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Abstract

In this paper, we study convergence and e�ciency of the batch estimator and natural gradient algorithm for blind
deconvolution. First, the blind deconvolution problem is formulated in the framework of a semiparametric model, and
a family of estimating functions is derived for blind deconvolution. To improve the learning e�ciency of the online
algorithm, explicit standardized estimating functions are given and within this framework the supere�ciency of batch
learning and online natural gradient learning is proven. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Blind separation=deconvolution is of increasing
importance in areas such as telecommunications,
speech, image enhancement and biomedical sig-
nal processing [8,13,20–22,24,25,30–32,38,40,47]
Refer to papers [7,19,26,41] for more details.
Various algorithms, such as Bussgang algorithms
[14,34,37,43], higher-order statistics approach
[39,17], information-theoretic approaches [9,13,28]
and the subspace method [1,25,35] have been de-
veloped for solving the blind deconvolution prob-
lem. Identi>ability of blind deconvolution has also
been discussed for single input multiple output
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(SIMO) systems [35,42] and multiple input mul-
tiple output (MIMO) systems [25,44,29]. In gen-
eral, the second order statistical methods rely on the
separability of noise and signal subspaces, which
requires some prior knowledge on the length of
the unknown channels to be identi>ed. The perfor-
mance of the algorithms is still not satisfactory in
presence of noise when the length of the unknown
channels is not well estimated. On the other hand,
the high order statistical methods can be eFective in
presence of noise under appropriate initialization,
but may suFer from low convergence and local con-
vergence. The e�ciency of statistical learning algo-
rithms has not been covered in the previous works
on blind deconvolution. It is the purpose of this pa-
per to develop fast and e�cient algorithms based
on the high order statistics and to analyze the con-
vergence and e�ciency of the learning algorithms.

0165-1684/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
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Nomenclature

s(k) source signal vector
x(k) sensor signal vector
y(k) recovered signal vector
H(z) convolutive mixing >lter
W(z) demixing >lter
M(N ) FIR >lters manifold
∗ Lie multiplication in M(N )
† Lie inverse in M(N )
∇̃l(W(z)) natural gradient of a cost function
X(z) nonholonomic parameterization

variable
� parameter of interest in semipara-

metric model

� nuisance parameter in semipara-
metric model

r(s) probability density function of
source signals s

TN
W(z); r nuisance tangent space at

(W(z); r)
p(x;W; r) probability density function of

sensor signal x
’i(s) activation function
F(x;W(z)) estimating function for blind de-

convolution
K(z) derivative operator
F∗(x;W(z)) standardized estimating function

A semiparametric statistical model concerns a
family of probability distributions speci>ed by
a >nite dimensional parameter of interest and
an in>nite-dimensional nuisance parameter [15].
Amari and Kumon [12] suggest approaching
semiparametric statistical models via estimating
functions and understanding their geometries and
e�ciencies in terms of information geometry
[2,36]. Amari and Cardoso [5] have also applied
information geometry to blind source separation
and derived an admissible class of estimating func-
tions including e�cient estimators. They show that
the manifold of mixtures is m-curvature free, so
that algorithms of blind separation can be designed
without attention to source probability functions.
The theory of semiparametric model is also ap-
plied to derive e�ciency and supere�ciency of
demixing learning algorithms [4]. See also [6,20]
for stability of demixing algorithms.
Most theories treat only blind source separation

of instantaneous mixtures and it is only recently that
the natural gradient approach has been proposed for
multichannel blind deconvolution [9,45]. Amari et
al. [9] discuss the geometric structures of the IIR
>lter manifold, to develop an e�cient learning al-
gorithm for blind deconvolution. However, in most
practical implementations, it is necessary to em-
ploy a >lter of >nite length as a demixing model.
Zhang et al. [45] directly investigate the geometric

structures of the FIR >lter manifold and derive the
natural gradient algorithm for training FIR >lters.
Stability analysis for natural gradient learning is
also provided.
The present paper will examine further conver-

gence and e�ciency of the batch estimator and nat-
ural gradient learning for blind deconvolution via
the semiparametric statistical model and estimating
functions [15]. First, we introduce the geometrical
properties of the manifold of the FIR >lters based
on the Lie group structure and formulate the blind
deconvolution problem within the framework of the
semiparametric model deriving a family of estimat-
ing functions for blind deconvolution. We then an-
alyze the e�ciency of the batch estimator based on
estimating function — obtaining its convergence
rate. Finally, we prove that both batch learning and
natural gradient learning are supere�cient under
given nonsingular conditions.
Further information on information geometry is

given in Ref. [2,36] and that for semiparametric
statistical model in [5,15,11].

2. Problem formulation

As a convolutive mixing model, we consider a
multichannel linear time-invariant (LTI) system
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Fig. 1. Illustration of blind deconvolution problem.

of the form

x(k)=
∞∑
p=0

Hps(k − p); (1)

where Hp is an n × n-dimensional matrix of mix-
ing coe�cients at time-lag p, called the impulse
response at time p, s(k)= (s1(k); : : : ; sn(k))T is an
n-dimensional vector of source signals, zero-mean
and independent and identically distributed (i.i.d.),
and x(k)= (x1(k); : : : ; xn(k))T is an n-dimensional
vector of sensor signals. For simplicity, we use the
notation

H(z)=
∞∑
p=0

Hpz−p; (2)

where z is the z-transform variable. H(z) is usually
called the mixing >lter, unknown in blind deconvo-
lution.
The goal of multichannel blind deconvolution is

to retrieve source signals only using sensor signals
x(k) and some knowledge of source signal distribu-
tions. Generally, we carry out the blind deconvolu-
tion with another multichannel LTI and noncausal
system of the form

y(k)=
∞∑

p=−∞
Wpx(k − p); (3)

where y(k)= (y1(k); : : : ; yn(k))T is an n-dimen-
sional vector of the outputs and Wp is an
n × n-dimensional coe�cient matrix at time lag
p, which are the parameters determined during
training. The (double-side) z-transform of Wp is
denoted by W(z), which is called the demixing
>lter. See Fig. 1 for illustration of the blind decon-
volution problem.
The objective of blind deconvolution is to make

the output signals y(k) of the demixing model

maximally spatially mutually independent and tem-
porarily i.i.d.. In this paper, we employ the semi-
parametric model to derive a family of estimating
functions and develop e�cient learning algorithms
for training the demixing >lter W(z). Finally, we
analyze the convergence and e�ciency of the learn-
ing algorithms.
In practice, we have to implement the blind de-

convolution problem with a 5nite impulse response
(FIR) >lter

W(z)=
N∑

p=−N
Wpz−p; (4)

where N is the length of the demixing >lter. In
general, the multiplication of two >lters of form
(4) will enlarge the >lter length. Below, we will
investigate some geometrical structures of the FIR
manifold.

2.1. Recoverability

It is possible to ask if there exists an FIR >lter
W(z) such that the output of the demixing model
recovers the source signals and in what sense the
source signals are recovered. For simplicity, assume
that the mixing >lter is an FIR >lter

H(z)=
L∑

p=0

Hpz−p; det(H0) �=0: (5)

Assume that H(z) has no zeros on the unit cir-
cle. If we consider the FIR >lter H(z) as a matrix
of polynomials of z, the determinant of H(z) is
given by

det(H(z))

=det(H0)
L1∏
p=1

(1− apz−1)
L2∏
p=1

(1− bpz−1); (6)

where L1 and L2 are certain natural numbers,
0¡ ||ap||¡ 1, for p=1; : : : ; L1 and ||bp||¿ 1 for
p=1; : : : ; L2. Usually, ap; bp are referred to the
zeros of the FIR >lter H(z). If all the zeros are
located in the interior of the unit circle, the >lter
H(z) is minimum-phase. Otherwise, the >lter H(z)
is nonminimum-phase.
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Now the inverse H−1(z)=
∑∞

p=−∞ PHpz−p; can
be calculated by

PHp=
1
2�i

∮
H#(z) det(H(z))−1zp−1 dz

for p=−∞; : : : ;+∞; (7)

where H#(z) is the adjoint matrix of H(z). It is not
di�cult to verify that the coe�cient matrices PHp

satisfy the following decay condition:

|| PHp||6 const:
[
max
j; k

(||aj||; ||bk ||−1)
]|p|

; (8)

where || PHp||= {tr( PHT
p
PHp)}1=2 is a matrix norm.

Generally, the inverse >lter of H(z) is a noncausal
>lter of in>nity length. In practice, we usually em-
ploy a noncausal >lter of >nite length as a demixing
model. The approximation will introduce a model
error in blind deconvolution. If we make the length
of the demixing >lter su�ciently large, the model
error will became negligible due to decay (8). By
using the time delay transform or >lter decomposi-
tion approach [46], we thus need to view the causal
FIR >lter only as a demixing model. In the next sec-
tion, we de>ne precisely the sense of the recovered
signals in the Lie group framework.

2.2. Indeterminacy

In the following discussion, we presume that both
the mixing >lter H(z) and demixing >lterW(z) are
causal FIR >lters of length N . The global transfer
function is de>ned by

G(z)= [W(z)H(z)]N ; (9)

where [ · ]N is a truncating operator such that any
terms with orders higher than N in the polynomial
are omitted. Generally speaking, blind deconvolu-
tion does not seek an exact inverse >lter of the mix-
ing >lter. In blind deconvolution, we cannot observe
the vector s(k) of original signals and the unknown
mixing >lter H(z). This implies three inherent am-
biguities in the solution to the blind deconvolution
problem. We cannot identify the order in arrang-
ing the components s1(k); : : : ; sn(k) into the vector
s(k), the time origin of each component si(k) and

the magnitude of each component si(k). Therefore,
the blind deconvolution task is to >nd a demixing
>lter W(z) such that

G(z)= [W(z)H(z)]N =P�D(z); (10)

where P∈Rn×n is a permutation matrix, D(z)=
diag{z−d1 ; : : : ; z−dn}, and �∈Rn×n is a nonsingular
diagonal scaling matrix.

3. Geometrical structures on FIR manifold

Geometrical structures, such as the Riemannian
metric on the parameter space, can help us develop
e�cient learning algorithms for training parame-
ters. The commonly used gradient descent learning
is not optimal in minimizing a cost function de>ned
on Riemannian space. The steepest search direction
is given by the natural gradient. It has been demon-
strated that the natural gradient search scheme is
an e�cient approach for solving iterative parameter
estimation problems [3]. In order to develop an ef-
>cient learning algorithm for blind deconvolution,
we >rst explore some geometrical properties of the
manifold of FIR >lters.

3.1. The FIR manifold

The set of all FIR >ltersW(z) of length N , hav-
ing the constraint W0 is nonsingular, is denoted
by M(N ),

M(N )

=


W(z) |W(z)=

N∑
p=0

Wpz−p; det(W0) �=0


 :

(11)

M(N ) is a manifold of dimension n2(N + 1).
The tangent space of M(N ) at W(z), denoted by
TMW(z), is given by TMW(z) = {X(z) |X(z)=∑N

p=0 Xpz
−p}; where Xp; p=0; 1; : : : ; N are n×n

matrices. In general, multiplication of two >lters in
M(N ) will enlarge the >lter length. This makes it
di�cult to introduce the Riemannian structure to
the manifold of multichannel FIR >lters. In order
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Fig. 2. Illustration of the Lie group inverse of an FIR >lter, where H(z) is an FIR >lter of length 50, W(z) is the Lie group
inverse of H(z), and "(z)=W(z)H(z) is the composite transfer function.

to explore possible geometrical structures ofM(N )
which will lead to eFective learning algorithms for
W(z), we de>ne the algebraic operations of >lters
in the Lie group framework.

3.2. Lie group

In the manifold M(N ), Lie operations, multipli-
cation ∗ and inverse †, are de>ned as follows: for
B(z);C(z)∈M(N ),

B(z) ∗C(z)=
N∑
p=0

p∑
q=0

BqC(p−q)z−p; (12)

B†(z)=
N∑
p=0

B†
pz

−p; (13)

where B†
p are recurrently de>ned by B†

0 =B
−1
0 ,

B†
p=−∑p

q=1 B
†
p−qBqB

−1
0 , p=1; : : : ; N . With these

operations, both B(z) ∗ C(z) and B†(z) still re-
main in the manifold M(N ). It is easy to verify
that the manifold M(N ) with the above operations
forms a Lie Group [16,23]. The identity element is
E(z)= I, where I is the identity matrix. In fact the
Lie multiplication of two B(z);C(z)∈M(N ) is the
truncated form of the ordinary multiplication up to
order N , that is

B(z) ∗C(z)= [B(z)C(z)]N ; (14)

where [B(z)]N is a truncating operator such that any
terms with orders higher than N in the polynomial
B(z) are omitted.
The geometrical interpretation of the Lie

group inverse is illustrated in Fig. 2, where
H(z) is a two channel >lter of length N =50,
W(z)=H†(z) is the Lie group inverse >l-
ter of length 50 and the composite transfer
function "(z)=

∑2N
p=0 "pz−p=W(z)H(z) is

a >lter of length 2N . In this >gure, sub>gure
H(z)11 plots the subchannel transfer function
H11(z)=

∑N
p=0 hp;11z

−p, where the horizontal axis
indicates the time delays p=0; : : : ; N , and vertical
axis indicates the magnitude hp;11. From this illus-
tration, we see that the composite transfer function
"(z) is not the exact identity matrix, there still ex-
ist small Ructuations in coe�cients"p; for p¿N .
The Ructuations will be negligible if we make the
length N ofW(z) su�ciently large. However, con-
sidering the multiplication in the Lie group sense,
we have G(z)=W(z) ∗H(z)= I. In the following
discussion, we consider the global transfer function
in the Lie group sense G(z)=W(z) ∗H(z):

3.3. Natural gradient

The Lie Group has an important property that
admits an invariant Riemannian metric [23]. Us-
ing the Lie group structure, we derive the natural
gradient of a cost function l(W(z)) de>ned on the



2540 L.-Q. Zhang et al. / Signal Processing 81 (2001) 2535–2553

manifold M(N )

∇̃l(W(z))=
@l(W(z))
@X(z)

∗W(z); (15)

where X(z) is a nonholonomic variable [6], de>ned
by the following equation:

dX(z)=dW(z) ∗W†(z)= [dW(z)W−1(z)]N :

(16)

There are two ways to calculate the @l(W(z))=
@X(z). One is to evaluate it by the following rela-
tion:

@l(W(z))
@X(z)

=
@l(W(z))
@W(z)

∗WT(z−1): (17)

See Section 5 for the detailed derivation. The other
way is to directly calculate it by using the following
property:

dy(k)=dW(z)x(k)=dX(z)y(k): (18)

From the above equation, we see that the diFeren-
tial dX(z) de>nes a channel variation with respect
to variation of output of the demixing model. This
property is critical for the derivation of learning
algorithms with equivariance. See [4,20] for instan-
taneous mixtures.

4. Semiparametric models for blind
deconvolution

In order to study convergence and e�ciency of
the batch estimator and natural gradient learning
for blind deconvolution, we >rst introduce a basic
theory of semiparametric models, and formulate the
blind deconvolution problem within its framework.

4.1. Semiparametric model

Consider a general statistical model {p(x; �; �)},
where x is a random variable whose probability den-
sity function is speci>ed by two parameters, � and
�, � being the parameter of interest, and � being the
nuisance parameter. When the nuisance parameter
is of in>nite dimension or of functional degrees of

freedom, the statistical model is called a semipara-
metric model [15].
The gradient vectors of the log likelihood

u(x; �; �)=
@
@�

logp(x; �; �); (19)

are called the score functions of the parameter of
interest or shortly �-score. In order to discuss the
geometrical properties of the statistical manifold,
we introduce the following function space:

H�;�= {w(x)|E�;�[w(x)]=0; E�;�[w(x)2]¡∞};
(20)

where E�;� denotes the expectation with respect to
p(x; �; �). The set H�;� is a linear space admitting
a Hilbert space structure with the inner product

〈w1(x); w2(x)〉=E�;�[w1(x)w2(x)]: (21)

The components ui(x; �; �) of the �-score are in
H�;�, provided the Fisher information exists.
In the semiparametric model, it is di�cult to es-

timate both the parameters of interest and nuisance
parameters simultaneously, since � is of in>nite
degrees of freedom. The semiparametric approach
suggests use of an estimating function to estimate
the parameters of interest, regardless of the nui-
sance parameters. In general, the estimating func-
tion is a vector function, independent of nuisance
parameters �, satisfying certain conditions [15,5].
Generally speaking, it is not easy to >nd an estimat-
ing function. Amari and Kawanabe [10] studied the
information geometry of estimating functions and
provided a novel approach that we follow in this
paper to >nd a family of estimating functions for
blind deconvolution.

4.2. Semiparametric formulation for blind
deconvolution

We now formulate blind deconvolution within
the framework of semiparametric models. The joint
probability density function p(x;W; r) of sensor
signal x is determined by the probability density
function r(s) and the demixing >lter W(z). From
the statistical point of view, the problem is to
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estimate W(z) or H†(z) from the observed data
and the estimate includes two unknowns: one is
the demixing >lter W(z) which is the parameter
of interest, and the other is the probability density
function r(s) of sources, which is the nuisance pa-
rameter in the present case. For the blind deconvo-
lution problem, we usually assume that source sig-
nals are zero-mean,

E[si]= 0 for i=1; : : : ; n: (22)

In addition, we generally impose constraints on the
recovered signals to remove the indeterminacy,

E[ki(si)]=0 for i=1; : : : ; n: (23)

A typical example of the constraint is ki(si)= s4i −1.
Since the source signals are spatially mutually

independent and temporally iid, the pdf r(s) can be
factored into the product form

r(s)=
n∏
i=1

r(si): (24)

The nuisance parameter r(s), the probability den-
sity function of the source signals, is in a function
space. In the semiparametric approach, it is not
necessary to estimate the nuisance parameter. The
problem reduces to >nding a suitable estimating
function. Remarkable progress has been made re-
cently in the theory of semiparametric models
[10,15] and it has been shown that the e�cient
score itself is an estimating function for blind sepa-
ration. In this paper, we utilize the theory to derive
a family of estimating functions.

5. E+cient score

In this section, we give an explicit form of the
score function of interest parameter, by using a local
nonholonomic reparameterization. We then derive
an e�cient score by projecting the score function
into the subspace orthogonal to the nuisance tangent
space.

5.1. Score function matrix and its representation

Assume that the mixing >lter H(z) is in M (N ).
The blind deconvolution problem is to >nd a

demixing FIR >lterW(z) such that the output y(k)
of the demixing model is maximally spatially mu-
tually independent and temporarily i.i.d.. To this
end, we >rst de>ne score functions of log-likelihood
with respect to W(z). Since the mixing model is a
matrix FIR >lter, we write an estimating function
in the same matrix >lter format

F(x;W(z))=
N∑
p=0

Fp(x;W)z−p; (25)

where Fp(x;W) are matrix functions of x and
W=[W0;W1; : : : ;WN ].
Now consider the W-score function, which is a

>lter in TM(N ), de>ned by

@ logp(y;W; r)
@W(z)

=
N∑
p=0

@ logp(y;W; r)
@Wp

z−p; (26)

where p(y;W; r) is the probability density function
of y, and @ logp(y;W; r)=@Wp denotes the gradient
in matrix form, whose (i; j)-element is de>ned by
@ logp(y;W; r)=@Wpij.
Using Cardoso’s relative gradient technique [20],

we reparameterize the >lter in a small neighbor-
hood of the true mixing >lter H(z) by using a new
variable matrix >lter as

H(z) ∗ (I −X(z)); (27)

where I is the identity element of the manifold
M(N ). The variation X(z) represents a local coor-
dinate system at the neighborhood NH of H(z) in
the manifold M(N ). The variation dH(z) of H(z)
is represented as dH(z)=−H(z) ∗ dX(z) in terms
of dX(z). Letting W(z)=H†(z), we obtain

dX(z)=dW(z) ∗W†(z); (28)

a nonholonomic diFerential variable [45] since
(28) is not integrable. Denote the inner product
of any two >lters X(z) and Y(z) in tangent space
TMW(z) by 〈X(z);Y(z)〉=∑N

p=0 tr(X
T
pYp). Con-

sider the diFerential d logp(y;W; r) with respect
to the new variables,

d logp(y;W; r)=
〈
@ logp(y;W; r)

@X(z)
; dX(z)

〉
:

(29)
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On the other hand, using relation (28), we have

d logp(y;W; r)

=
〈
@ logp(y;W; r)

@W(z)
; dW(z)

〉

=
〈
@ logp(y;W; r)

@W(z)
∗WT(z−1); dX(z)

〉
: (30)

Comparing the two equations (29) and (30), and
using the invariant property of the diFerential ex-
pression, we deduce

@ logp(y;W; r)
@X(z)

=
@ logp(y;W; r)

@W(z)
∗WT(z−1):

(31)

Using the relation (18), we evaluate the score func-
tion at X(z)= 0

@ logp(y;W; r)
@Xp; ij

∣∣∣∣
X(z)=0

=’i(si(k))sj(k − p); (32)

where ’i(si)=− d log(ri(si))=dsi, i=1; : : : ; n. This
can also be re-written in the compact form

U(x;W(z); r) =
N∑
p=0

Upz−p

=
N∑
p=0

’(s)sT(k − p)z−p; (33)

where ’(s)= (’1(s1); : : : ; ’n(sn))T, and s is the
source signal vector. It should be noted that the
score function U(x;W(z); r) generally depends
on the sensor signals x(k) and the demixing >lter
W(z). However, by introducing the nonholonomic
reparameterization, we derive a score function that
only depends on output of the demixing model or
the global transfer function G(z). This property
is called the equivariance in blind separation of
instantaneous mixtures [20]. The relative or the
natural gradient of a cost function on the Rieman-
nian manifold can be automatically derived from
this nonholonomic representation [8,20,45].

5.2. E:cient scores

In general, the space spanned by the components
of the score function (33) is not orthogonal to the

Fig. 3. Orthogonal decomposition of score functions.

nuisance tangent space, denoted by TN
W(z); r . A de-

tailed discussion of the nuisance tangent space in
the blind separation problem can be found in [5].
Since the nuisance tangent space TN

W(z); r in blind
deconvolution is the same as that in blind separa-
tion, we directly use the result in [5].

Lemma 1 (Amari and Cardoso [5]). The nuisance
tangent space TN

W(z); r is the linear space spanned
by the nuisance score functions;

TN
W(z); r =

{
n∑
i=1

ci$i(si)

}
; (34)

where ci are coe:cients and $i are arbitrary func-
tions satisfying

Eri [{$i(si)}2]¡∞; Eri [si$i(si)]=0;

Eri [ki(si)$i(si)]=0:
(35)

The e�cient scores, denoted by UE(x;W(z); r),
can be obtained by projecting the score function
to the subspace orthogonal to the nuisance tangent
space TN

W(z); r . See Fig. 3 for the illustration of or-
thogonal decomposition of score functions. Nowwe
denote up; ij=’i(si(k))sj(k − p).

Lemma 2. The o;-diagonal elements u0; ij ; i �= j;
and the delay elements up; ij; p¿ 1; of the score
functions are orthogonal to the nuisance tangent
space TN

W(z); r .
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Proof. The inner product of u0; ij and any element∑
cl$l(yl)∈TN

W(z); r ,〈
u0; ij ;

∑
cl$l(sl)

〉
=
∑

cl〈’(si)sj; $l(sl)〉 (36)

vanishes because of mutual independence and the
zero-mean of si and (35). Similarly, using the iid
property of s, we can prove that the inner product
of up; ij and any element

∑
cl$l(sl)∈TN

H(z); r also
vanishes for p¿ 1.

Lemma 3. The projection of u0; ii to the subspace
orthogonal to the nuisance tangent space TN

W(z); r
is of the form

w(si)= c1si + c2ki(si); (37)

where ci are any constants.

Proof. Using Lemma 1 and the arbitrariness of the
$(si); i=1; : : : ; n, we see that the e�cient scores in
the diagonal elements u0; ii are given by (37).

In summary we have the following theorem.

Theorem 1. The e:cient score; UE(x;W(z); r) is
expressed by

UE(x;W(z); r)=
N∑
p=0

UE
pz

−p; (38)

where

UE
p=’(y)y

T(k − p) for p¿ 1; (39)

UE
0 =



’(y)yT for o; -diagonal

elements;
c1yi + c2ki(yi) for diagonal elements:

(40)

6. Estimating function and standardized
estimating function

In this section, we derive a family of estimating
functions and standardized estimating functions for
blind deconvolution.

For instantaneous mixture, it has been proven
[11] that the semiparametric model for blind
separation is information m-curvature free. This
is also true in multichannel blind deconvolu-
tion. As a result, the e�cient score function is
an estimating function. The derivative operator
K(z)=E[@F(x;W(z))=@X(z)] is a tensor >lter,
represented by

K(z)=
N∑
p=0

Kpz−p: (41)

See Appendix A.2 for detailed derivation. We take
the following notations

ni=E[s2i ’
′
i(si)]; %i=E[’′

i(si)]; &2i =E[s
2
i ];

(42)

'ij=%i%j&2i &
2
j − 1; li=E[’(si)]: (43)

Lemma 4. The coe:cients of operator K(z)=∑N
p=0 Kpz−p can be expressed by

Kp; ij; lm = E[’′(si(k))s2j (k − p)](il(jm + (im(jl(0p:

(44)

Furthermore; if the following conditions are
satis5ed

%i �=0; %i%j&2i &
2
j − 1 �=0; ni + 1 �=0; (45)

then the derivative operator K(z) is invertible.

The proof is given in Appendix A.2. Therefore,
we derive a family of estimating functions for blind
deconvolution

F(x(k);W(z))=
N∑
p=0

’(y(k))y(k − p)Tz−p − I;

(46)

where y(k)=
∑N

p=0 Wpx(k − p), and ’ is a vec-
tor of given activation functions, provided that the
derivative operator K(z)=E[@F(x;W(z))=@X(z)]
is invertible. The estimating function is the
e�cient score function, when c1 = 0; c2 = 1 and
ki(yi)=’i(yi)yi − 1.
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The semiparametric approach suggests use of the
following estimating equation [5,18] for parameters
of interest,

t∑
k=1

F(x(k);W(z))= 0: (47)

The estimator obtained from (47) is called an
M-estimator. An M-estimator is consistent, that is,
the estimator Wt(z) converges to the true value
as t tends to in>nity without reference to r(s).
The estimating function is not unique, since that
for any nonsingular linear operator R(z) mapping
from M(N ) to M(N ), R(z)F(x;W(z)) is also an
estimating function. It has already been established
that the two estimating functions are equivalent in
the sense that the derived batch estimators give ex-
actly the same solution. This de>nes an equivalent
class of estimating functions that are essentially
the same in batch estimation. However, when we
consider online learning, the learning dynamics
is not equivalent and this necessitates introduc-
tion of an estimating function that will make the
learning algorithm more stable and e�cient. To
this end, we introduce the concept of standardized
estimating function. The standardized estimating
function [4] is de>ned as follows: if the derivative
operator K(z)=E[@F(x;W(z))=@X(z)] is an iden-
tity operator, the estimating function is called the
standardized estimating function.

Lemma 5. Given any estimating function
F(x;W(z)); if the operatorK(z) is invertible; then

K−1(z)F(x;W(z)) (48)

is a standardized estimating function.

The proof is not di�cult. Using Lemma 5 we can
derive a family of standardized estimating functions
for the blind deconvolution problem.

Theorem 2. Given an estimating function of form
(46); the standardized estimating function is
expressed by

F∗(x;W(z))=
N∑
p=0

F∗
p(x;W(z))z−p; (49)

where

F∗
0; ii=

1
ni + 1

{’i(yi)yi − 1} for i=1; : : : ; n;

(50)

F∗
0; ij=

1
'ij

{%j&2i ’i(yi)yj − ’j(yj)yi} for i �= j;

(51)

F∗
p; ij=’i(yi)yj(k − p)=(%i&2j ) for p¿ 1: (52)

Proof. In order to compute the inverse of the
operator K(z), we consider the following
equation:

K(z)F∗(x;W(z))=F(x;W(z)): (53)

Using expression (44), we can rewrite (53) into the
following component form

(ni + 1)F∗
0; ii=F0; ii for i=1; : : : ; n; (54)

%i&2j F
∗
0; ij + F∗

0; ji=F0; ij for i; j=1; : : : ; n; i �= j;
(55)

%i&2j F
∗
p; ij=Fp; ij for p¿ 1; i; j=1; : : : ; n: (56)

Solving the above equations, we obtain the results.

There are some advantages to use the standard-
ized estimating function in on-line learning. The
natural gradient learning is given by

UW(z)=− *kF∗(x;W(z)) ∗W(z): (57)

It can be proved that the true solutionW(z)=H†(z)
is always the stable equilibrium of the natural gra-
dient learning above, provided conditions (45) are
satis>ed. The property is called universal conver-
gence. See [6,4] for further information. The statis-
tics in (42) and (43) require on-line estimate so as
to implement learning algorithm (57). In particular,
if the source signals are binary, taking values 1;−1,
we can calculate the statistics for the standardized
estimating function. if we choose the cubic function
’i(yi)=y3

i as activation function, the statistics are
evaluated by

ni=3; %i=3; &2i =1; 'ij=8: (58)
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Therefore, the standardized estimating function can
be given explicitly.

7. Performances of learning

In this section, we investigate the convergence
rate of the learning process by using an estimat-
ing function. The basic idea is to use the two
well-known theorems: the law of large numbers
and the central limit theorem.
The Kronecker (tensor) product [27] is used

extensively in the following discussion. The Kro-
necker product of two matrices A and B is denoted
by A⊗B. For any two matrix >lters X(z) and Y(z)
in M(N ), their Kronecker product is de>ned as
follows:

X(z)⊗Y(z)=
N∑
p=0

(Xp ⊗Yp)z−p: (59)

We now examine the statistical error analysis of
the batch estimator. Suppose W(z) is the true so-
lution to the estimating equation and Wt(z) is the
solution to the empirically averaged equation

t∑
k=1

F(x(k);W(z))=0: (60)

The estimator error is given by UWt(z)=Wt(z)−
W(z). In order to simplify the analysis, we de>ne
the relative error in the nonholonomic form

UXt(z)=UWt(z) ∗W†(z); (61)

where W†(z) is the Lie group inverse of the >lter
W(z). The relative error has an explicit meaning,
de>ning a global channel error in the following way:

Uy=UWt(z)x=UXt(z)s: (62)

Expanding (60) with respect to X(z), we have
t∑

k=1

F(x(k);W(z))

+
t∑

k=1

@F(x(k);W(z))
@X(z)

UXt(z)= 0: (63)

We rewrite the above equation in another form

1
t

t∑
k=1

@F(x(k);W(z))
@X(z)

UXt(z)

=− 1√
t
1√
t

t∑
k=1

F(x(k);W(z)): (64)

According to the law of large numbers, we have the
following estimation:

1
t

t∑
k=1

@F(x(k);W(z))
@X(z)

=K(z) +O
(

1√
t

)
; (65)

where K(z)=E[@F(x;W(z))=@X(z)]; is a >lter to
>lter operator, given by Lemma 4. In the follow-
ing discussion, we presume that conditions (45) are
satis>ed. On the other hand, since F(x;W(z)) is an
estimating function, its expectation vanishes. The
central limit theorem guarantees that

1√
t

t∑
k=1

F(x(k);W(z)) (66)

converges in distribution to the normal random vari-
able matrix, denoted by V(z; t), with mean 0 and
covariance matrix

G(z) =
N∑
p=0

Gpz−p

=
N∑
p=0

E[Fp(x;W(z))⊗ FT
p(x;W(z))]z−p;

(67)

where ⊗ is the Kronecker product of two matrices.

Lemma 6. The covariance of the error measured
in term ofUXt(z) of the estimatorWt(z) is asymp-
totically given by

E[UXt(z)⊗UXT
t (z)]

=
1
t
K−1(z)G(z)K−T (z) +O

(
1
t2

)
: (68)
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Proof. Substituting (65) into (64) and using (67),
we have

UXt(z)=− 1√
t
K−1{V(z; t)}+O

(
1
t

)
: (69)

Taking the covariance of UXt(z), we have estima-
tion (68).

From Lemma 6 we can estimate the covariance
of the recovered signals.

Lemma 7. For i �= j; the cross covariance is given
by

V t
ij=E[yiyj]=

n∑
l=1

N∑
p=0

E[UX t
p; ilUX

t
p;jl]&

2
l ; (70)

where &2l =E[s
2
l ].

Proof. Using the i.i.d. property of s(t) and relation
(62), we have, for i �= j
E[yiyj] = E[(si +Uyi)(sj +Uyj)]

=
n∑
l=1

E[UXil(z)sl(t)UXjl(z)sl(t)]

=
n∑
l=1

N∑
p=0

E[UX t
p; ilUX

t
p;jl]&

2
l : (71)

From Lemmas 6 and 7 we know that generally,
the covariance Vij(t)=E[yiyj] (i �= j) vanishes at
rate 1=t, as t tends to in>nity.

8. Supere+ciency of batch estimator

Amari [4] proves that in the instantaneous case,
the covariance Vij(t)=E[yiyj] (i �= j) vanishes at
rate 1=t2 under certain simple conditions. This prop-
erty is called supere�ciency. In this section, we
prove that supere�ciency remains valid in blind
deconvolution.
Suppose that F∗(x;W(z)) is a standardized

estimating function:

E[UXt(z)⊗UXT
t (z)]=

1
t
G∗(z) +O

(
1
t2

)
; (72)

where G∗(z)=K−1(z)G(z)K−T (z)=E[F∗(x;
W(z))⊗ F∗T(x;W(z))].

Lemma 8. The coe:cients of G∗(z) are expressed
by

G∗
0; il; jl= cilcjl&

2
i &

2
j &

2
l k

2
l lilj

for i �= j; j �= l; l �= i; (73)

G∗
0; ii; ji=

1
ni + 1

cji%i&2j ljE[s
2
i ’i(si)] for i �= j;

(74)

G∗
p; il; jl=

lilj
%i%j

for p¿ 1; i; j=1; : : : ; n: (75)

Proof. Using the expression of F∗(x;W(z)) in
Theorem 2, we derive the result by direct calcula-
tion.

Theorem 3. A batch estimator is supere:cient
when the following condition is satis5ed

li=E[’i(si)]=0 for i=1; : : : ; n: (76)

Proof. Using Lemma 8 and (76), we have

G∗
p; il; jl=0 for i �= j; p=0; : : : ; N; l=1; : : : ; n:

(77)

Write the estimate (72) in component form,

E[UX t
p; ilUX

t
p;jl]=

1
t
G∗
p; il; jl +O

(
1
t2

)
=O

(
1
t2

)
;

(78)

for i �= j. The combination of (70) and (78) leads
to the following estimation

V t
ij=

n∑
l=1

N∑
p=0

E[UX t
p; ilUX

t
p;jl]&

2
l =O

(
1
t2

)
: (79)

This proves our result.

9. Supere+ciency in on-line learning

Now we turn to supere�ciency in on-line learn-
ing. The natural gradient learning algorithm is
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described as follows [45]:

Wt+1(z)=Wt(z)− *tF(x(t);Wt(z)) ∗Wt(z); (80)

where F(x;W(z)) is an estimating function in
the form (46). For simplicity, we reparameterize
the demixing model in the nonholonomic form
dX(z)=dW(z) ∗W†(z) and the learning algorithm
for X(z) is described by

Xt+1(z)=Xt(z)− *tF(x(t);Wt(z)): (81)

The local stability conditions for the learning algo-
rithm (80) is given by the following lemma.

Lemma 9 (Zhang et al. [45]). If for i; j=1; : : : ; n;

ni + 1¿ 0; %i ¿ 0; %i%j&2i &
2
j ¿ 1; (82)

then the natural gradient learning algorithm (80)
is locally stable.

From statistical learning theory, provided the
learning algorithm is stable, the expectation of
Wt(z) converges to the optimal solution expo-
nentially when the learning rate *t is >xed to a
small constant *. However, even when t is large,
Wt(z) still Ructuates around optimal value for a
>xed learning rate *. For the instantaneous mix-
ture, Amari [4] analyses the covariance matrices
of UXt and proves the supere�ciency in on-line
learning. In this section we extend the result to
blind deconvolution.

Theorem 4. When * is su:ciently small andWt(z)
converges to the true solution; the covariance
matrix of the relative error UXt(z)= (Wt(z) −
W(z)) ∗W†(z) converges to

E[UX(z)⊗UXT(z)]= *Y(z) +O(*2); (83)

whereY(z) is a 4-dimensional tensor 5lter; de5ned
by the solution of

K(z)Y(z) +Y(z)KT(z)=G(z): (84)

Proof. See Appendix A.3.

For on-line learning, supere�ciency is de>ned in
a similar way: a learning algorithm is supere�cient

if the cross covariance V t
ij=E[yi(t)yj(t)]; i �= j; is

of the order *2 for su�ciently large t.

Theorem 5. Assume that stability conditions (82)
are satis5ed. Supere:ciency holds for the natural
gradient learning algorithm (80) when the follow-
ing conditions are satis5ed:

li=E[’i(si)]=0 for i=1; : : : ; n: (85)

Proof. From Lemma 7 and Theorem 4, we have

V t
ij =

n∑
l=1

N∑
p=0

E[UX t
p; ilUX

t
p;jl]&

2
l

= *
n∑
l=1

N∑
p=0

Yp; il; jl&2l +O(*2): (86)

It is proven in Appendix A.3 that for any i �= j,
Yp; il; jl=0. This yields

V t
ij=O(*

2) for i �= j: (87)

From the arguments above we can see that su-
pere�ciency of both batch estimator and natural
gradient algorithm require (85) and fortunately the
commonly used activation functions, such as the
cubic function and the hyperbolic tangent function,
satisfy these conditions.

10. Computer simulations

To evaluate performance of the proposed learn-
ing algorithms, we employ the multichannel in-
tersymbol interference [33], denoted by MISI, as
a criteria,

MISI =
n∑
i=1

|∑n
j=1

∑N
p=0 |Gpij|2 −maxp;j |Gpij|2
maxp;j |Gpij|2

+
n∑
j=1

|∑n
i=1

∑N
p=0 |Gpij|2 −maxp; i |G2

pij|
maxp; i |Gpij|2 :

(88)

It is easy to show that MISI = 0 if and only if G(z)
is of the form (10). In order to remove the eFect
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Fig. 4. MISI performance of the natural gradient algorithm.

of a single numerical trial on evaluating the perfor-
mance of algorithms, we use the ensemble average
approach, that is, in each trial we obtain a time se-
quence ofMISI, and take average of ISI performance
to evaluate the performance of the algorithms.
A large number of computer simulations have

been performed to evaluate validity and perfor-
mance of the proposed natural gradient algorithm
and we give two examples to demonstrate the
behavior and performance of algorithm (80). In
both examples the mixing model is a multichannel
ARMA model as follows:

x(k) +
N∑
i=1

Aix(k − i)=
N∑
i=0

Bis(k − i) + v(k);

(89)

where x; s; v∈R3. The matrices Ai and Bi are
randomly chosen such that the mixing system is
stable. The nonlinear activation function is chosen
to be ’(y)=y3.

Example 1. In this simulation, we randomly gen-
erate ARMA model of form (89) by computer,
and employ natural gradient algorithm (80) and the
Bussgang algorithm [14] to train the demixing >l-
ter, respectively. The source signals s are randomly

generated i.i.d. signals uniformly distributed in the
range (−1; 1), and v is chosen as Gaussian noise
with zero mean and covariance matrix 0:1I .
Fig. 4 illustrates 100 trial ensemble average

MISI performance of the natural gradient algorithm
and the Bussgang algorithm. It is observed that
the natural gradient algorithm usually needs less
than 2000 iterations to obtain satisfactory results,
while the Bussgang algorithm needs more than 20
000 since there is a long plateau in the Bussgang
equalizer.

Example 2. Assume that source signals are i.i.d.
quadrature amplitude modulated (QAM). The
transfer function of the randomly chosen mixing
system is plotted in Fig. 5, which is assumed to
be unknown during learning. We use the natural
gradient algorithm with the standardized estimat-
ing function to training the demixing >lter. The
learning rate is set to 0.001.
Fig. 6 illustrates the output signal constella-

tions of the natural gradient learning in three
time intervals 16 k6 300, 10016 k6 1300 and
20016 k6 2300, respectively. It is worth noting
that the output signals converge to the character-
istic QAM constellation, up to an amplitude and
phase rotation factors ambiguities.
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Fig. 5. The coe�cients of H(z) of the mixing systems.
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Fig. 6. Output constellations.

11. Conclusion

In this paper, we present the semiparametric ap-
proach to blind deconvolution, and study the con-
vergence and e�ciency of the batch estimator and
natural gradient learning. First, multichannel blind

deconvolution is formulated in the framework of
the semiparametric model and a family of estimat-
ing functions and standardized estimating functions
are derived by using e�cient score functions. The
advantage of using the semiparametric approach is
that we do not need to estimate the nuisance param-
eters — the probability density functions of source
signals in blind deconvolution. It is inferred from
the theory of estimating functions that the batch es-
timator of the estimating equation converges to the
true solution as the number of observed data tends
to in>nity. If stability conditions are satis>ed, the
natural gradient learning also converges to the true
solution whatever the probability density function
of the source signals. The supere�ciency of both
the batch estimator and natural gradient learning is
proven when conditions (85) are satis>ed. Finally,
computer simulations are given to demonstrate the
validity and eFectiveness of the natural gradient
approach.

Appendix A

11.1. De5nition

In this appendix, we introduce some basic def-
initions and concepts in this paper. Assume that
X(z)=

∑N
p=0Xpz

−p is a >lter in M(N ), and
l(X(z)) is a cost function de>ned on M(N ). The
derivative of l(X(z)) with respect to a matrix
Xp=(Xp; ij)n×n is de>ned by

@l(X(z))
@Xp

=
(
@l(X(z))
@Xp; ij

)
n×n

: (A.1)

The derivative of l(X(z)) with respect to a >lter
X(z) is de>ned by

@l(X(z))
@X(z)

=
N∑
p=0

@l(X(z))
@Xp

z−p: (A.2)

The estimating function for blind deconvolution
is denoted by

F(y;X(z))=
N∑
p=0

Fp(y;X(z))z−p; (A.3)
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where Fp ∈Rn×n, p=0; : : : ; N are matrix func-
tions on M(N ). Given p; q, the derivative
@Fp=@Xq is a 4-dimensional tensor, de>ned by
@Fp=@Xq=(@Fp; ij=@Xq;lk)n×n×n×n: For any matrix
Y∈Rn×n, the operation (@Fp=@Xq)Y is de>ned
by (@Fp=@Xq)Y=

∑
l; k(@Fp=@Xq;lk)Ylk Therefore,

the derivative @F(y;X(z))=@X(z) is an operator
mapping M(N ) to M(N ), de>ned by

@F(y;X(z))
@X(z)

Y(z)=
N∑
p=0

N∑
q=0

@Fp
@Xq

Yqz−p (A.4)

for any >lter Y(z)∈M(N ).

11.2. Representation of operator K(z)

We derive the explicit form of operator K(z)
and its inverse K−1(z) and give a de>nition of the
transpose KT(z) of K(z) here. Assume that the re-
covered signal y(k) is spatially mutually indepen-
dent and temporally i.i.d..

Lemma 10. For any p �= q;

E
[
@Fp
@Xq

]
= 0: (A.5)

Proof. By de>nition, Fp; ij=’(yi)yj(k−p)−(0;p.
Using the i.i.d properties of y(k) and relation (18),
we have, for p �= q,

E
[
@Fp; ij
@Xq; lm

]
= E

[
’′(yi)

@yi(k)
@Xq;lm

yj(k − p)

+’(yi)
@yj(k − p)
@Xq;lm

]
=0: (A.6)

Proposition 1. The derivative operator K(z) can
be represented as

K(z)=
N∑
p=0

Kpz−p=
N∑
p=0

E
[
@Fp
@Xp

]
z−p; (A.7)

which maps Y(z)∈M(N ) to K(z)Y(z)=∑N
p=0 KpYpz−p: Furthermore; the coe:cients

of K(z) are given by

Kp; ij; lm=E[’′(yi(k))y2
j (k−p)](il(jm+(im(jl(0p:

(A.8)

Proof. From de>nition (A.4) and using (A.5), we
have

K(z)Y(z) =
N∑
p=0

N∑
q=0

E
[
@Fp
@Xq

]
Yqz−p

=
N∑
p=0

E
[
@Fp
@Xp

]
Ypz−p: (A.9)

Using the i.i.d properties of y(k) and (18), we have

E
[
@Fp; ij
@Xp;lm

]
= E

[
’′(yi)

@yi(k)
@Xp;lm

yj(k − p)

+’(yi)
@yj(k − p)
@Xp;lm

]

= E[’′(yi(k))y2
j (k − p)](il(jm

+ (im(jl(0p: (A.10)

The result follows.
In order to calculate the inverse ofK(z), consider

the following equation:

K(z)X(z)=Y(z); (A.11)

whereX(z) andY(z)∈M(N ). Substitute (A.8) into
(A.11), and write it in component form

(ni + 1)X0; ii=Y0; ii for i=1; : : : ; n; (A.12)

%i&2j X0; ij + X0; ji=Y0; ij for i; j=1; : : : ; n; i �= j;
(A.13)

%i&2j Xp; ij=Yp; ij for p¿ 1; i; j=1; : : : ; n:

(A.14)

We can directly solve X0; ii and Xp; ij from (A.12)
and (A.14). For X0; ij, i �= j, we can write (A.12) in
the following 2× 2 self-closed subsystem[
%i&2j 1

1 %j&2i

][
X0; ij

X0; ji

]
=

[
Y0; ij
Y0; ji

]
: (A.15)
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If 'ij=%i%j&2i &
2
j −1 �=0, we can uniquely solve the

above equations. Therefore, we have the following
result.

Proposition 2. If ni+1 �=0, %i �=0, 'ij=%i%j&2i &
2
j−

1 �=0; then the operator K(z) is invertible and the
inverse K−1(z)=

∑N
p=0 Rpz−p is expressed by

R0; ii; lm=
1

ni + 1
(il(im; (A.16)

Rp; ij; lm=
1
%i&2j

(il(jm; (A.17)

R0; ij; lm=
1
'ij

(%j&2i (il(jm − (im(jl): (A.18)

Now we give a de>nition of the transpose opera-
tion of tensor >lters. The transpose of a tensor >lter
K(z) is given by

KT(z)=
N∑
p=0

KT
pz

−p; (A.19)

where KT
p =(Kp;lm; ij), given Kp=(Kp; ij; lm).

11.3. Derivation and properties of operator Y(z)

We derive the estimation (83) and discuss some
properties of Y(z) here. Using the nonholonomic
reparameterization, we have the following on-line
learning rule:

Xt+1(z)=Xt(z)− *F(x(t);Wt(z)): (A.20)

By the Taylor expansion, we have

UXt+1(z) =UXt(z)− * (F(x(t);W(z))

+
@F(x(t);W(z))

@X(z)
UXt(z)

)
: (A.21)

The error covariance at time t is denoted by

Vt(z)=E[UXt(z)⊗UXT
t (z)]: (A.22)

Substituting expansion (A.21) into (A.22), we have

Vt+1(z) =Vt(z)− *(K(z)E[UXt(z)⊗UXT
t (z)]

+E[UXt(z)⊗UXT
t (z)]K

T(z))

+ *2E[F(x(t);W(z))⊗ FT(x(t);W(z))]

+O(*3): (A.23)

Therefore, when Wt(z) converges to W(z), for
su�ciently large t, we have

K(z)Vt(z) +Vt(z)KT(z)= *G(z) +O(*2):

(A.24)

Assume that the >lter operator P(z), de>ned by

P(z)Y(z)=K(z)Y(z) +Y(z)KT(z); (A.25)

is invertible. Combining (A.24) and (84) we obtain
the estimation (83).

Proposition 3. Assume that the 5lter operator
P(z) is invertible. If the following conditions are
satis5ed

li=E[’i(yi)]=0 for i=1; : : : ; n; (A.26)

then for any i �= j,
Yp; il; jl=0: (A.27)

Proof. Under condition (A.26), we have, for i �= j,
Gp; il; jl=0 for p=0; : : : ; N: (A.28)

From (84), we have

KpYp +YpK
T
p =Gp for p=0; : : : ; N: (A.29)

Rewriting the above equation system into compo-
nent form, we see that the system can be sepa-
rated into 2× 2 or 4× 4 self-closed subsystems. If
p=0; i= l; j �= l, we solve Yp; ii; ji by the follow-
ing subsystem:[
ni + %ij + 1 1

1 ni + %ji + 1

][
Y0; ii; ij

Y0; ii; ji

]
=

[
G0; ii; ij

G0; ii; ji

]
:

(A.30)

If the following nonsingular conditions are satis>ed

(ni + %ij + 1)(ni + %ji + 1)− 1 �=0 for i �= j;
(A.31)

we deduce that

Y0; ii; ji=0; (A.32)
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for i �= j. Similarly, we can verify that (A.27) holds
for any other cases if P(z) is invertible.

References

[1] K. Abed-Meraim, J.F. Cardoso, A. Gorokhov, P.
Loubaton, E. Moulines, On subspace methods for blind
identi>cation of SIMO-FIR systems, IEEE Trans. Signal
Process. 45 (1997) 42–56.

[2] S. Amari, in: DiFerential–geometrical methods in
statistics, Lecture Notes in Statistics, Vol. 28, Springer,
Berlin, 1985.

[3] S. Amari, Natural gradient works e�ciently in learning,
Neural Comput. 10 (1998) 251–276.

[4] S. Amari, Supere�ciency in blind source separation, IEEE
Trans. Signal Process. 47 (4) (April 1999) 936–944.

[5] S. Amari, J.-F. Cardoso, Blind source separation —
semiparametric statistical approach, IEEE Trans. Signal
Process. 45 (November 1997) 2692–2700.

[6] S. Amari, T. Chen, A. Cichocki, Stability analysis of
adaptive blind source separation, Neural Networks 10
(1997) 1345–1351.

[7] S. Amari, A. Cichocki, Adaptive blind signal processing
— neural network approaches, Proc. IEEE 86 (10) (1998)
2026–2048.

[8] S. Amari, A. Cichocki, H. Yang, A new learning
algorithm for blind signal separation, in: G. Tesauro,
D. Touretzky, T. Leen (Eds.), Advances in Neural
Information Processing Systems 8 (NIPS∗95), The MIT
Press, Cambridge, MA, 1996, pp. 757–763.

[9] S. Amari, S. Douglas, A. Cichocki, H. Yang,
Novel on-line algorithms for blind deconvolution using
natural gradient approach, in: Proceedings of the 11th
IFAC Symposium on System Identi>cation, SYSID’97,
Kitakyushu, Japan, July 8–11 1997, pp. 1057–1062.

[10] S. Amari, M. Kawanabe, Information geometry of
estimating functions in semiparametric statistical models,
Bernoulli 3 (1) (1997) 29–54.

[11] S. Amari, M. Kawanabe, Estimating functions in
semiparametric statistical models, in: I.V. Basawa,
V. Godambe, R. Taylor (Eds.), Estimating Functions,
Monograph Series, Vol. 32, IMS, 1998, pp. 65–81.

[12] S. Amari, M. Kumon, Estimation in the presence of
in>nitely many nuisance parameters in semiparametric
statistical models, Ann. Statist. 16 (1988) 1044–1068.

[13] A. Bell, T. Sejnowski, An information maximization
approach to blind separation and blind deconvolution,
Neural Comput. 7 (1995) 1129–1159.

[14] S. Bellini, Bussgang techniques for blind deconvolution
and equalization, in: S. Haykin (Ed.), Blind
Deconvolution, Prentice-Hall, New Jersey, 1994, pp.
8–59.

[15] P. Bickel, C. Klaassen, Y. Ritov, J. Wellner, E�cient
and Adaptive Estimation for Semiparametric Models, The
Johns Hopkins University Press, Baltimore and London,
1993.

[16] W.M. Boothby, An Introduction to DiFerential Manifolds
and Riemannian Geometry, Academic Press, Inc., New
York, 1986.

[17] J.A. Cadzow, Blind deconvolution vis cumulant extrema,
IEEE Signal Process. Mag. 13 (1996) 24–42.

[18] J.-F. Cardoso, Estimating equations for source separation,
in: Proceedings of the ICASSP’97, Vol. 5, Munich, 1997,
pp. 3449–3452.

[19] J.-F. Cardoso, Blind signal separation: statistical
principles, Proc. IEEE 86 (10) (1998) 2009–2025.

[20] J.-F. Cardoso, B. Laheld, Equivariant adaptive source
separation, IEEE Trans. Signal Process. SP-43 (December
1996) 3017–3029.

[21] A. Cichocki, R. Unbehauen, E. Rummert, Robust learning
algorithm for blind separation of signals, Electron. Lett.
30 (17) (1994) 1386–1387.

[22] P. Comon, Independent component analysis: a new
concept?, Signal Processing 36 (1994) 287–314.

[23] L. Conlon, DiFerential Manifolds, Birkhauser, Boston,
1993.

[24] N. Delfosse, P. Loubaton, Adaptive blind separation
of independent sources: a deRation approach, Signal
Processing 45 (1995) 59–83.

[25] A. Gorokhov, P. Loubaton, Blind identi>cation of
MIMO-FIR system: a generalized linear prediction
approach, Signal Processing 73 (1999) 105–124.

[26] S. Haykin, Unsupervised Adaptive Filtering, Vol. II: blind
deconvolution, Wiley, New York, 2000.

[27] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, Cambridge, 1991.

[28] Y. Hua, Fast maximum likelihood for blind identi>cation
of multiple FIR channels, IEEE Trans. Signal Process. 44
(1996) 661–672.

[29] Y. Hua, J. Tugnait, Blind identi>ability of FIR-MIMO
systems with colored input using second order statistics,
IEEE Signal Process. Lett. 7 (2000) 348–350.

[30] A. Hyvarinen, E. Oja, A fast >xed-point algorithm for
independent component analysis, Neural Comput. 9 (7)
(1997) 1483–1492.

[31] C. Jutten, J. Herault, Blind separation of sources, Part I: an
adaptive algorithm based on neuromimetic architecture,
Signal Processing 24 (1991) 1–10.

[32] J. Karhunen, P. Pajunen, E. Oja, The nonlinear PCA
criterion in blind source separation: relations with other
approaches, Neurocomputing 22 (1998) 5–20.

[33] R. Lambert, Multichannel blind deconvolution: FIR
matrix algebra and separation of multipath mixtures, Ph.D.
Thesis, University of Southern California, 1995.

[34] R.W. Lucky, Techniques for adaptive equalization of
digital communication systems, Bell Sys. Tech. J. 45
(1966) 255–286.

[35] E. Moulines, P. Duhamel, J.F. Cardoso, S. Mayrargue,
Subspace methods for the blind identi>cation of
multichannel FIR >lters, IEEE Trans. Signal Process. 43
(1995) 516–525.

[36] M. Murray, J. Rice, DiFerential Geometry and Statistics,
Chapman & Hall, New York, 1993.



L.-Q. Zhang et al. / Signal Processing 81 (2001) 2535–2553 2553

[37] Y. Sato, Two extensional applications of the zero-forcing
equalization method, IEEE Trans. Commun. COM-23
(1975) 684–687.

[38] E. Serpedin, A. Chevreuil, G. Giannakis, P. Loubaton,
Blind channel and carrier frequency oFset estimation
using periodic modulation precoders, IEEE Trans. Signal
Process. 48 (2000) 2389–2405.

[39] O. Shalvi, E. Weinstein, New criteria for blind
deconvolution of nonminimum phase systems (channels),
IEEE Trans. Inform. Theory 36 (1990) 312–321.

[40] L. Tong, R. Liu, V. Soon, Y. Huang, Indeterminacy and
identi>ability of blind identi>cation, IEEE Trans. Circuits,
Systems 38 (5) (May 1991) 499–509.

[41] L. Tong, S. Perreau, Multichannel blind identi>cation:
from subspace to maximum likelihood methods, Proc.
IEEE 86 (8) (1998) 1951–1968.

[42] L. Tong, G. Xu, T. Kailath, Blind identi>cation and
equalization base on second-order statistics: a time
domain approach, IEEE Trans. Inform. Theory 40 (1994)
340–349.

[43] J.R. Treichler, B.G. Agee, A new approach to multipath
correction of constant modulus signals, IEEE Trans.

Acoust. Speech, Signal Process. ASSP-31 (1983)
349–372.

[44] J. Tugnait, B. Huang, Multistep linear predictors-based
blind identi>cation and equalization of multiple-input
multiple-output channels, IEEE Trans. Signal Process. 48
(2000) 26–38.

[45] L. Zhang, A. Cichocki, S. Amari, Geometrical structures
of FIR manifold and their application to multichannel
blind deconvolution, in: Proceeding of the International
IEEE Workshop on Neural Networks for Signal
Processing (NNSP’99), Madison, Wisconsin, August
23–25 1999, pp. 303–312.

[46] L. Zhang, A. Cichocki, S. Amari, Multichannel blind
deconvolution of nonminimum phase systems using
information backpropagation, in: Proceedings of the
Fifth International Conference on Neural Information
Processing (ICONIP’99), Perth, Australia, November
16–20 1999, pp. 210–216.

[47] L. Zhang, A. Cichocki, S. Amari, Natural gradient
algorithm for blind separation of overdetermined mixture
with additive noise, IEEE Signal Process. Lett. 6 (11)
(1999) 293–295.


