Neural Machine Translation with Universal Visual Representation

ICLR 2020, Addis Ababa, Ethiopia

Zhuosheng Zhang A, Kehai Chen A, Rui Wang A, Kehai Chen A, Kehai Chen A, Rui Wang A, Kehai Chen A, Kehai Che

Shanghai Jiao Tong University, China

National Institute of Information and Communications Technology (NICT), Japan

Overview

TL;DR: universal visual representation for neural machine translation (NMT) using retrieved images with similar topics to source sentence, extending image applicability in NMT.

Motivation:

- **<u>1. Annotation Difficulty:</u>**
 - Parallel sentence-image pairs
 - The high cost of annotation

2. Limited Diversity:

- A sentence is paired by only **a single image**.
- Weak in capturing the **diversity** of visual clues.

Solution:

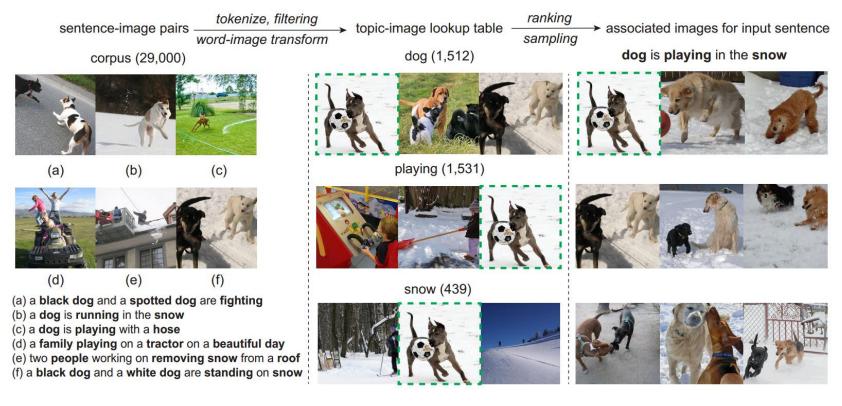
- Apply visual representation to text-only NMT and low-resource NMT
- Propose a universal visual representation (VR) method
 - 1) relying only on image-monolingual instead of image-bilingual annotations
 - 2) breaking the bottleneck of using visual information in NMT

Paper: https://openreview.net/forum?id=Byl8hhNYPS

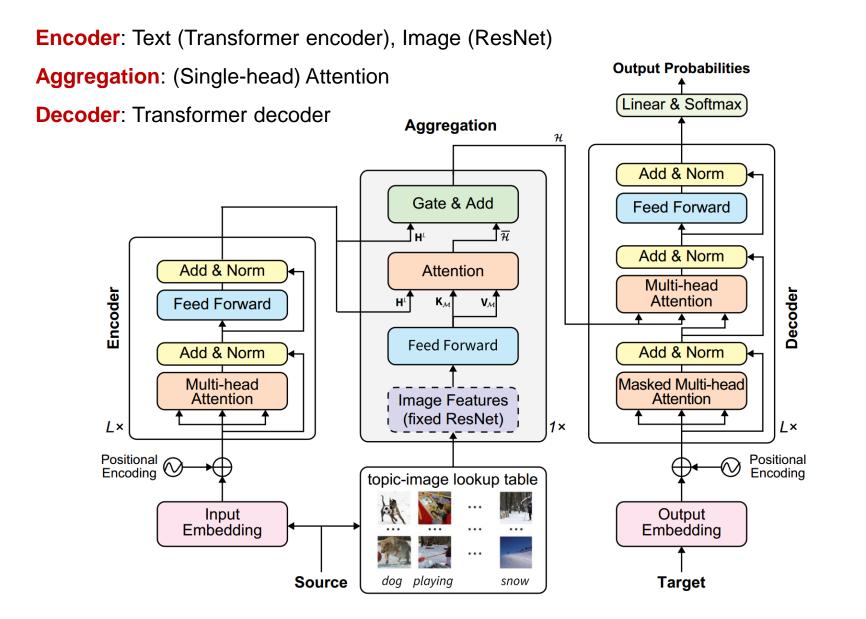
Code: <u>https://github.com/cooelf/UVR-NMT</u>

Universal Visual Retrieval

- Lookup Table: Transform the existing sentence-image pairs into topic-image lookup table from a small-scale multimodel dataset Multi30K
- Image Retrieval: a group of images with similar topic to the source sentence will be retrieved from the topic-image lookup table learned by TF-IDF.



NMT With Universal Visual Representation



Experiments

NMT: WMT'16 EN-RO, WMT'14 EN-DE, WMT'14 EN-DE

System	Architecture	EN-RO		EN-DE		EN-FR				
System		BLEU	#Param	BLEU	#Param	BLEU	#Param			
Existing NMT systems										
Vaswani et al. (2017)	Trans. (base)	N/A	N/A	27.3	N/A	38.1	N/A			
	Trans. (big)	N/A	N/A	28.4	N/A	41.0	N/A			
Lee et al. (2018)	Trans. (base)	32.40		24.57		$\overline{N/A}$	_ N/A			
Our NMT systems										
	Trans. (base)	32.66	61.54M	27.31	63.44M	38.52	63.83M			
This work	+VR	33.78++	63.04M	28.14++	64.94M	39.64++	65.33M			
	Trans. (big)	33.85	207.02M	28.45	210.88M	41.10	211.66M			
	+VR	34.46+	211.02M	29.14++	214.89M	41.83+	215.66M			

MMT: Multi30K

Sustam	Architecture	EN-DE			EN-FR				
System	Architecture	Test2016	Test2017	#Param	Test2016	Test2017	#Param		
Existing NMT systems									
Calixto et al. (2017)	RNN	33.7	N/A	N/A	N/A	N/A	N/A		
Elliott et al. (2017)	RNN	N/A	19.3	N/A	N/A	44.3	N/A		
Elliott & Kádár (2017)	Imagination	36.8	N/A	N/A	N/A	N/A	N/A		
Ive et al. (2019)	Trans. (big)	36.4	N/A	N/A	59.0	N/A	N/A		
	Del	38.0	N/A	N/A	60.1	N/A	N/A		
Our MMT systems									
This work	MMT. (base)	35.09	27.10	50.72M	57.40	48.02	50.65M		
	MMT. (big)	35.60	28.02	190.58M	57.87	49.63	190.43M		
	Trans. (base)	35.59	26.31	49.15M	57.88	48.55	49.07M		
	+VR	35.72	26.87	50.72M	58.32	48.69	50.65M		
	Trans. (big)	36.86	27.62	186.38M	56.97	48.17	186.23M		
	+VR	36.94	28.63	190.58M	57.53	48.46	190.43M		

Ablations of Hyper-parameters

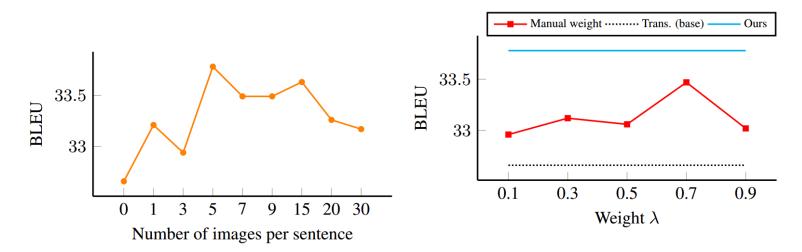


Figure 4: Influence of the number of images on the BLEU score. Figure 5: Quantitative study of the gating weight λ .

- A modest number of pairs would be beneficial.
- The degree of dependency for image information varies for each source sentence, indicating the necessity of **automatically learning** the gating weights.

Ablations of Encoders

We replace the ResNet50 feature extractor with

1)ResNet101;

2)ResNet152;

3)Caption: that adopts a standard image captioning model (Xu et al., 2015b);

4)Shuffle: shuffle the image features but keep the lookup table;

5)Random Init: randomly initialize the image embedding but keep the lookup table;

6)Random Mapping: randomly retrieve unrelated images.

Method	VR	Res101	Res152	Caption	Shuffle	Random Init	Random Mapping
BLEU	33.78	33.63	33.87	33.58	33.53	33.28	32.14

• More effective contextualized representation from the visual clue combination instead of just the single image enhancement for encoding each individual sentence or word.

Discussion

Why does it work:

- the content connection of the sentence and images;
- the topic-aware co-occurrence of similar images and sentences.
 - the sentences with similar meanings would be likely to pair with similar even the same images.

A girl in a purple tutu dances in the yard. A little girl is walking over a path of numbers.

A girl jumping rope on a sidewalk near a parking garage. A young girl washes an automobile.

Highlights:

- Universal: potential for general text-only tasks, e.g., using the images as topic guidance.
- Diverse: diverse information entailed in the grouped images after retrieval.

Lookup Table

Topic-image Lookup Table

man (6,675)

woman (3,484)

food (342)

Retrieved Images

a man walks by a silver vehicle

an elderly woman pan frying food in a kitchen

small boy carries a soccer ball on a field

Thanks! Q&A