

Effective Character-augmented Word Embedding for Machine Reading Comprehension

Zhuosheng Zhang^{1,2}, Yafang Huang^{1,2}, Pengfei Zhu^{1,2,3}, Hai Zhao^{1,2,*}

¹Department of Computer Science and Engineering, Shanghai Jiao Tong University ²Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China ³School of Computer Science and Software Engineering, East China Normal University, China {zhangzs, huangyafang}@sjtu.edu.cn, 10152510190@stu.ecnu.edu.cn zhaohai@cs.sjtu.edu.cn

The cloze-style task can be described as a triple $\langle D; Q; A \rangle$, where D is a document (context), Q is a query over the contents of D, in which a word or phrase is replaced with a placeholder, and A is the answer to Q.

Document	1 早上,青蛙、小白兔、刺猬和大蚂蚁高高兴兴过桥去赶	1 In the morning, the frog, the little white rabbit, the hedgehog and the big ant happily crossed the		
	集。	bridge for the market.		
	2 不料,中午下了一场大暴雨,哗啦啦的河水把桥冲走了。	2 Unexpectedly, a heavy rain fell at noon, and the water swept away the bridge.		
	3 天快黑了,小白兔、刺猬和大蚂蚁都不会游泳。	3 It was going dark. The little white rabbit, hedgehog and big ant cannot swim.		
	4 过不了河,急得哭了。	4 Unable to cross the river, they were about to cry.		
	5 这时,青蛙想,我可不能把朋友丢下,自己过河回家呀。	5 At that time, the frog made his mind that he could not leave his friend behind and went home alone.		
	6他一面劝大家不要着急,一面动脑筋。	6 Letting his friends take it easy, he thought and thought.		
	7 嗬,有了!	7 Well, there you go!		
	8他说:"我有个朋女住在这儿,我去找他想想办法。	8 He said, "I have a friend who lives here, and I'll go and find him for help."		
	9青蛙找到了他的朋友,请求他说:"大家过不了河	9 The frog found his friend and told him, "We cannot get across the river. Please give us a		
	了,请帮个忙吧!	hand!"		
	10 鼹鼠说:"可以,请把大家领到我家里来吧。	10 The mole said, "That's fine, please bring them to my house."		
	11 鼹鼠把大家带到一个洞口,打开了电筒,让小白兔、刺	11 The mole took everyone to a hole, turned on the flashlight and asked the little white rabbit, the		
	猬、大蚂蚁和青蛙跟着他,"大家别害怕,一直朝前走。	hedgehog, the big ant and the frog to follow him, saying, "Don't be afraid, just go ahead."		
	12 走呀走呀, 只听见上面"哗啦哗啦"的声音, 象唱歌。	12 They walked along, hearing the "walla-walla" sound, just like a song.		
	13 走着走着,突然,大家看见了天空,天上的月亮真亮呀。	13 All of a sudden, everyone saw the sky, and the moon was really bright.		
	14 小白兔回头一瞧,高兴极了:"哈,咱们过了河啦!	14 The little white rabbit looked back and rejoiced: "ha, the river crossed!".		
	15 唷,真了不起。 15 "Oh, really great."			
	16原来,鼹鼠在河底挖了一条很长的地道,从这头到那头。	16 Originally, the mole dug a very long tunnel under the river, from one end to the other.		
	17 青蛙、小白兔、刺猬和大蚂蚁是多么感激鼹鼠啊!	17 How grateful the frog, the little white rabbit, the hedgehog and the big ant felt to the mole!		
	18 第二天,青蛙、小白兔、刺猬和大蚂蚁带来很多很多同	18 The next day, the frog, the little white rabbit, the hedgehog, and the big ant with a lot of his fellows,		
	伴, 杠着木头, 抬着石头, 要求鼹鼠让他们来把地道挖大	took woods and stones. They asked the mole to dig tunnels bigger, and build a great bridge under the		
	些,修成河底大"桥"。	river.		
	19 不久,他们就把鼹鼠家的地道,挖成了河底的一条大隧	19 It was not long before they dug a big tunnel under the river, and they could pass the river from the		
	道,大家可以从河底过何,还能通车,真有劲哩!	bottom of the river, and it could be open to traffic. It is amazing!		
Query	青蛙找到了他的朋友,请求他说:"大家过不了河	The frog found his friend and told him, "We cannot get across the river. Please give us a		
	了,请帮个忙吧!"	hand!"		
Answer	鼹 鼠	the mole		

Reading comprehension systems usually suffer from out-of-vocabulary (**OOV**) word issues, especially when the ground-truth answers contain rare words or name entities, which are hardly fully recorded in the vocabulary.

There are over **13,000** characters in Chinese while there are only **26** letters in English without regard to punctuation marks.

If a reading comprehension system can not effectively manage the OOV issues, the performance will not be semantically accurate for the task.

Two levels of embedding

Word-level Embedding 青蛙|和|小白兔|去|赶集 Character-level Embedding 青|蛙|和|小|白|兔|去|赶|集

- Intuitively, word-level representation is good at catching global context and dependency relationships between words. However, rare words are often expressed poorly due to data sparsity.
- Character embedding are more expressive to model sub-word morphologies, which is beneficial to deal with rare words. However, quite a lot of Chinese words, like "吉(auspicious)普(ordinary)" (jeep) are not semantically character-level compositional at all.
- Using extra features, such as named entity recognition (NER) and part-ofspeech (POS) tagging will result in tremendous computational complexity.

Word representation module

Framework

• Given the triple $\langle D; Q; A \rangle$, the system will be built in the following steps.

Trainable Embedding

Motivation: insufficient training for UNK words	
Technique:	
• Sort the distionary according to the word	

- Sort the dictionary according to the word frequency from high to low.
- A frequency filter ratio γ is set to filter out the low-frequency words (rare words) from the lookup table.
- For example, if γ is 0.9, then the last 10% low-frequency words will be mapped into UNK words.
- Thus, *AE*(*w*) can be rewritten as

 $AE(w) = \begin{cases} WE(w) \diamond SE(w) & \text{if } w \in H \\ UNK \diamond SE(w) & \text{otherwise} \end{cases}$

Fine-grained Embedding

- Word embedding WE(w) is indexed from word lookup table
- Characters of each word are successively fed to the forward GRU and backward GRU. The output for each input is the concatenation of the two vectors from both directions: $\overleftarrow{h_t} = \overrightarrow{h_t} \parallel \overleftarrow{h_t}$

 The augmented embedding (AE) is given by concatenating the word embedding and character-level representation. AE(w) = W E(w) || CE(w)

Attention Module

• Contextual representations of the document and query

 $H_q = \operatorname{BiGRU}(Q)$ $H_d = \operatorname{BiGRU}(D)$

• Gated-attention

$$\alpha_{i} = softmax(H_{q}^{\top}d_{i})$$
$$\beta_{i} = Q\alpha_{i}$$
$$x_{i} = d_{i} \odot \beta_{i}$$

• Probability of each candidate word as being the answer

$$p = softmax((q_t)^{\top} H_D)$$
$$P(w|D,Q) \propto \sum_{i \in I(w,D)} p_i$$

• The predicted answer

$$A^* = \mathrm{argmax}_{w \in C} P(w|D,Q)$$

Dataset and hyper-parameters

	CMRC-2017			PD			CFT
	Train	Valid	Test	Train	Valid	Test	human
# Query	354,295	2,000	3,000	870,710	3,000	3,000	1,953
Max # words in docs	486	481	484	618	536	634	414
Max # words in query	184	72	106	502	153	265	92
Avg # words in docs	324	321	307	379	425	410	153
Avg # words in query	27	19	23	38	38	41	20
# Vocabulary	94,352	21,821	38,704	248,160	536	634	414

- Three Chinese Machine Reading Comprehension datasets, namely CMRC-2017, People's Daily (PD) and Children Fairy Tales (CFT).
- We also use the Children's Book Test (CBT) dataset (Hill et al., 2015) to test the generalization ability in multi-lingual case.

CMRC-2017 Leaderboard

填空类问题 (Cloze-style Question)

最终排名	参赛单位	单/多系统	开发集准确率	测试集准确率↓
8 1	6ESTATES PTE LTD	多系统	81.85%	81.90%
7 2	上海交通大学仿脑计算与机器智能研究中心自然语言组 Shanghai Jiao Tong University (SJTU BCMI-NLP)	多系统	78.35%	80.67%
83	南京云思创智信息科技有限公司	多系统	79.20%	80.27%

用户提问类问题 (User-Query Question)

最终排名	参赛单位	单/多系统	开发集准确率	测试集准确率↓
8 1	华东师范大学 East China Normal University (ECNU)	多系统	90.45%	69.53%
82	山西大学三队 Shanxi University (SXU-3)	单系统	47.80%	49.07%
83	郑州大学 Zhengzhou University (ZZU)	单系统	31.10%	32.53%

最佳单系统 (Best Single System)

最终排名	参赛单位	单/多系统	开发集准确率	测试集准确率↓
8 1	上海交通大学仿脑计算与机器智能研究中心自然语言组 Shanghai Jiao Tong University (SJTU BCMI-NLP)	单系统	76.15%	77.73%

Main results

- Our CAW Reader (*mul*) outperforms all other single models
- *mul* might be more informative than *concat* and *sum* operations

Model	CMRC-2017			
WIOUCI	Valid	Test		
Random Guess †	1.65	1.67		
Top Frequency †	14.85	14.07		
AS Reader †	69.75	71.23		
GA Reader	72.90	74.10		
SJTU BCMI-NLP †	76.15	77.73		
6ESTATES PTE LTD †	75.85	74.73		
Xinktech †	77.15	77.53		
Ludong University †	74.75	75.07		
ECNU †	77.95	77.40		
WHU †	78.20	76.53		
CAW Reader (WE only)	69.70	70.13		
CAW Reader (concat)	71.55	72.03		
CAW Reader (sum)	72.90	74.07		
CAW Reader (mul)	77.95	78.50		

Model	Stratagy	PD		CFT		-
Model	Strategy	Valid	Test	Test-human		
AS Reader	-	64.1	67.2	33	-	
GA Reader	-	64.1	65.2	35	5.7	
CAS Reader	-	65.2	68.1	35	5.0	
	concat	64.2	65.3	37.2		-
CAW Reader	sum	65.0	68.1	38.7		
	mul	69.4	70.5	39.7		_
			CDT		CDT	
Model			CBI			-CN
TT !			Valid	Test	Valid	Test
Human ‡			-	81.6	-	81.6
LSTMs ‡			51.2	41.8	62.6	56.0
MemNets ‡			70.4	66.6	64.2	63.0
AS Reader ‡			73.8	68.6	68.8	63.4
Iterative Attentive Reader ‡			75.2	68.2	72.1	69.2
EpiReader ‡			75.3	69.7	71.5	67.4
AoA Reader ‡			77.8	72.0	72.2	69.4
NSE ‡			78.2	73.2	74.3	71.9
GA Reader ‡			74.9	69.0	69.0	63.9
GA word char concat ‡			76.8	72.5	73.1	69.6
GA scalar gate ‡			78.1	72.6	72.4	69.1
GA fine-grained gate ‡			78.9	74.6	72.3	70.8
FG Reader ‡			79.1	75.0	75.3	72.0
CAW Reader			78.4	74.9	74.8	71.5

Influence of the short list

- When $\gamma = 0.9$, the models could obtain the best performance.
- It is not optimal to build the vocabulary among the whole training set.
- We can reduce the frequency filter ratio properly to promote the accuracy.

Conclusion

- Multiple embedding enhancement strategies
- Effective embedding architecture by attending character representations to word embedding with a short list to enhance the simple baseline for the reading comprehension task.
- The intensified embeddings can help our model achieve state-of the-art performance on multiple large-scale benchmark datasets.
- Different from most existing works that focus on either complex attention architectures or manual features, our model is more simple but effective.

Thanks! Q&A