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Abstract
This paper presents a sequence to sequence (seq2seq) dependency parser by directly predicting
the relative position of head for each given word, which therefore results in a truly end-to-end
seq2seq dependency parser for the first time. Enjoying the advantage of seq2seq modeling, we
enrich a series of embedding enhancement, including firstly introduced subword and node2vec
augmentation. Meanwhile, we propose a beam search decoder with tree constraint and sub-
root decomposition over the sequence to furthermore enhance our seq2seq parser. Our parser is
evaluated on benchmark treebanks, being on par with the state-of-the-art parsers by achieving
94.11% UAS on PTB and 88.78% UAS on CTB, respectively.

1 Introduction

Dependency parsing for syntactic structure can be unstrictly put into two categories in terms of searching
strategies over parsing trees, graph-based and transition-based. The previous work (Eisner, 1996; Mc-
donald et al., 2005) searched the entire tree space but limited to local features with higher computational
costs, while (Nivre, 2003) could adopt rich features but subjected to limited searching space. Besides,
ensemble or hybrid methods on both the basic models have been well studied (Nivre and Mcdonald,
2008; Zhang and Clark, 2008). Most traditional dependency parsers rely heavily on feature engineering,
especially for graph-based parser, which suffers from poor efficiency and generalization ability. Re-
cent tendency for dependency parsing is adopting neural networks due to their significant success in a
wide range of applications. Specially, leveraging sequence-to-sequence (seq2seq) model for dependency
parsing started to appear (Wiseman and Rush, 2016; Zhang et al., 2017b).

The recently proposed seq2seq parsers focus on predicting a transition sequence to build a depen-
dency tree, which makes them actually fall back into the transition-based model constrained by the
adopted transition parsing algorithm. In this paper, we propose a seq2seq parser with a novel parsing
structure encoding independent of transition parsing operation sequence. The proposed parser first di-
rectly generates the head position for each word in an input sentence using a seq2seq model, and then
employs a BiLSTM-CRF model (Huang et al., 2015) to predict the relation label for each determined
dependency arc. Since the greatest challenge of the applying seq2seq model in dependency parsing is
to guarantee the tree structure of the outputs, a beam search with tree constraint method is proposed to
enforce a well-formed dependency tree in the decoder side. Besides, dependency parsing has to well
handle long-distance parsing with corresponding to too long sequence learning bias in seq2seq models,
we accordingly introduce a sub-root based sequence decomposition to effectively alleviate this issue.

Our proposed parser is evaluated on benchmark treebanks on both English and Chinese, which demon-
strates that our model achieves the state-of-the-art scores among seq2seq parsing, and yields competitive
performance with traditional transition- and graph-based parsers. In summary, this paper provides the
following contributions:
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•We propose a seq2seq model which does not rely on any transition sequence by directly predicting
the head position for each word in the sentence, unlike all previous work that first predicted a transition
sequence and then built dependency tree using a known transition parsing algorithm.

• We especially design a beam search algorithm in the decoder side, which always guarantees the
output to be a well-formed dependency tree.

• To deal with the long-distance dependency, we introduce sub-root decomposition and it also allevi-
ates the problem caused by too long seq2seq learning in the meantime.

2 Related Work

Early researches (Ma and Zhao, 2012; Martins et al., 2013) achieved comparable results with high-order
feature. With the impressive success of deep neural networks in a wide range of NLP tasks (Cai and
Zhao, 2017; Qin et al., 2017; He et al., 2018; Cai et al., 2018; Zhang et al., 2018; Bai and Zhao, 2018;
Huang et al., 2018), neural models have been successfully applied to various dependency parsers (Li
et al., 2018; Wang et al., 2017; Zhang et al., 2016). Dyer et al. (2015) introduced the stack LSTM to
promote the transition-based parsing. Kiperwasser and Goldberg (2016) incorporated the bidirectional
Long Short-Term Memory (BiLSTM) into both graph- and transition-based parsers. Andor et al. (2016)
proposed globally normalized networks and achieved the best results of transition-based parsing, while
the state-of-the-art result was reported in Dozat and Manning (2016), which proposed a deep biaffine
model for graph-based parser.

Though previous neural parsers have achieved such inspiring progresses, the majority of them heav-
ily rely on the primitive parsing framework. Usually, those neural parsers build a network for feature
extracting and use the neural features in place of handcrafted ones to predict some discrete actions in a
traditional parsing algorithm. Until recently, few work (Wiseman and Rush, 2016; Zhang et al., 2017b)
considered the seq2seq model, resulting in an end-to-end parser. However, those seq2seq parsers focus
on predicting the transition sequences and thus actually need some kinds of complicated post-processing
to build well-formed dependency trees, which make them fall back to a transition-based parser with a
seq2seq transition predictor.

In this work, we attempt to build a true seq2seq parser without transition parsing algorithm for post-
processing. The proposed parser is different from previous proposed seq2seq parser in the way that it
directly predicts the head position instead of the transition. Though both our parser and Zhang et al.
(2017a) make direct head prediction during parsing, our parser essentially differs from their parser in
two aspects. Firstly, their parser runs standard graph-based maximum spanning tree (MST) algorithm
to guarantee the tree structure, and thus called head selection in their parser serves for the purpose of
speeding up the graph-based parsing, while ours introduces a beam search with tree constraint only in
the decoder side to enforce a well-formed tree and thus gets rid of relying on specific parsing algorithm.
Secondly, each time the head selection parser selects a head, it relies on referring to each pair of words
in the sentence. While our parser performs a fully generative decoding in one pass by using an attention
layer to keep around the context of each word.

Another line of studies related to this work focus on beam search, which have attracted much interest
and have been adopted to improve the performance of greedy parsers. Beam search commonly adopts
approximate strategy for computational tractability, which aims at including more sophisticated features
within reasonable cost. Zhang and Clark (2008) proposed a beam search based parser applied to integrate
graph-based and transition-based parsers. Most transition-based neural models (Weiss et al., 2015; Zhou
et al., 2015; Andor et al., 2016) incorporated the structured perceptron with beam search decoding,
resulting in substantial improvement of accuracy. Additionally, beam search has been also incorporated
in the seq2seq framework (Wiseman and Rush, 2016).

Following the previous works, we also adopt a beam search in our decoder. However, since our parser
aims at predicting a structure instead of sequence, we especially design a beam search algorithm with
several searching constraints, which enforces the tree structure of the outputs.
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Figure 1: The framework of the proposed seq2seq model.

3 Seq2seq Parser

In this study, our parser is built upon a seq2seq model (Sutskever et al., 2014), which encodes the input
sentence forward and backward, and predicts the head position for each word in the sentence. Our model
contains three main components: (1) an encoder that processes the input sentence and maps it into some
hidden states that lie in a low dimensional vector space Rh, (2) a decoder that incorporates the hidden
states and the previous prediction to generate head position of the current word, and (3) an attention layer
that encodes the context for each focused word. Figure 1 illustrates our model.

Recurrent neural networks (RNNs) (Elman, 1990) is commonly used to build block for seq2seq model.
Specifically, our model employs the Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) variant of RNN, which uses numbers of gates to address the problem of vanishing or exploding
gradient when trained with back-propagation through time. A standard LSTM unit consists of an input
gate it, a forget gate ft, an output gate ot, a memory cell ct and a hidden state ht, where the subscript t
denotes the time step.

3.1 Encoder

The encoder of our parser is a BiLSTM, which processes an input sequence in both directions by incor-
porating a stack of two distinct LSTMs.

Given an input sentence X = {w1, · · · , wL}, the i-th element wi is encoded by first feeding its
embedding representation ei in to two distinguish LSTMs: the forward LSTM and the backward LSTM,
to obtain two hidden state vectors: hfi and hbi respectively, and then concatenating the two vectors as
hi = [hfi ;hbi ].

3.1.1 Source Representation
Given a vocabulary W , each individual word wi ∈W is mapped into a real-valued vector (word embed-
ding) w ∈ Rm wherem is the dimension. We employ the GloVe (Pennington et al., 2014) and Node2Vec
(Grover and Leskovec, 2016) to generate the pre-trained word embedding, obtaining two distinct embed-
ding for each word.

It is worth noting that Node2Vec is an embedding method that is capable of encoding the topological
information of inside structure. To further incorporate the structural information of dependency tree, we
perform a Node2Vec pre-training on the training set.

Besides, our model adopts subword which is obtained though BPE segmentation (Sennrich et al.,
2015) broadly used in neural machine translation (NMT), and character augment embedding with Al-
lenNLP toolkit according to (Gardner et al., 2017). A subword dictionary is built by running BPE on the
Wikipedia, which segments each word into several subwords. Each subword in the dictionary is mapped
into a real-valued vector (subword embedding). In our experiments, the subword embedding is randomly
initialized and then trained jointly with other components of the network. To get the representation of the
original word, we use an additional neural network component (Peters et al., 2018) to distill the character
and subword embedding for representation. Our model also employs the part-of-speech (POS) tag em-
bedding following previous works (Kiperwasser and Goldberg, 2016; Dozat and Manning, 2016). The
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POS embedding is randomly initialized and jointly trained with other model parameters too.
The adopted word representation of our model is the concatenation of all above-mentioned embed-

dings: e = [eg; en; es; ec; ep], where eg is the GloVe embedding, en is the Node2Vec embedding, es is
the subword embedding, ec is the character embedding and ep is the POS tag embedding.

3.2 Decoder

In our model, an LSTM decoder predicts the head position for each word in the input sentence. Given a
word wi, the probability of each word in the vocabulary to be its head is given by:

p(ŷi|ŷ1, · · · , ŷi−1) = LSTMD(ŷi−1, hi), (1)

where ŷi−1 is the last output of the LSTM decoder, hi is the hidden state of current word. The joint
probability of the final output is then a product of conditional probability of each predicted head:

P (ŷ) =
M∏
i=0

p(ŷi|{ŷ1, ŷ2, · · · , ŷi−1})

3.2.1 Target representation

In NMT context, the decoder output is sampled from the entire vocabulary using the probability com-
puted by Eq.(1). However, in dependency parsing situation, the candidate set of the head words is subject
to the words in the sentence. Thus, the predicted head would likely fall outside the input sentence when
decoding with a full vocabulary upon corpus. To keep the generation of head within bounds, our model
predicts the relative position instead of word form when assigning a head for each word. In the training
process, we convert each head into a position representation, encoding relative distance between word
and its head. When working, the parser picks a head for each word by predicting the relative position of
the head. Our experiments show that the conversion is effective in bounding the output of our seq2seq
parser.

Given a word wi and its head word wj , the relative position representation of wj is obtained by:

Ri,j =

{
Lj−i if i < j,
Ri−j if i > j.

Figure 2 illustrates our relative position tag encoding for the output dependency structures.

3.3 Attention Mechanism

As usual, we employ an attention layer (Luong et al., 2015) to encode the context for each word. The
context vector cj at the j-step of the decoding process is calculated as the weighted sum of the hidden
states of the input sequence:

cj =

N∑
i=1

αj(i)hi.

The attention weight αj(i) between the i-th encoder hidden state hi and the j-th decoder hidden state
hj is computed by a softmax function:

αj(i) =
vT tanh(W (a)[hi;hj ])∑N
k=1 v

T tanh(W (a)[hk;hj ])
,

where [hi;hj ] and [hk;hj ] denote the vector concatenation of the rows, W (a) and v are learnable param-
eters.
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Figure 2: Illustration of target representation and sub-root segmentation for sentence That has outraged
some fans . from PTB. The sequences below the word are the relative position tags which demonstrate
the corresponding distance and direction (R: right, L: left) between the node and its syntactic head. The
word outraged is defined as sub-root.

4 Sub-root Decomposition

It is well known that correctly recovering the long-distance dependency is the greatest challenge in de-
pendency parsing. Even incorporating the BiLSTM encoder and the attention layer, the primitive seq2seq
parser still performs poorly when encountering long sequences, as the long-distance dependencies heav-
ily prevent the parser from building a correct tree.

To address the long-distance dependency problem and alleviate error propagation, we propose sub-
root decomposition over the input parse tree. Such decomposition will cause the original dependency
tree accordingly segmented into two or more subtrees, and the original input sentence segmented into
shorter pieces. We define the notation sub-root as the direct syntactic children of the ROOT node. When
working on ‘nearly’ projective dependency parsing, such decomposition would not break dependency arc
in most situations.

Formally, given an input sentence sentence with length L: X = {w1, w2, · · · , wL}, for the i-th word
wi, we represent its head as wi.head. Besides, we define a decomposition threshold β to determine
whether an input sentence should be segmented into shorter ones. Only if the sentence length L is larger
than the threshold β, we perform a decomposition on the sentence.

To perform the sub-root decomposition, we should first recognize the sub-root for a given sentence.
We regard the sub-root recognition as a sequence tagging task, and employ a BiLSTM-CRF model which
consists of 4-layer Bi-LSTM and a CRF layer to tag the sub-roots of a sentence. The output of this model
is a binary indicator that distinguishes the sub-root nodes from others:

I(wi) =

{
0 if wi.head 6= ROOT,
1 if wi.head = ROOT.

After recognizing the sub-root nodes, we decompose a sentence into several parts that come from
collecting all nodes rooted by every sub-root, and perform the parsing on the sub-sentence. For example,
given a sentence X = {w1, w2, · · · , wL} with wk as its sub-root, the sentence is decomposed into two
sub-sentences: X1 = {w1, w2, · · · , wk} and X2 = {wk, wk+1, · · · , wL}. Then we use the sentences X1

and X2 which are both rooted at wk for training and parsing. It is worth noting that we use the gold sub-
root to decompose a sentence in training, and predict the sub-roots for sentences in testing. Besides, the
merge operation is necessary after decoding. The merge operation simply concatenates the sub-sentence
together and set the head of sub-root node as ROOT.
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Algorithm 1 Beam search with tree constraint
1: /* S decode scores; ts time step; L sentence length; D target vocabulary; Γ decode history;*/
2: procedure step(S, ts, L,D,Γ)
3: Init empty valid target set V and visible history set Γv
4: if ts > L then
5: S[D\{EOS}]← −∞
6: else
7: /* filter valid target by L and ts*/
8: V ← valid target(D)
9: Γv ← Γ[ts− δ : ts− 1]

10: for node ∈ D do
11: if node /∈ V then
12: S[node]← −∞
13: else
14: if make circle(Γv, node) then
15: S[node]← S[node] ∗ αc
16: if non projective(Γv, node) then
17: S[node]← S[node] ∗ αp
18: S ← topK(S)
19: Γ← Γ +D[S]
20: return S

4.1 Beam Search with Tree Constraint
Beam search is a popular approach to enlarge searching space in transition-based dependency parsing.
The typical beam search algorithm keeps a fixed number (say K) of candidate states in the beam accord-
ing to their scores (or probabilities). Each time a searching is performed, the algorithm explores all the
possible next states for each states in the beam, and keeps the top-K states in beam again.

In inference stage, the beam B of time step ts is updated based on K states (hypotheses) of the last
beam:

Bts = topK[Y k
ts−1, y

k,n
ts ],

where 1 ≤ k ≤ K and 1 ≤ n ≤ Nk. Nk is the number of branches of the k-th hypotheses in the last
step. Y k

ts−1 represents the historical output and yts indicates the candidate target in the ts-th step. For
each new exploring state, its score is computed by,

S(Y k
ts−1, y

k,n
ts |x) = S(Y k

ts−1|x) + log p(yk,nts |x, Y k
ts−1).

Since our model directly predicts the head position for each word, its output might sometime violate
the constraints of dependency tree structure. To enforce the model output to be a well-formed dependency
tree, we introduce several constraints into the primitive beam search algorithm, resulting in the beam
search with tree constraint.

The constraints that ensure a projective dependency tree are listed as follows:
• Single headed: A node should be assigned one and only one head. For our seq2seq parser, this also

implies that the output sequence length should be exactly same as the input sequence length.
• Acyclic: In the decoding process, a newly generated head should not introduce a cycle in the depen-

dency path.
• Projective: For the projective dependency parsing, the newly generated head should not cross the

arc built by previous prediction (99.9% of PTB-SD, 100% of CTB on the training dataset are projective).
To enforce the above constraints, we introduce a weighted function fc(·) that computes an additional

weight for each candidate state to indicate whether the constraints are satisfied.

S(Y k
ts−1,y

k,n
t |x) = S(Y k

ts−1|x) + log(p(yk,nt |x, Y k
ts−1) · fc(y

k,n
ts |Y k

ts−1)),
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fc(y
k,n
ts |·) =


0, ts > L, yts 6= EOS,
αc, cycle(yts−δ, · · · , yts),
αp, nproj(yts−δ, · · · , yts),
1, others.

where EOS is an additional symbol indicating the end of the predicted sequence, L is the length of the
input sequence, cycle(·) is the cycle detected function which returns True if there exists a cycle on the
input path, nproj(·) is an indicator of whether the resulting tree is projective. Note that for the sake
of efficiency, we detect the violations of the Acyclic and Projective constraints by looking back a fixed
number δ of historical predictions instead of enforcing them on the whole sequence. Thus, both cycle(·)
and nproj(·) take a subsequence yts−δ, · · · , yts instead of the whole sentence as input. By loosing the
global constraints to local ones, the incorrect historical decisions that fall outside a window with size δ
can never disturb a current prediction. In our experiments, δ is set to 8, both αc and αp are set to 0.8.
Algorithm 1 shows the detail of the proposed beam search decoding with tree constraint.

5 Experiments

The proposed seq2seq parser is evaluated on the Penn Treebank (PTB) and the Chinese Treebank (CTB
5.1) with the unlabled attachment score (UAS) and the labeled attachment score (LAS) metrics (exclud-
ing punctuation). Follow the usual way processing the PTB and CTB:

For PTB, applying Stanford basic dependencies (SD) representation (De Marneffe et al., 2006), using
sections 2-21 for training, section 22 for development and section 23 for testing as same as the standard
splitting and tagging POS tag with the Stanford tagger (Toutanova et al., 2003).

For CTB, adopting Penn2Malt tool for conversion, splitting the dataset by sections 001-815, 1001-
1136 for training, sections 886-931, 1148-1151 for development, and sections 816-885, 1137-1147 for
testing as (Zhang and Clark, 2008) and using the golden segmentation and POS tags as (Chen and Man-
ning, 2014).

5.1 Setup

In the experiments, our seq2seq parser implemented based on the OpenNMT-py project (Klein et al.,
2017), in which employs a 4-layer Bi-LSTM as encoder and a 2-layer LSTM as decoder. The parameters
are randomly initialized and optimized using the Adam algorithm with mini-batch size of 64. The initial
learning rate is set to 0.001 (with β1 = 0.9, β2 = 0.999), and decays by 0.5 every epoch after running
20 epochs. In training phase, we adopt a dropout rate of 0.3. The size of the vocabulary in the target side
is limited to 100 by setting the maximum relative position to 50, namely, the target side vocabulary is:

Vt = {L1, L2, · · · , L50, R1, R2, · · · , R50}

In our experiments, the beam size is set to 5.
The representation of each input token is the concatenation of GloVe embedding, node2vec embedding

and subword embedding. The GloVe embedding is pre-trained on Wikipedia 2014 and Gigaword 5 with
100 dimension (6B tokens). The node2vec embedding is pre-trained on the training set and the dimension
is 128. It is trained with random walks in the syntactic graph (in order to make all the dependency tree
form the graph, we add a dummy ROOT node). The walk length of node2vec is set to 30, per node
visit(walk) times is 200 and the skip-gram window size is 10. To obtain subword segmentation for each
word, we train the BPE model on the English and Chinese Wikipedia dataset respectively with number
of merge operations set to 10K.

The sub-root tagging model consists of a 4-layer Bi-LSTM and a 1-layer CRF, taking the word and
POS tag as inputs. Besides, after getting a dependency tree of the input sentence, we employ another
BiLSTM-CRF model to predict the dependency relation of each arc. The predictor takes the word em-
bedding, POS embeddings of head and dependent respectively as input, and performs a multiple labels
tagging.

The code is available at https://github.com/bcmi220/seq2seq_parser.
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5.2 Results

Table 1 shows comparison of our seq2seq parser with previously published parsers on PTB-SD and
CTB. Unlike the transition-based parsers listed in Transition-NN block and the graph-based listed in the
Graph-NN block, our model pursues a more simple way without any kind of transition- or graph-based
algorithm. Our model outperforms most parsers that use either transition- or graph-based algorithm.
Our model is competitive to the transition-based model of Andor et al. (2016) and slightly lower than
the one of Zhu et al. (2015) which introduced a recursive convolutional neural network to encode the
dependency tree and re-ranked the k-best trees. It is worth noting that Dozat and Manning (2016) used
deep biaffine attention in the graph model (Kiperwasser and Goldberg, 2016), achieving the best results
among traditional graph and transition parsing.

The parsers (Wiseman and Rush, 2016; Zhang et al., 2017b) are also seq2seq models, but they used
transition sequence as target sequence encoding. The comparison shows our parser achieves state-of-
the-art performance among seq2seq models. Kuncoro et al. (2016) also reported parsing result of 95.8%
UAS on PTB. Since its result is converted from phrase-structure parsing and beyonds our focus, we
excluded it from the table.

PTB-YM (%) PTB-LTH (%) PTB-SD (%) CTB (%)
System Method LAS UAS LAS UAS LAS UAS LAS UAS
Non-NN:
Ma and Zhao (2012) 4th order - 93.4 - - - - - 87.4
Zhang and McDonald (2012) cube pruning - 93.1 - - - - - 86.9

Transition-NN:
Dyer et al. (2015) greedy - - - - 90.9 93.1 85.5 87.1
Kiperwasser and Goldberg (2016) greedy - - - - 91.9 93.9 86.1 87.6
Andor et al. (2016) beam - - - - 92.79 94.61 - -
Zhu et al. (2015) re-ranking - - - - - 94.16 - 87.43

Graph-NN:
Zhang and McDonald (2014) 3rd order 92.48 93.57 - - 90.64 93.01 86.34 87.96
Zhang et al. (2016) 3rd order 92.23 93.31 90.07 93.14 91.29 93.42 86.17 87.65
Wang and Chang (2016) 1st order 92.45 93.51 - - 91.82 94.08 86.23 87.55
Kiperwasser and Goldberg (2016) 1st order - - - - 90.90 93.0 84.9 86.5
Dozat and Manning (2016) 1st order - - - - 94.08 95.74 88.23 89.30
Zhang et al. (2017a) 1st order+re-ranking - - - - 91.90 94.10 86.15 87.84

Seq2seq:
Wiseman and Rush (2016) beam - - - - 87.26 91.57 - -
Zhang et al. (2017b) attention,single - - - - 91.60 93.71 85.40 87.41
This work beam+sub-root - - - - 92.08 94.11 86.23 88.78

Table 1: Comparison of results on PTB and CTB test datasets.

5.3 Analysis

5.3.1 Sub-root Decomposition

This subsection gives an analysis on the effectiveness of the proposed sub-root decomposition algorithm.
Figure 3 shows sentence length distribution on PTB and our sub-root tagging F1 score. For the sub-root
tagging model, we get 96.73% and 96.01% F1 scores on development and test datasets, respectively.

To determine an optimal decomposition length threshold, we conduct experiments on PTB and the re-
sults are shown in Figure 4, which indicates that the threshold 40 performs best, though sub-root tagging
model got the similar performance below the length 40. Meanwhile, all thresholds larger than 40 are
superior to the case without decomposition, especially for the sentences longer than 40. We are surprised
that all the other threshold settings are not better than the original case without any decomposition, which
can be attributed to the dissatisfactory sub-root tagging F1 score.

Our experiments reveal that the sub-root decomposition method does work in improving the per-
formance of our seq2seq parser, for its help on alleviating the long-distance dependencies and error
propagation in the course of decoding.
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Figure 3: Sentence length distribution in PTB and
the corresponding sub-root tagging accuracy.
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5.3.2 Target Sequence
To make a direct comparison on the target encoding between our relative position sequence and previous
transition sequence, we build a basic seq2seq model with the same source embedding, but without sub-
root decomposition. The results are shown in Table 2, which indicates our relative position sequence is a
better solution.

Since we limit the length of target sequence equal to the input sequence, the relative position sequence
can also be predicted by sequence tagging model. We further compare the conventional sequence tag-
ging model (Bi-LSTM+CRF with the same parameter settings as sub-root tagger) and the basic seq2seq
model. The results demostrate that the seq2seq is necessarily better than the sequence tagging model for
our concerned task.

Dev (%) Test (%)
Target encoding Model LAS UAS LAS UAS
Transition seq2seq 83.56 87.34 82.77 87.49
Relative position sequence tagging 83.81 87.58 81.37 87.60
Relative position seq2seq 84.99 89.16 85.03 89.32

Table 2: Transition vs. relative position sequences in basic seq2seq model and sequence tagging vs.
seq2seq model with relative position sequence (without decomposition).

5.3.3 Ablation Study

Dev (%) Test (%)
LAS UAS LAS UAS

This work 91.86 93.84 92.08 94.11
-subword emb 91.35 93.76 91.77 93.95
-node2vec emb 91.60 93.71 91.85 94.01
-tree constraint 91.12 93.21 90.75 93.60

Table 3: Contribution of different components in our model.

In order to explore the contribution of the beam search with tree contraint and embeddings employed,
we conduct a group of ablation experiments on PTB-SD dataset. The settings keep the same as before
mentioned. Table 3 shows that the beam search with tree constraints substantially enhances the perfor-
mance of our seq2seq parser. Meanwhile, both subword embedding and node2vec embedding contribute
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to improving the parsing results.

6 Conclusion

In this paper, we propose a seq2seq parser with representation enhancement that directly predicts head
positions without relying on transition sequence. To mitigate the long-distance dependency problem, we
introduce the sub-root decomposition to shorten the sequence. To enforce a well-formed tree structure
and alleviate error propagation, we employ beam search with constraints. Experiments on English and
Chinese Penn Treebank verify the effectiveness of the proposed model. To the best of our knowledge,
this is the first reported seq2seq parser with direct head prediction achieving promising performance.
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