Semantics-aware BERT for Language Understanding (SemBERT) Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou, Xiang Zhou Shanghai Jiao Tong University & CloudWalk Technology zhangzs@sjtu.edu.cn, will8821@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn

Introduction

Semantics-aware BERT (SemBERT):

- incorporate explicit contextual semantics from pre-trained semantic role labeling
- capable of explicitly absorbing contextual semantics over a BERT backbone
- obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks.

Motivation:

• Pre-trained language models rarely consider incorporating structured semantic information.

Experiments

Datasets: 10 NLU benchmark datasets involving natural language inference, machine reading comprehension, semantic similarity and text classification. **Tasks:** GLUE, SNLI, SQuAD2.0

Baseline: BERT

Method	Classification		Natural Language Inference		ference	Semantic Similarity			Score	
	CoLA	SST-2	Ν	INLI	QNLI	RTE	MRPC	QQP	STS-B	-
	(mc)	(acc)	m/n	nm(acc)	(acc)	(acc)	(F1)	(F1)	(pc)	-
		Le	aderb	oard (Se	ptember, 2	2019)				
ALBERT	69.1	97.1	91.	3/91.0	99.2	89.2	93.4	74.2	92.5	89.4
RoBERTa	67.8	96.7	90.	8/90.2	98.9	88.2	92.1	90.2	92.2	88.5
XLNET	67.8	96.8	90.	2/89.8	98.6	86.3	93.0	90.3	91.6	88.4
In literature (April, 2019)										
BiLSTM+ELMo+Attn	36.0	90.4	76.	4/76.1	79.9	56.8	84.9	64.8	75.1	70.5
GPT	45.4	91.3	82.	1/81.4	88.1	56.0	82.3	70.3	82.0	72.8
GPT on STILTs	47.2	93.1	80.	8/80.6	87.2	69.1	87.7	70.1	85.3	76.9
MT-DNN	61.5	95.6	86.	7/86.0	-	75.5	90.0	72.4	88.3	82.2
BERT _{BASE}	52.1	93.5		6/83.4		66.4	88.9	$^{-}\overline{7}1.2^{-}$	87.1	78.3
BERTLARGE	60.5	94.9	86.	7/85.9	92.7	70.1	89.3	72.1	87.6	80.5
			Ои	ır implen	nentation					
SemBERT _{BASE}	57.8	93.5	84.	4/84.0	90.9	69.3	88.2	71.8	87.3	80.9
SemBERT _{LARGE}	62.3	94.6	87.	6/86.3	94.6	84.5	91.2	72.8	87.8	82.9
				G	LUE					
Model			EM	F1	Mod	el			Dev	Tes
#1 BERT + DAE + AoA†			85.9	88.6	In literature					
#2 SG-Net†			85.2	87.9	DRCN (Kim et al. 2018) -					90.
#3 BERT + NGM + SST†			85.2	87.7	SJRC (Zhang et al. 2019) -				91.	
U-Net (Sun et al. 2018)			69.2	72.6	MT-DNN (Liu et al. 2019)† 92.2				2 91.	
RMR + ELMo + Verifier (Hu et al. 2018)			71.7	74.2	Our implementation					
Our implementation					BER	Γ_{BASE}		_	90.8	90 .
BERT _{LARGE}			80.5	83.6		Γ _{LARGE}			91.3	9 1.
SemBERT _{LARGE}			82.4	85.2		BERT_{BASI}	Ξ		91.2	2 91.
SemBERT [*] _{LARGE}			84.8	87.9		BERTLAR			92.3	9 1.
SC		2 0						SNI	Т	

- Deep learning models might not really understand the natural language texts and vulnerably suffer from adversarial attacks.
- NLU tasks share the similar task purpose as sentence contextual semantic analysis.

Paper Link: <u>https://arxiv.org/abs/1909.02209</u> Code Link: <u>https://github.com/cooelf/SemBERT</u>

Method

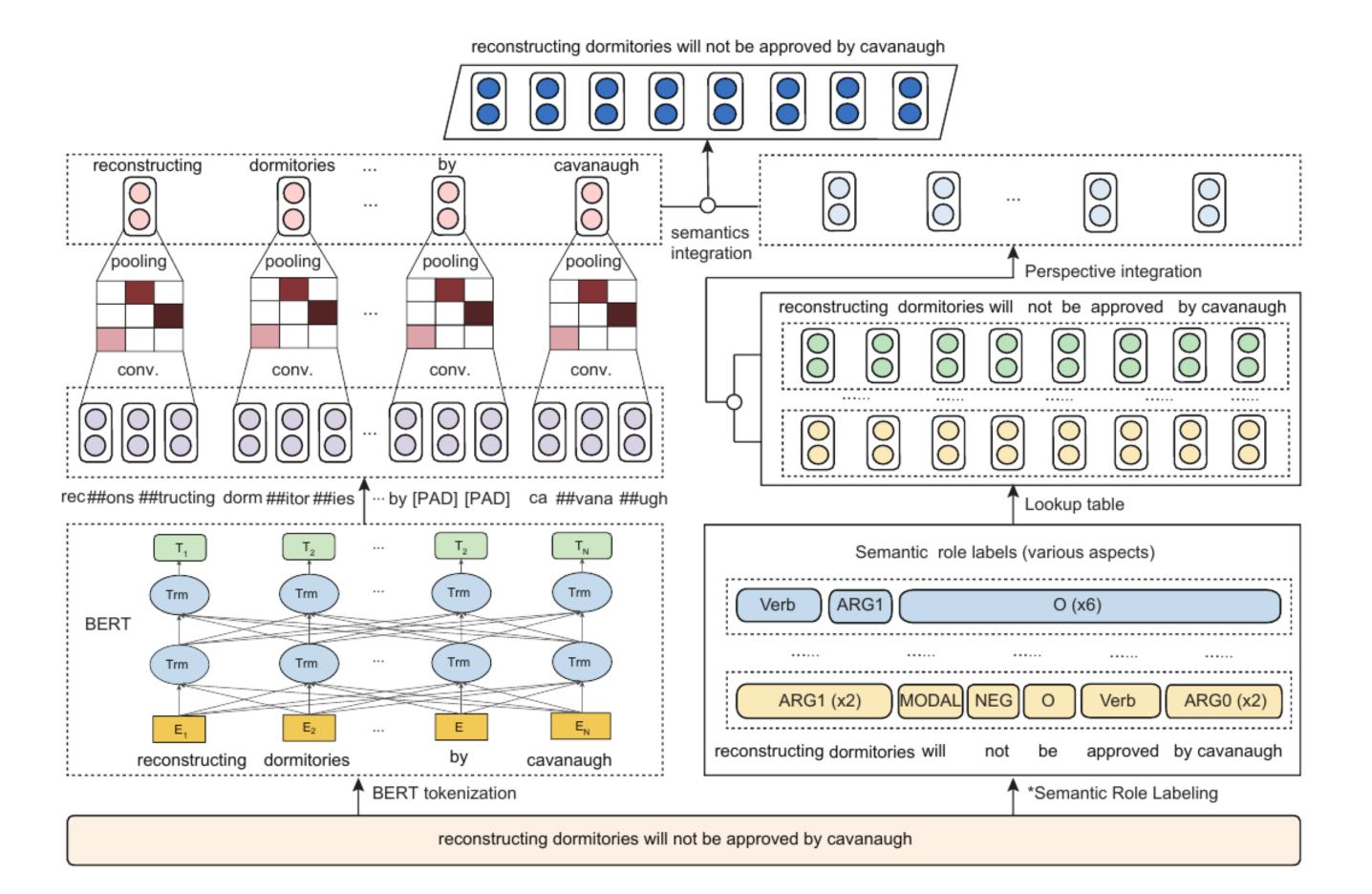
SemBERT comprises three parts:

- Semantic Role Labeling
 - Annotate the input sentences
 - fetch multiple predicate-derived structures of explicit semantics
- Encoding
 - Vectorize and obtain the contextual representations of both the sentence and label sequences.
- Integration

SQuAD2.0

SNLI

- **Results:**
- GLUE: outperforms all the previous state-of-the-art models in literature
- SQuAD2.0: outperforms all the published works and achieves comparable performance with a few unpublished models from the leaderboard
- SNLI: achieves a new state-of-the-art on SNLI benchmark and even outperforms all the ensemble models
- the sentence representations and semantic embedding are concatenated to form the joint representation for downstream tasks



For the text, {reconstructing dormitories will not be approved by cavanaugh}, it will be tokenized to a subword-level sequence, {rec, ##ons, ##tructing, dorm, ##itor, ##ies, will, not, be, approved, by, ca, ##vana, ##ugh}. Meanwhile, there are two kinds of word-level semantic structures,

[ARG1: reconstructing dormitories] [ARGM-MOD: will] [ARGM-NEG: not] be [V: approved] [ARG0: by cavanaugh]

[V: reconstructing] [ARG1: dormitories] will not be approved by cavanaugh

Analysis

Parameter Comparisons

• Without multi-task learning like MT-DNN, our model still achieves remarkable results.

Model	Params	Shared	Rate
	(M)	(M)	
MT-DNN	3,060	340	9.1
BERT on STILTs	335	-	1.0
BERT	335	-	1.0
SemBERT	340	-	1.0

The influence of the max number of predicate-argument structures

• The modest number would be better.

Number	1	2	3	4	5
Accuracy	91.49	91.36	91.57	91.29	91.42

Model Predictions

