) are the joint probability v = WAs - Wn = W, A;s + Wn. (16)
density function (pdf) ofy and marginal pdf ofy;, (i =
1,---,m) respectively. Our target is to make the componentis means thaW, does not contribute to the main term. To

of y as mutually independent as possible. To this end, Wginimize the effect of noises on the outpyt We introduce
employ the Kullback-Leibler divergence as a risk function [3he following cost functional

(W) =-H(y,W)+>_ H(u,W) (10) F(W,) = E(|Wn|3) = E@™WTWn).  (17)
=1
where H(y, W) = — [p(y,W)logp(y,W)dy, On the other hand, we decompose the vector of noises into the

H(y;, W) = — [ p;(y;, W) log p; (y;, W)dy;. The divergence following form n = Q*v = Q¥[vy,v»]. It is easy to derive
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E(vwT) = QEmnT)QT = o2I. Then the cost functional we present a novel learning algorithm for blind separation

(17) can be rewritten as
F(W3) = E(vi W{Wyv) + 0% tr(W3W,).  (18)

The minimal solution of the cost function&l(W,) is W, =
0. This means that the transform = Wx should be
orthogonal to the normal spac®*, that is, for anyz € S+,

of overdetermined mixtures. The learning algorithm works
efficiently in blind separation. The detailed derivation of the
natural gradient algorithm and computer simulations will be
given in future work.
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